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A LOOK AT MULTIPLICITY
DISTRIBUTIONS VIA MODIFIED COMBINANTS

The experimentally measured multiplicity distributions exhibit, after a closer inspection, the
peculiarly enhanced void probability and the oscillatory behavior of modified combinants. We
show that both these features can be used as additional sources of information, not yet fully
explored, on the mechanism of multiparticle production. We provide their theoretical under-
standing within the class of compound distributions.
K e yw o r d s: multiplicity distributions, combinants, void probabilities, compound distribu-
tions.

1. Introduction

The experimentally measured (non-single diffrac-
tive (NSD) charged) multiplicity distributions, 𝑃 (𝑁)
(which are one of the most thoroughly investigated
and discussed sources of information on the mech-
anism of the production process [1]), exhibit, af-
ter a closer inspection, the peculiarly enhanced
void probability, 𝑃 (0) > 𝑃 (1) [2, 3], and the os-
cillatory behavior of the so-called modified combi-
nants, 𝐶𝑗 , introduced by us in [4, 5] (and thor-
oughly discussed in [6, 7]; they are closely connected
with the combinants 𝐶⋆

𝑗 introduced in [8] and dis-
cussed occasionally for some time [9–14]). Both fea-
tures were only rarely used as a source of infor-
mation. We demonstrate that the modified combi-
nants can be extracted experimentally from the mea-
sured 𝑃 (𝑁) by means of a recurrence relation in-
volving all 𝑃 (𝑁 < 𝑗), and that new information
is hidden in their specific distinct oscillatory behav-
ior, which, in most cases, is not observed in the
𝐶𝑗 obtained from the 𝑃 (𝑁) commonly used to fit
experimental results [4–7]. We discuss the possible
sources of such behavior and the connection of 𝐶𝑗

with the enhancement of void probabilities, and their
impact on our understanding of the multiparticle pro-
duction mechanism, with emphasis on understand-
ing both phenomena within the class of compound
distributions.

c○ M. RYBCZYŃSKI, G. WILK, Z. W LODARCZYK, 2019

2. Recurence Relation
and Modified Combinants

The dynamics of the multiparticle production pro-
cess is hidden in the way, in which the consecutive
measured multiplicities 𝑁 are connected. There are
two ways of characterizing the multiplicity distribu-
tions: by means of generating functions, 𝐺(𝑧) =
=
∑︀∞

𝑁=0 𝑃 (𝑁)𝑧𝑁 , or by some form of a recurrence
relation between 𝑃 (𝑁). In the first case, one uses the
Poisson distribution as a reference and characterizes
deviations from it by means of combinants 𝐶⋆

𝑁 de-
fined as [8]

𝐶⋆
𝑗 =

1

𝑗!

𝑑𝑗 ln𝐺(𝑧)

𝑑𝑧𝑗

⃒⃒
⃒⃒
𝑧=0

, (1)

or by the expansion

ln𝐺(𝑧) = ln𝑃 (0) +

∞∑︁

𝑗=1

𝐶⋆
𝑗 𝑧

𝑗 . (2)

For the Poisson distribution, 𝐶*
1 = ⟨𝑁⟩ and 𝐶*

𝑗>1 = 0.
The combinants were used in the analysis of experi-
mental data in [9–14]. In [10,13], it was demonstrated
that they are particularly useful in identifying the na-
ture of the emitting source. It turns out that, in the
case of 𝑆 sources emitting particles without any re-
strictions concerning their number, the multiplicity
𝑃𝑆(𝑁) is a completely symmetric function of degree
𝑁 of the probabilities of emission, 𝑝𝑖, the generating
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function of which reduces for 𝑝𝑖 → 0 to the generat-
ing function of the Poisson Distribution (PD). For all
probabilities remaining the same, 𝑝𝑖 = 𝑝, it reduces
to the generating function of the Negative Binomial
Distribution (NBD). In this case, the combinants are
given by a power series

𝐶⋆
𝑗 =

1

𝑗

𝑆∑︁

𝑖=1

𝑝𝑗𝑖 (3)

and are always positive. However, when each of the
sources can emit only a given number of particles
(let us assume, for definiteness, that at most only
one particle), then 𝑃𝑆(𝑁) is an elementary symmet-
ric function of degree 𝑁 in the arguments, and the
corresponding combinants are given by

𝐶⋆
𝑗 = (−1)𝑗+1 1

𝑗

𝑆∑︁

𝑖=1

(︂
𝑝𝑖

1− 𝑝𝑖

)︂𝑗
, (4)

and alternate in sign for different 𝑗’s. For all prob-
abilities remaining the same, 𝑝𝑖 = 𝑝, a generating
function in this scenario reduces to the generating
function of the Binomial Distribution (BD) and the
combinants oscillate rapidly with period equal to 2.

Note that, in both cases, we were working with
probabilities 𝑝𝑖, which were not extracted from exper-
iment, but their values were taken such that the mea-
sured multiplicity distributions are reproduced. They
are then usually represented by one of the known the-
oretical formulae for multiplicity distributions, 𝑃 (𝑁),
which can be defined either by the generating func-
tions mentioned above or by some recurrence rela-
tions connecting different 𝑃 (𝑁). In the simplest (and
most popular) case, one assumes that the multiplic-
ity 𝑁 is directly influenced only by its neighboring
multiplicities, (𝑁 ± 1), i.e., we have

(𝑁+1)𝑃 (𝑁+1) = 𝑔(𝑁)𝑃 (𝑁), 𝑔(𝑁) = 𝛼+𝛽𝑁. (5)

This recurrence relation yields BD (when 𝛼 =
= 𝐾𝑝/(1− 𝑝) and 𝛽 = −𝛼/𝐾), PD (when 𝛼 = 𝜆 and
𝛽 = 0), and NBD (when 𝛼 = 𝑘𝑝 and 𝛽 = 𝛼/𝑘, where
𝑝 denotes the particle emission probability). Usual-
ly, the first choice of 𝑃 (𝑁) in fitting the data is
a single NBD [15] or two- [16, 17], three- [18], or
multicomponent NBDs [19] (or some other forms of
𝑃 (𝑁) [1,15,20]). However, such a procedure only im-
proves the agreement at large 𝑁 , whereas the ratio

𝑅 = data/fit still deviates dramatically from unity
at small 𝑁 for all fits [4, 5]. This means that the
measured 𝑃 (𝑁) contains information which is not
yet captured by the rather restrictive recurrence rela-
tion (5). Therefore, in [4], we proposed to use a more
general form of the recurrence relation (used, e.g., in
counting statistics when dealing with multiplication
effects in point processes [21]):

(𝑁 + 1)𝑃 (𝑁 + 1) = ⟨𝑁⟩
𝑁∑︁

𝑗=0

𝐶𝑗𝑃 (𝑁 − 𝑗). (6)

This relation connects multiplicities 𝑁 by means of
some coefficients 𝐶𝑗 , which contain the memory of
particle 𝑁 + 1 about all the 𝑁 − 𝑗 previously pro-
duced particles. The most important feature of this
recurrence relation is that 𝐶𝑗 can be directly calcu-
lated from the experimentally measured 𝑃 (𝑁) by re-
versing Eq. (6) [4–7]:

⟨𝑁⟩𝐶𝑗 = (𝑗+1)

[︂
𝑃 (𝑗 + 1)

𝑃 (0)

]︂
−⟨𝑁⟩

𝑗−1∑︁

𝑖=0

𝐶𝑖

[︂
𝑃 (𝑗 − 𝑖)

𝑃 (0)

]︂
.

(7)

The modified combinants 𝐶𝑗 defined by the recur-
rence relation (7) are closely related to the combi-
nants 𝐶⋆

𝑗 defined by Eq. (1), namely,

𝐶𝑗 =
𝑗 + 1

⟨𝑁⟩ 𝐶⋆
𝑗+1. (8)

Using Leibnitz’s formula for the 𝑗th derivative of the
quotient of two functions 𝑥 = 𝐺′(𝑧)/𝐺(𝑧),

𝑥(𝑗) =
1

𝐺

(︃
𝐺′(𝑗) − 𝑗!

𝑗∑︁

𝑘=1

𝐺′(𝑗+1−𝑘)

(𝑗 + 1− 𝑘)!

𝑥(𝑘−1)

(𝑘 − 1)!

)︃
, (9)

where 𝐺′(𝑧)/𝐺(𝑧)= [ln𝐺(𝑧)]′ and 𝐺(𝑧)(𝑁)/𝑁 !|𝑧=0 =
= 𝑃 (𝑁), we immediately obtain the recurrence rela-
tion (7).

The modified combinants, 𝐶𝑗 , share with the com-
binants 𝐶⋆

𝑗 the apparent ability of identifying the na-
ture of the emitting source mentioned above (with,
respectively, Eq. (3) corresponding to the NBD case
with no oscillations, and Eq. (4) corresponding to the
rapidly oscillating case of BD). This also means that
𝐶𝑗 can be calculated from the generating function
𝐺(𝑧) of 𝑃 (𝑁),

⟨𝑁⟩𝐶𝑗 =
1

𝑗!

𝑑𝑗+1 ln𝐺(𝑧)

𝑑𝑧𝑗+1

⃒⃒
⃒⃒
𝑧=0

. (10)
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Fig. 1. Upper panel: Data on 𝑃 (𝑁) measured in 𝑒+𝑒− colli-
sions by the ALEPH experiment at 91 GeV [23] are fitted by
the distribution obtained from the generating function given
by the product 𝐺(𝑧) = 𝐺BD(𝑧)𝐺NBD(𝑧) with the parameters:
𝑘′ = 1 and 𝑝′ = 0.8725 for BD and 𝑘 = 4.2 and 𝑝 = 0.75

for NBD. Lower panel: the modified combinants 𝐶𝑗 deduced
from these data on 𝑃 (𝑁). They can be fitted by 𝐶𝑗 obtained
from the same generating function with the same parameters,
as used for fitting 𝑃 (𝑁)

Thus, whereas the recurrence relation, Eq. (7), al-
lows us to obtain the 𝐶𝑗 from the experimental
data on 𝑃 (𝑁), Eq. (10) allows for their calculation
from the distribution defined by the generating func-
tion 𝐺(𝑧).

Note that 𝐶𝑗 provide a similar measure of fluctu-
ations as the set of cumulant factorial moments, 𝐾𝑞,
which are very sensitive to the details of the multi-
plicity distribution and are frequently used in phe-
nomenological analyses of data (cf., [1, 22]),

𝐾𝑞 = 𝐹𝑞 −
𝑞−1∑︁

𝑖=1

(︂
𝑞 − 1

𝑖− 1

)︂
𝐾𝑞−𝑖𝐹𝑖, (11)

where 𝐹𝑞 = ⟨𝑁(𝑁 − 1)(𝑁 − 2) ... (𝑁 − 𝑞 + 1)⟩ are
the factorial moments, and 𝐾𝑞 can be expressed as

an infinite series in 𝐶𝑗 ,

𝐾𝑞 =

∞∑︁

𝑗=𝑞

(𝑗 − 1)!

(𝑗 − 𝑞)!
⟨𝑁⟩𝐶𝑗−1. (12)

However, while the cumulants are best suited to study
densely populated regions of the phase space, combi-
nants are better suited for the study of sparsely pop-
ulated regions, because, according to Eq. (7), the cal-
culation of 𝐶𝑗 requires only a finite number of prob-
abilities 𝑃 (𝑁 < 𝑗) (which may be advantageous in
applications).

The modified combinants share with the cumu-
lants the property of additivity. For a random vari-
able composed of independent random variables, with
its generating function given by the product of their
generating functions, 𝐺(𝑥) =

∏︀
𝑗 𝐺𝑗(𝑥), the corre-

sponding modified combinants are given by the sum of
the independent components. To illustrate this prop-
erty, let us consider the 𝑒+𝑒− data and use the gen-
erating function 𝐺(𝑧) formally treated as a generat-
ing function of the multiplicity distribution 𝑃 (𝑁), in
which 𝑁 consists of both the particles from BD (𝑁BD)
and from NBD (𝑁NBD):

𝑁 = 𝑁BD +𝑁NBD. (13)

In this case, the multiplicity distribution can be writ-
ten as

𝑃 (𝑁) =

min{𝑁,𝑘′}∑︁

𝑖=0

𝑃BD(𝑖)𝑃NBD(𝑁 − 𝑖), (14)

and the respective modified combinants as

⟨𝑁⟩𝐶𝑗 = ⟨𝑁BD⟩𝐶(BD)
𝑗 + ⟨𝑁NBD⟩𝐶(NBD)

𝑗 . (15)

Figure 1 shows the results of attempts to fit both the
experimentally measured [23] multiplicity distribu-
tions and the corresponding modified combinants 𝐶𝑗

calculated from these data (cf. [24] for details). The
fits shown in Fig. 1 correspond to the parameters:
𝑘′ = 1 and 𝑝′ = 0.8725 for BD and 𝑘 = 4.2 and
𝑝 = 0.75 for NBD.

Concerning the void probabilities at all energies of
interest, one observes that 𝑃 (0) > 𝑃 (1), a feature
which cannot be reproduced by any composition of
NBD used to fit the data [7]. To visualize the im-
portance of this result, we note firstly that 𝑃 (0) is
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strongly connected with the modified combinants 𝐶𝑗 ,
in fact:

𝑃 (0) = exp

⎛
⎝−

∞∑︁

𝑗=0

⟨𝑁⟩
𝑗 + 1

𝐶𝑗

⎞
⎠. (16)

From Eq. (7), one can deduce that the 𝑃 (0) > 𝑃 (1)
property is possible only when ⟨𝑁⟩𝐶0 < 1. For most
multiplicity distributions, 𝑃 (2) > 𝑃 (1), which results
in an additional condition, 𝐶1 > 𝐶0(2−⟨𝑁⟩𝐶0); taken
togethe,r this means that 𝐶1 > 𝐶0. However, because
of the normalization condition

∑︀∞
𝑗=0 𝐶𝑗 = 1, such an

initial increase of 𝐶𝑗 cannot continue for all ranks 𝑗,
and we should observe some kind of nonmonotonic
behavior of 𝐶𝑗 with rank 𝑗 in this case. This means
that all multiplicity distributions, for which the mod-
ified combinants 𝐶𝑗 decrease monotonically with rank
𝑗, do not exhibit the enhanced void probability.

3. Compound Distributions

To continue, we use the idea of compound distribu-
tions (CD), which are applicable, when (as in our
case) the production process consists of a number 𝑀
of some objects (clusters/fireballs/etc.) produced ac-
cording to a distribution 𝑓(𝑀) (defined by a gener-
ating function 𝐹 (𝑧)), which subsequently decay inde-
pendently into a number of secondaries, 𝑛𝑖=1,...,𝑀 ,
following some other (always the same for all 𝑀)
distribution, 𝑔(𝑛) (defined by a generating function
𝐺(𝑧)). The resultant multiplicity distribution,

ℎ

(︃
𝑁 =

𝑀∑︁

𝑖=0

𝑛𝑖

)︃
= 𝑓(𝑀)⊗ 𝑔(𝑛), (17)

is a compound distribution of 𝑓 and 𝑔 with the gen-
erating function

𝐻(𝑧) = 𝐹 [𝐺(𝑧)]. (18)

Equation (18) means that, in the case where 𝑓(𝑀) is
a Poisson distribution with the generating function

𝐹 (𝑧) = exp[𝜆(𝑧 − 1)], (19)

the combinants for any other distribution 𝑔(𝑛) with
a generating function 𝐺(𝑧), which are obtained from
the compound distribution ℎ(𝑁) = 𝑃PD ⊗ 𝑔(𝑛) and
calculated with the use of Eq. (10), do not oscillate
and are equal to

𝐶𝑗 =
𝜆(𝑗 + 1)

⟨𝑁⟩ 𝑔(𝑗 + 1). (20)
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Fig. 2. 𝐶𝑗 for BD, BD compounded with 𝛿𝑛,𝑚 with 𝑚 = 10

and compounded with the Poisson distribution with 𝜆 = 10

This fact explains why 𝐶𝑗 from NBDs do not oscil-
late. This is because NBD is a compound distribution
of the Poisson and logarithmic distributions. This
means that 𝑔(𝑛) = −𝑝𝑛/[𝑛 ln(1 − 𝑝)], and ℎ(𝑁) is
NBD with 𝑘 = −𝜆/ ln(1−𝑝). In this case, 𝐶𝑗 coincide
with those derived before and given by Eq. (3). Ac-
tually, this reasoning applies to all more complicated
compound distributions, with any distribution itself
being a compound Poisson distribution. This prop-
erty limits the set of distributions 𝑃 (𝑁) leading to
oscillating 𝐶𝑗 , to BD, and to all compound distribu-
tions based on it. In this case, the period of oscilla-
tions is determined by the number of particles emit-
ted from the source. For the compound distributions
based on BD with 𝑃 (𝑛) = 𝛿𝑛,𝑚, we have

𝐶𝑗 = (−1)𝑗/𝑚+1 𝐾

⟨𝑁⟩

(︂
𝑝

1− 𝑝

)︂𝑗/𝑚+1

, (21)

(for 𝑗 = 𝑚𝑘 and 𝐶𝑗 = 0 for 𝑗 ̸= 𝑚𝑘, where
𝑘 = 1, 2, 3, ...). For broader distributions 𝑃 (𝑛), we
get a smoother 𝐶𝑗 dependence on rank 𝑗. For exam-
ple, for 𝑃 (𝑛) given by the Poisson distribution (with
expected value 𝜆), we obtain a Compound Binomial
Distribution (CBD) with the generating function

𝐻(𝑧) = {𝑝 exp[𝜆(𝑧 − 1)] + 1− 𝑝}𝐾, (22)

and the modified combinants are given by

𝐶𝑗 =
(−1)𝑗+1𝐾𝑒𝜆𝜆𝑗+1 1−𝑝

𝑝

⟨𝑁⟩
(︁
𝑒𝜆 1−𝑝

𝑝 + 1
)︁𝑗+1

𝐴𝑗

(︂
𝑒𝜆

𝑝− 1

𝑝

)︂
, (23)

where 𝐴𝑗(𝑥) are the Eulerian polynomials. As an il-
lustration, we show in Fig. 2 that, by compounding
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Fig. 3. Multiplicity distributions 𝑃 (𝑁) measured in 𝑝𝑝 col-
lisions by ALICE [25] (upper panel) and the corresponding
modified combinants 𝐶𝑗 (lower panel). Data are fitted using a
two compound distribution (BD+NBD) given by Eqs. (25) and
(24) with the parameters: 𝐾1 = 𝐾2 = 3, 𝑝1 = 0.9, 𝑝2 = 0.645,
𝑘1 = 2.8, 𝑘2 = 1.34, 𝑚1 = 5.75, 𝑚2 = 23.5, 𝑤1 = 0.24 and
𝑤2 = 0.76

BD with a Poisson distribution, one gains control over
the period of oscillations (now equal to 2𝜆) and their
amplitude. However, it turns out that such a combi-
nation does not allow us to fit data.

4. Multicomponent

The situation improves substantially, when one uses
a multi-CBD based on Eq. (22). But the agreement
is not yet satisfactory. It turns out that the situa-
tion improves dramatically, if one replaces the Poisson
distribution by NBD and, additionally, uses a two-
component version of such CBD with

𝑃 (𝑁) =
∑︁

𝑖=1,2

𝑤𝑖ℎ (𝑁 ; 𝑝𝑖,𝐾𝑖, 𝑘𝑖,𝑚𝑖) (24)

with the generating function of each component
equal to

𝐻(𝑧) =

[︃
𝑝

(︂
1− 𝑝′

1− 𝑝′𝑧

)︂𝑘
+ 1− 𝑝

]︃𝐾
. (25)

In such a case, as can be seen in Fig. 3, one gains a sat-
isfactory control over the periods of oscillations, their
amplitudes, and their behavior as a function of the
rank 𝑗. Moreover, one can nicely fit 𝑃 (𝑁) and 𝐶𝑗 . Of
special importance is the fact that the enhancement
𝑃 (0) > 𝑃 (1) is also reproduced in this approach.

The above result also explains the apparent success
in fitting the experimentally observed oscillations of
𝐶𝑗 by using a weighted sum of the three NBD used in
[26]. Such a distribution uses freely selected weights
and parameters (𝑝, 𝑘) of NBDs and, therefore, resem-
bles the compound distribution of BD with NBD. Ho-
wever, we note that the sum of 𝑀 variables (with
𝑀 = 0, 1, 2, ...), each from NBD characterized by
parameters (𝑝, 𝑘), is described by NBD characterized
by (𝑝,𝑀𝑘). Therefore, as discussed before, it cannot
reproduce the void probability 𝑃 (0). This can be re-
produced only in the case where 𝑀 = 0, 1, ...,𝐾
is distributed according to BD, and we have a 𝐾-
component NBD (where the consecutive NBDs have
precisely defined parameters 𝑘),

𝑃 (𝑁) =

𝐾∑︁

𝑀=0

𝑃BD(𝑀)𝑃NBD(𝑁 ; 𝑝,𝑀𝑘). (26)

In this case, one also has the 𝑀 = 0 component,
which is lacking in the previous multi-NBD case used
in [26]. This is the reason for that, whereas the com-
pound (BD&NBD) distribution reproduces the void
probability, 𝑃 (0), the single NBD (or any combina-
tion of NBDs) do not. This means that the observa-
tion of the peculiar behavior of the void probability
discussed above signals the necessity of using some
compound distribution based onBD to fit data for
𝑃 (𝑁) (and the 𝐶𝑗 obtained from it).

5. Summary and Conclusions

Since the time of Ref. [8], one encounters essen-
tially no detailed experimental studies of the com-
binants and only rather sporadic attempts at their
phenomenological use to describe the multiparticle
production processes. We demonstrate that the mod-
ified combinants 𝐶𝑗 are a valuable tool for the in-

742 ISSN 2071-0194. Ukr. J. Phys. 2019. Vol. 64, No. 8



A Look at Multiplicity Distributions Via Modified Combinants

vestigations of multiplicity distributions, and 𝐶𝑗 de-
duced from the measured multiplicity distributions,
P(N), could provide additional information on the
dynamics of the particle production. This, in turn,
could allow us to reduce the number of possible in-
terpretations presented so far and, perhaps, answer
some of the many still open fundamental questions
(that this is possible, despite experimental errors,
has been shown in [7, 26]). Finally, let us note that
a large number of papers suggest some kind of uni-
versality in the mechanisms of hadron production in
𝑒+𝑒− anihilations and in 𝑝𝑝 and 𝑝𝑝 collisions. This
arises from observations of the average multiplicities
and relative dispersions in both types of processes
(cf., e.g., [27, 28]). However, as we have shown here,
the modified combinant analysis reveals differences
between these processes. Namely, while, in 𝑒+𝑒− an-
nihilations, we observe oscillations of 𝐶𝑗 with period
2, the period of oscillations in 𝑝𝑝 collisions is ∼ 10
times longer, and the amplitude of oscillations in both
types of processes differs dramatically. At the mo-
ment, this problem remains open and awaits a further
investigation.
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6. M. Rybczynśki, G. Wilk, Z. W lodarczyk. Intriguing feature
of multiplicity distributions. Eur. Phys. J. Web Conf. 206,
03002 (2019).

7. M. Rybczynśki, G. Wilk, Z. W lodarczyk. Intriguing prop-
erties of multiplicity distributions. Phys. Rev. D 99, 094045
(2019).

8. S.K. Kauffmann, M. Gyulassy. Multiplicity distribution.
J. Phys. A 11, 1715 (1978).

9. J. Bartke. On the description of multiplicity distributions
in multiple production processes in terms of combinants.
Phys. Scripta 27, 226 (1983).

10. A.B. Balantekin, J.E. Seger. Description of pion mul-
tiplicities using combinants. Phys. Lett. B 266, 231
(1991).

11. Bao-An Li. Pion multiplicity distributions and combinants
in relativistic heavy ion collisions. Phys. Lett. B 300, 14
(1993).

12. S. Hegyi. Correlation studies in quark jets using combi-
nants. Phys. Lett. B 463, 126 (1999).

13. A.B. Balantekin. Combinant analysis of multiplicity distri-
butions. AIP Conf. Proc. 276, 346 (1993).
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ПОГЛЯД НА МНОЖИННI РОЗПОДIЛИ
ЧЕРЕЗ МОДИФIКОВАНI КОМБIНАНТИ

Р е з ю м е

Експериментально вимiрянi розподiли по множинностi пi-
сля їх ретельного аналiзу демонструють незвично пiдвище-
ну ймовiрнiсть порожнечi i осциляторну поведiнку моди-
фiкованих комбiнантiв. Ми показуємо, що обидвi цi риси
можна використати як додатковi джерела iнформацiї, ще
не використанi в повнiй мiрi в механiзмах багаточастинко-
вого народження. Ми надаємо їх теоретичну iнтерпретацiю
в термiнах компаундних розподiлiв.
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