
GENERAL PHYSICS

ISSN 2071-0194. Ukr. J. Phys. 2019. Vol. 64, No. 5 371

https://doi.org/10.15407/ujpe64.5.371

G.G. RODE
Institute of Physics, Nat. Acad. of Sci. of Ukraine
(46, Nauky Ave., Kyiv 03028, Ukraine; e-mail: ifanrode@gmail.com)

PROPAGATION OF THE MEASUREMENT
ERROR AND THE MEASURED MEAN OF A PHYSICAL
QUANTITY FOR ELEMENTARY
FUNCTIONS 𝑎𝑥 AND log𝑎 𝑥

Rules have been obtained for the propagation of the error and the mean value for a measured
physical quantity onto another one with a functional relation of the type 𝑎𝑥 or log𝑎 𝑥 between
them. In essence, these rules are inherently based on the Gaussian weight scheme. Therefore,
they should be valid in the framework of a real Gaussian weight scheme applied to discrete
data of a real physical experiment (a sample). An analytical form that was used to present the
rules concerned (“analytical propagation rules”) and their character allow the processing and
the analysis of experimental data to be simplified and accelerated.
K e yw o r d s: propagation of an error, propagation of an uncertainty.

1. Introduction

This work is devoted to an actual topic of estimat-
ing the errors for indirectly measured physical quan-
tities. It makes a contribution to the general problem
of error propagation. In more details, the problem of
error propagation was described in works [1,2]. It was
also discussed in work [3].

There are two approaches to solve this problem. All
modern theoretical and practical applications, meth-
ods, and developments concerning the propagation
of errors are based exclusively on the expansion in
a Taylor series (“differentiation”) [4–13]. The best de-
scription of the problem of “analytical” error propa-
gation is given in work [1]. In this paper, some efforts
in this direction were made. Namely, two widely used
elementary functions, 𝑎𝑥 and log𝑎 𝑥 (or, equivalently,
𝑒𝑥 and ln𝑥) were considered. This work is a logical
continuation of works [2, 3].
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2. New Rules for the Calculation
of Means and the Propagation of Errors
in the Case of Elementary
Functions 𝑎𝑥 and log𝑎 𝑥

To obtain analytical rules for two examined func-
tions (𝑎𝑥 and log𝑎 𝑥), the mean 𝑥𝑎𝑣 and the “error”
𝑘
√︀
(Δ𝑥)2𝑎𝑣 were related (formalized) to the basic no-

tions of mathematical statistics:

𝑥𝑎𝑣 ≈ 𝐸𝑥, 𝑘2(Δ𝑥)2𝑎𝑣 ≈ 𝐷𝑥,

where 𝐸𝑥 and 𝐷𝑥 are, respectively, the mathemat-
ical expectation and the variance of the measured
quantity 𝑥. At this formalization, it is assumed that,
when measuring the physical quantity 𝑥, its spe-
cific values 𝑥𝑖 are obtained in accordance with a
certain function 𝑓(𝑥) describing the probability for
any 𝑥-value to appear. Surely, this function has to
depend on the measurement conditions: it implic-
itly depends on the measuring device, the chosen
method, and so forth). As a rule, the function 𝑓(𝑥) is
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normalized,
∞∫︁

−∞

𝑓(𝑥)𝑑𝑥 = 1. (1)

In this case, it is called the function of the probability
density for a physical quantity 𝑥 with the continu-
ous distribution. Accordingly, the true value 𝜇 of the
physical quantity 𝑥 – or its mathematical expectation
𝐸𝑥 – can be calculated using the known function 𝑓(𝑥)
by the formula

𝜇 = 𝐸𝑥 =

∞∫︁
−∞

𝑥𝑓(𝑥)𝑑𝑥. (2)

Equation (2) is a definition of the mathematical ex-
pectation 𝐸𝑥 [1]. The function 𝑓(𝑥) also determines
the variance 𝐷𝑥 of the physical quantity 𝑥 [1] (the
spread of its measured values owing to 𝑓(𝑥)):

𝐷𝑥 =

∞∫︁
−∞

(𝑥− 𝐸𝑥)
2𝑓(𝑥)𝑑𝑥 =

∞∫︁
−∞

(𝑥− 𝜇)2𝑓(𝑥)𝑑𝑥, (3)

where 𝜇 = 𝐸𝑥. The so-called normal (Gaussian) prob-
ability distribution [1]:

𝑓(𝑥) =
𝑝√
𝜋
exp[−𝑝2(𝑥− 𝜇)2], (4)

where 𝑝2 = 1
2𝐷𝑥

and 𝜇 = 𝐸𝑥, is considered to be the
most important one among other distributions.

In the case of a relationship by means of the func-
tion 𝑦 = ℎ(𝑥), the mathematical expectation 𝐸ℎ and
the variance 𝐷ℎ for the function ℎ(𝑥) equal [1], re-
spectively,

𝜒 = 𝐸ℎ =

∞∫︁
−∞

ℎ(𝑥)𝑓(𝑥)𝑑𝑥, (5)

𝐷ℎ =

∞∫︁
−∞

[ℎ(𝑥)−𝐸ℎ]
2𝑓(𝑥)𝑑𝑥 =

∞∫︁
−∞

[ℎ(𝑥)−𝜒]2𝑓(𝑥)𝑑𝑥.

(6)
Expression (6) can be rewritten in a more convenient
form,

𝐷ℎ =

∞∫︁
−∞

[ℎ2(𝑥)− 2ℎ(𝑥)𝐸ℎ + 𝐸2
ℎ]𝑓(𝑥)𝑑𝑥 =

=

∞∫︁
−∞

ℎ2(𝑥) 𝑓(𝑥)𝑑𝑥− 𝐸2
ℎ. (7)

In Eqs. (4)–(7), the quantities 𝜇 = 𝐸𝑥 and 𝐷𝑥

enter to the function 𝑓(𝑥) as parameters. Therefore,
strictly speaking, 𝑓(𝑥) can be written as 𝑓(𝑥,𝐸𝑥, 𝐷𝑥).
As a result,

𝐸ℎ =

∞∫︁
−∞

ℎ(𝑥)𝑓(𝑥,𝐸𝑥, 𝐷𝑥)𝑑𝑥, (8)

𝐷ℎ + 𝐸2
ℎ =

∞∫︁
−∞

ℎ2(𝑥) 𝑓(𝑥,𝐸𝑥, 𝐷𝑥)𝑑𝑥. (9)

It is easy to see that Eqs. (8) and (9) are integral
equations. By solving them, we would obtain a sought
analytic relation between 𝐸ℎ and 𝐷ℎ (analogs of the
means for the function ℎ(𝑥)), on the one hand, and
𝐸𝑥 and 𝐷𝑥 (analogs of the measured averages), on
the other hand. It turned out that it is possible to
choose tabulated integrals [4] similar to integrals (8)
and (9), and, in such a way, to solve the problem for
the elementary function 𝑎𝑥 and, with its help, for the
inverse function log𝑎 𝑥 (see Appendix).

Here, a comment should be made. If the variable
𝑥 has a Gaussian distribution, the values of the non-
linear function ℎ(𝑥) will be definitely not distributed
according to the Gaussian law. Therefore, expressions
(8) and (9) can be regarded as approximations to the
expressions, in which the integration is carried out
over the “correct” distribution:

𝐸ℎ =

𝑏∫︁
𝑎

ℎ𝑍(ℎ,𝐸ℎ, 𝐷ℎ)𝑑ℎ 𝐷ℎ =

=

𝑏∫︁
𝑎

ℎ2 𝑍(ℎ,𝐸ℎ, 𝐷ℎ)𝑑ℎ− 𝐸2
ℎ,

where 𝑍(ℎ,𝐸ℎ, 𝐷ℎ ) is a “pure” non-Gaussian distri-
bution for ℎ. The integration limits 𝑎 and 𝑏 in these
integrals depend on the function ℎ(𝑥). For example,
for ℎ = cos 𝑥, we have 𝑎 = −1 and 𝑏 = 1.

However, the overwhelming majority of experimen-
tal works are based on the “classical” mixed sum-
mation scheme, Eqs. (8) and (9), which was ex-
pounded in work [1]. This is also true in the cases
where Eqs. (8) and (9) are solved approximately by
expanding ℎ(𝑥) in the Taylor series [1]. Our expres-
sions were also constructed in the framework of this
ideology (see Appendix). Furthermore, all presented
examples were also calculated, by using this scheme
(see Section 3). In other words, both 𝑥𝑖 and ℎ(𝑥𝑖)
were summed up with the Gaussian probabilities.
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The means 𝐸𝑥, 𝐷𝑥, and Δ𝑥 of the input set {𝑥𝑖}
were calculated by the formulas

𝐸𝑥 =
∑︁

𝑥𝑖 𝑓𝑖; 𝐷ℎ =
∑︁

(𝑥𝑖−𝐸𝑥)
2 𝑓𝑖); Δ𝑥 =

√︀
𝐷𝑥.

The means 𝐸ℎ, 𝐷ℎ, and Δℎ of the output set
{ℎ𝑖 = ℎ(𝑥𝑖)} were calculated by the formulas

𝐸ℎ =
∑︁

ℎ(𝑥𝑖) 𝑓𝑖; 𝐷ℎ =
∑︁

(ℎ(𝑥𝑖)− 𝐸ℎ)
2 𝑓𝑖);

Δ𝑥 =
√︀
𝐷𝑥,

where 𝑓𝑖 =
𝑤𝑖∑︀
𝑤𝑖

are Gaussian multipliers, 𝑓𝑖 = 𝑤𝑖∑︀
𝑤𝑖

;
𝑤𝑖 =

𝑝√
𝜋
× exp[−𝑝2(𝑥𝑖 − 𝜇)2], 𝑝2 = 1

2𝐷𝑥
.

For the function 𝑎𝑥, the mentioned relations look
like

𝐸ℎ = 𝐸𝑎𝑋 = 𝑎𝐸𝑋 𝑎𝐷𝑋 ln 𝑎/2;

𝐷ℎ = 𝐷𝑎𝑋 = 𝑎2𝐸𝑋 𝑎𝐷𝑋 ln 𝑎(𝑎𝐷𝑋 ln 𝑎 − 1),
(10)

where 𝐸𝑋 and 𝐷𝑋 are the mean and the error, respec-
tively, of the measured data, and 𝐸𝑎𝑋 and 𝐷𝑎𝑋 are
the mean and the error, respectively, of the measure-
ment results “propagated” with the use of the function
𝑎𝑥. For the function log𝑎 𝑥, the analogous relations
look like

𝐸ℎ = 𝐸log =
1

2
log𝑎

(︂
𝐸4

𝑋

𝐷𝑋 + 𝐸2
𝑋

)︂
;

𝐷ℎ = 𝐷log =
1

ln 𝑎
log𝑎

(︂
𝐷𝑋 + 𝐸2

𝑋

𝐸2
𝑋

)︂
;

(11)

where 𝐸log and 𝐷log are the mean and the error, re-
spectively, of the measurement results “propagated”
with the use of the function log𝑎 𝑥. For the “pure”
exponential function ℎ = exp𝑥 and the “pure” log-
arithmic function ℎ = ln𝑥, those formulas can be
written in a simpler form:

∙ for ℎ = exp𝑥,

𝐸ℎ = 𝐸exp = exp𝐸𝑋 exp

(︂
1

2
𝐷𝑋

)︂
;

𝐷ℎ = 𝐷exp = exp 2𝐸𝑋 exp𝐷𝑋 (exp𝐷𝑋 − 1);

(12)

∙ for ℎ = ln𝑥,

𝐸ℎ = 𝐸ln =
1

2
ln

(︂
𝐸4

𝑥

𝐷𝑥 + 𝐸2
𝑥

)︂
;

𝐷ℎ = 𝐷ln = ln

(︂
𝐷𝑥 + 𝐸2

𝑥

𝐸2
𝑥

)︂
;

(13)

where 𝐸exp and 𝐷exp are the mean and the error,
respectively, of the measurement results “propagated”

with the use of the function exp 𝑥, and 𝐸ln and 𝐷ln

are their counterparts for the function ln 𝑥.
Thus, we obtained (see Appendix) the sought

rules for the error propagation and the calculation
of “shifted means” of the type 𝐸ℎ = 𝐸ℎ(𝐸𝑥, 𝐷𝑥)
and 𝐷ℎ = 𝐷ℎ(𝐸𝑥, 𝐷𝑥) for the functions ℎ(𝑥) = 𝑎𝑥

and ℎ(𝑥) = log𝑎 𝑥 (in the particular case, 𝑒𝑥 and
ln 𝑥). Note that, in the limiting case 𝐷𝑥 = 0, we have

𝐸ℎ = 𝐸𝑎𝑥 = 𝑎𝐸𝑥 ;
𝐸ℎ = 𝐸log = log𝑎 𝐸𝑥;
𝐸ℎ = 𝐸exp = exp𝐸𝑥;
𝐸ℎ = 𝐸ln = ln𝐸𝑥;

𝐷ℎ = 𝐷𝑎𝑥 = 0;
𝐷ℎ = 𝐷log = 0;
𝐷ℎ = 𝐷𝑎𝑥 = 0;
𝐷ℎ = 𝐷ln = 0.

Therefore, the “standard” propagation rules can be
applied:

𝐸𝑎𝑥 = 𝑎𝐸𝑥 ; 𝐸exp = exp𝐸𝑥; 𝐸log = log𝑎 𝐸𝑥;

𝐸ln = ln𝐸𝑥.

3. Application of the New
Rules to Experimental Data

A set of experimental data is a collection of sepa-
rate random values 𝑥𝑖 obtained for a measured phys-
ical quantity 𝑥, i.e. the so-called “sample” {𝑥𝑖}. The
quantity 𝑥 may have a continuous distribution [1]; in
other words, values that were randomly “selected by
a measuring device” from a continuous set of values
are dealt with.

Let us consider how the relations obtained above
are satisfied just in the case of discrete samples. For
this purpose, let us calculate the mean values, by us-
ing the standard procedure (which we take as a ref-
erence) for four samples: two sets of experimental
data {𝑥𝑖}, one set of calculated values for the exp 𝑥
function, and one set of calculated values for the ln 𝑥
function. Then we compare them with the results ob-
tained according to relations (12) and (13).

3.1. Two examples for the function exp 𝑥

As an example for the function 𝑒𝑥, let us take an
arbitrary sample {𝑥𝑖} of 20 “measurements” on the
logarithmic scale:
{𝑥𝑖} = 8, 8.047, 8.094, 8.141, 8.188, 8.235, 8.282,
8.329, 8.376, 8.423, 8, 7.953, 7.906, 7.859, 7.812,
7.765, 7.718, 7.671, 7.624, and 7.577.
The arithmetic means calculated for this sample with
a constant probability 𝑤𝑖 = 1/20 give the follow-
ing values: 𝐸𝑛 = 8, 𝐷𝑛 = 0.06296, and Δ𝑛 =
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Fig. 1. Dependence of the variance 𝐷exp of the function exp 𝑥

on the mathematical expectation 𝐸𝑥 of its argument for the
argument variance 𝐷𝑥 = 0.017

= 0.25092. Using them as the first approximation, we
calculate the Gaussian means (2 to 3 iterations) ac-
cording to the Gauss weighted scheme

𝐸𝑥 = (
∑︀

𝑥𝑖𝑤𝑖) / (
∑︀

𝑤𝑖) ;

𝐷𝑥 =
(︀∑︀

(𝑥𝑖 − 𝐸𝑥)
2𝑤𝑖

)︀
/ (
∑︀

𝑤𝑖) ; Δ𝑥 =
√
𝐷𝑥,

(14)

where
𝑤𝑖 =

𝑝√
𝜋
exp[−𝑝2(𝑥𝑖 − 𝜇)2], 𝑝2 =

1

2𝐷𝑥
. (15)

As a result, we obtain 𝐸𝑥 = 8, 𝐷𝑥 = 0.01726, and
Δ𝑥 = 0.13138. In other words, we have 𝐸𝑥 = 8± 0.1
for this sample.

In order to properly calculate the means for the
function 𝑒𝑥, we should create a new statistical sample
{exp 𝑥𝑖} and calculate its meaning values. The new
sample looks like
{exp 𝑥𝑖} = 2980.95799, 3124.40767, 3274.76045,
3432.3485, 3597.52001, 3770.6399, 3952.09066,
4142.27321, 4341.60772, 4550.5346, 2980.95799,
2844.09445, 2713.51467, 2588.93015, 2470.06563,
2356.65849, 2248.45816, 2145.2256, 2046.73271, and
1952.76188.
Hereafter, we intentionally left more significant dig-
its than it is required (two for 𝐷𝑥 and one for Δ𝑥)
in order to give the readers an opportunity to trace
the calculations. Using the values of 𝐸𝑥, 𝐷𝑥, and
Δ𝑥 together with formulas (14) and (15), we obtain
the sought means for the function 𝑒𝑥 in the stan-
dard way: 𝐸exp = 3006.8068, 𝐷exp = 157799.52,
and Δexp = 397.23987. The “propagation of errors”

according to the obtained relations (12) gives the fol-
lowing values: 𝐸exp = 3006.7946, 𝐷exp = 157398.77,
and Δexp = 396.735. Here, we have an interesting ex-
ample with large dispersions for the function 𝑒𝑥.

Another example was created for a different domain
of the argument of the function 𝑒𝑥 (Fig. 1):
{𝑥𝑖} = 0, 0.047, 0.094, 0.141, 0.188, 0.235, 0.282,
0.329, 0.376, 0.423, 0, −0.047, −0.094, −0.141,
−0.188, −0.235, −0.282, −0.329, −0.376, −0.423.
The arithmetic means calculated for this sample with
a constant probability 𝑤𝑖 = 1/20 give the following
values: 𝐸𝑛 = 0, 𝐷𝑛 = 0.06296, and Δ𝑛 = 0.25091.
Using them as the first approximation, we calcu-
late the Gaussian means (here, four iterations are
required) according to the Gaussian weight scheme
(14) and (15). As a result, we obtain 𝐸𝑥 = 0, 𝐷𝑥 =
= 0.02194, and Δ𝑥 = 0.14812. In other words, we
have 𝐸𝑥 = 0± 0.1 for this sample.

In order to correctly calculate the means for the
function 𝑒𝑥, we have to construct a new statistical
sample {exp 𝑥𝑖} and calculate the required meanings
for it. The new sample looks like
{exp 𝑥𝑖} = 1, 1.04812, 1.09856, 1.15142, 1.20683,
1.26491, 1.32578, 1.38958, 1.45645, 1.52653, 1,
0.95409, 0.91028, 0.86849, 0.82861, 0.79057, 0.75427,
0.71964, 0.6866, 0.65508.
Using the values of 𝐸𝑥, 𝐷𝑥, and Δ𝑥 together with for-
mulas (14) and (15), we obtain the sought means for
the function 𝑒𝑥 in the standard way: 𝐸𝑥 = 1.01103,
𝐷𝑥 = 0.02269, and Δ𝑥 = 0.15067. The “propaga-
tion of errors” according to the obtained relations
(12) gives the following values: 𝐸exp = 1.01103,
𝐷exp = 0.02267, and Δexp = 0.15058.

Taking the both examples into account, we may
assert that the values of errors (the variance and the
deviation) evaluated by relation (12) are the same as
for our reference examples. In other words, in the case
of the function 𝑒𝑥, the propagation of errors with the
use of relations (12) is proper.

3.2. An example for the function ln 𝑥

Let us consider an example for the function ln 𝑥
(Figs. 2 to 4). We use a sample of measurements of
a quantity with the exponential dependence (say, the
intensity measured, when determining the quantum
yield of the activation energy):
{𝑦𝑖} = 2000, 2100, 2200, 2300, 2400, 2500, 2600,
2700, 2800, 2900, 2000, 1900, 1800, 1700, 1600, 1500,
1400, 1300, 1200, 1100.
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Fig. 2. Dependence of the variance 𝐷ln of the function ln 𝑥

on the mathematical expectation 𝐸𝑥 of its argument for the
argument variance 𝐷𝑥 = 78131.0

Here, the variance of the argument is very large. Fol-
lowing the standard scheme for the calculation of
means over the sample, we

(i) calculate the arithmetic means (with the prob-
ability 𝑤𝑖 = 1/20): 𝐸𝑛 = 2000, 𝐷𝑛 = 285000, and
Δ𝑛 = 533.8539;

(ii) calculate the Gaussian means (according to the
weight scheme (14): 𝐸𝑦 = 2000, 𝐷𝑦 = 78130.595, and
Δ𝑦 = 279.5185;

(iii) create a sample for the function ln 𝑦:
{ln 𝑦𝑖} = 7.6009, 7.64969, 7.69621, 7.74066, 7.78322,
7.82405, 7.86327, 7.90101, 7.9373, 7.97247, 7.6009,
7.54961, 7.49554, 7.43838, 7.37776, 7.31322, 7.24423,
7.17012, 7.09008, 7.00307;

(iv) statistically process this sample, by using the
values obtained for 𝐸𝑦, 𝐷𝑦, and Δ𝑦, and get 𝐸ln =
= 7.59081, 𝐷ln = 0.02068, and Δln = 0.1438.

Calculations by relations (13) give us the following
values: 𝐸ln = 7.59123, 𝐷ln = 0.019344, and Δln =
= 0.13908. It is evident that the agreement is good
in this case. In other words, the propagation of er-
rors with the use of formulas (13) is proper for the
function ln 𝑥.

4. Some General Features
of the Obtained Relations

The analytical form obtained for the rules of error
propagation makes it easy to distinguish the spe-
cific features of corresponding relations and even
to plot graphical dependences, which is very useful

Fig. 3. Dependence of the variance 𝐷ln of the function ln 𝑥

on the mathematical expectation 𝐸𝑥 of its argument for the
argument variance 𝐷𝑥 = 100.0

Fig. 4. Dependence of the variance 𝐷ln of the function ln 𝑥

on the mathematical expectation 𝐸𝑥 of its argument for the
argument variance 𝐷𝑥 = 0.1

while planning a physical experiment and analyzing
its results.

It should be emphasized that the quantities 𝐸ℎ,
𝐷ℎ, 𝐸𝑥, and𝐷𝑥 are mutually related. Furthermore,
the quantities 𝐸ℎ and 𝐷ℎ are functions of two argu-
ments rather than one:

𝐸ℎ = 𝐸ℎ(𝐸𝑥, 𝐷𝑥), 𝐷ℎ = 𝐷ℎ(𝐸𝑥, 𝐷𝑥).

It is sometimes difficult to get used to this fact, as well
as to the fact that the errors of the functions ℎ(𝑥),
e.g., Δexp orΔln, depend on the measured mean value
𝑥. All those things are clearly illustrated in Figs. 1 to
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4, where the dependences of the function variances
on the values of the measured “means” of the corre-
sponding argument 𝐸𝑥 (the variance 𝐷𝑥 is regarded
as a parameter) are depicted. The very opportunity
to have a graphical representation for the obtained
relations makes it possible to discuss the character of
future measurements and plan them.

5. Conclusions

Similarly to what was done in work [6], relations (11)
and (13) are considered to be semiempirical ones be-
cause of their construction on the basis of inverse
functions. However, all inverse functions constructed
in this way [2, 3], as well as relations (10)–(13) in
this work, provide proper results for samples and
can be widely used to shorten and to substantially
simplify the calculation procedures for the functions
𝑎𝑥 and log𝑎 𝑥. Since the variances 𝐷ℎ and the er-
rors 𝜎 for both considered functions practically co-
incide with their real values, the propagation of er-
rors can be performed in a chain of functions such as
log𝑎 𝑏

log(...), 𝑎log𝑏()..., or another combination of the
indicated functions together with the functions 𝑥2,√
𝑥, cos 𝑥, and arccos 𝑥 considered in works [2, 3].
Therefore, on the basis of the obtained analytical

relations, it is possible to construct two simple gen-
eral algorithms for the calculation of pairs of separate
values (𝐸𝑎𝑥 , 𝐷𝑎𝑥) and (𝐸log, 𝐷log) for the variable 𝑥
with the Gaussian distribution. They can be built-in
as separate program modules (subroutines) into any
program procedure. At the same time, this algorithm
remains transparent for the understanding. This is
impossible in principle for other error propagation
methods, because they required the expansion in a
series or the differentiation of the relevant superpo-
sition of functions as a whole entity. Moreover, every
problem demands to construct a separate procedure.

The proposed method makes it possible to predict
the error value of the function and to plot its profile in
the intended measurement area of physical quantities.

Of interest is a possibility to obtain the shifted
mean values for 𝐸𝑎𝑥 and 𝐸log. In the examples given
above, this shift does not affect the values of those
means and does not play any role, but it does exist,
and its meaning can be used in some applications.

Since the analytical expressionfor the means
(𝐸𝑎𝑥 , 𝐷𝑎𝑥) and (𝐸log, 𝐷log) are connected with the
Gaussian distribution, then the calculated values
make it possible to compare them with the values of

the same quantities, but calculated for other distri-
butions. The best distribution will correspond to the
minimum of 𝐷𝑎𝑥 or 𝐷log.

The materials of the cycle of works dealing with the
estimation of errors for indirectly measured physical
quantities were reported at the seminars of a number
of departments at the Institute of Physics of the Na-
tional Academy of Sciences of Ukraine (Kyiv). The
author is grateful to the teams and the heads of
those departments (I.V. Blonskyi, M.S. Brodyn,
A.G. Naumovets, A.M. Negryiko, Yu.O. Reznikov,
S.M. Ryabchenko, P.M. Tomchuk, and L.P. Yat-
senko) for their attention and an opportunity given
to the author to look at the problem from their view-
point. Without critical remarks expressed at those
representations, the work, if any, would have been
much worse. The author is especially thankful to
S.M. Ryabchenko for his meticulous discussion of the
results obtained, to G.V. Klimusheva for reading the
paper and critical remarks, to O.I. Voitenko for his
advice, as well as to everyone who was not indiffer-
ent and supported this work. The work was carried out
in the framework of the budget theme 1.4.1. B/174
“Electrical, magnetic, and nonlinear optical proper-
ties of nano-dispersed particles of different origins in
oriented liquid crystals”.

APPENDIX

In this appendix, a mathematical proof is given that the re-
lations obtained for two functions, 𝑎𝑥 and log𝑎 𝑥, by reducing
the integral equations (8) and (9) to tabulated integrals and
transforming the obtained formulas to the convenient forms
(10)–(13), are proper.

Mathematical expectation
𝐸ℎ for the function ℎ(𝑥) = 𝑎𝑥

By applying sequentially the substitutions 𝑘 = ln 𝑎, ℎ(𝑥) =

= 𝑎𝑥 = exp(𝑥 ln 𝑎) = exp(𝑘𝑥), 𝑦 = 𝑥 − 𝜇, and 𝑥 = 𝑦 + 𝜇 to
Eq. (8) and taking the Gaussian distribution (4) for ℎ(𝑥) into
account, we can make the following chain of transformations:

𝜒 = 𝐸ℎ = 𝐸𝑎𝑥 =
𝑝
√
𝜋

∞∫︁
−∞

𝑎𝑥 exp[−𝑝2(𝑥− 𝜇)2]𝑑𝑥 =

=
𝑝
√
𝜋

∞∫︁
−∞

exp[𝑘 (𝑦 + 𝜇)] exp[−𝑝2𝑦2]𝑑𝑦 =

=
𝑝
√
𝜋
exp[𝑘𝜇]

∞∫︁
−∞

exp[−𝑝2𝑦2+𝑘𝑦]𝑑𝑦=
𝑝
√
𝜋
exp[𝑘𝜇] 𝐽=

=
𝑝
√
𝜋
exp[ln 𝑎𝜇] 𝐽 =

𝑝
√
𝜋
𝑎𝜇 𝐽. (16)
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The integral

𝐽 =

∞∫︁
−∞

exp[−𝑝2𝑦2 + 𝑘𝑦]𝑑𝑦

is similar to the tabulated integral [4, integral (3.923.2)]

𝑇2 =

∞∫︁
−∞

exp[−𝑎1𝑦
2 − 2𝑏𝑦 − 𝑐] cos[𝑝2𝑦2 + 𝑞𝑦 + 𝑟]𝑑𝑦.

The latter, at 𝑐 = 𝑝 = 𝑞 = 𝑟 = 0, equals

𝑇2 =

∞∫︁
−∞

exp[−𝑎1𝑦
2 − 2𝑏𝑦]𝑑𝑦 =

√︂
𝜋

𝑎1
exp

𝑏2

𝑎1
. (17)

Hence, the integrals 𝐽 and 𝑇2 are identical with an accuracy to
the substitutions 𝑎1 = 𝑝2, −2𝑏 = 𝑘, and 𝑏 = − 𝑘

2
. Therefore,

taking into account that 𝑘 = ln 𝑎 and 1/𝑝2 = 2𝐷𝑥 [see Eq. (4)],
we obtain

𝐽 =

√︂
𝜋

𝑝2
exp

𝑘2

4𝑝2
=

√
𝜋

𝑝
exp[(ln 𝑎)2 2𝐷/4] =

=

√
𝜋

𝑝
𝑎𝐷 ln 𝑎/2.

Substituting this expression into expression (16), we find a final
relation of the integral 𝐸ℎ = 𝐸𝑎𝑥 to the integrals 𝐸𝑥 and
𝐷𝑥. Taking into account that 𝜇 = 𝐸𝑥 [see Eq. (2)] and 𝑝2 =

= 1/(2𝐷𝑥) [see Eq. (4)], this relation looks like

𝐸ℎ = 𝐸𝑎𝑥 =
𝑝
√
𝜋
𝑎𝜇

√
𝜋

𝑝
𝑎𝐷𝑋 ln 𝑎/2 = 𝑎𝜇 𝑎𝐷𝑋 ln 𝑎/2 =

= 𝑎𝐸𝑋 𝑎𝐷𝑋 ln 𝑎/2. (18)

If 𝑎 = 𝑒, then

𝐸ℎ = 𝐸exp = 𝑒𝐸𝑥𝑒𝐷𝑥/2. (19)

This is an “intuitively” expected result. As 𝐷𝑥 ≈ 0, there is
a small shift associated with the multiplier 𝑒𝐷𝑥/2 ≈ 1, and
Eqs. (18) and (19) acquire a “natural” form

𝐸ℎ = 𝐸𝑎𝑥 ≈ 𝑎𝐸𝑥 , 𝐸ℎ = 𝐸exp ≈ exp𝐸𝑥.

Under certain conditions, this multiplier can be ignored, but
Eqs. (18) and (19) are exact working formulas for ℎ(𝑥) = 𝑎𝑥

and ℎ(𝑥) = exp𝑥.

Variance 𝐷ℎ for the function ℎ(𝑥) = 𝑎𝑥

From Eq. (9) with the use of Eq. (4), we obtain the following
expression for the error propagation:

𝐷ℎ = 𝐷𝑎𝑥 =
𝑝
√
𝜋

∞∫︁
−∞

𝑎2𝑥 exp[−𝑝2(𝑥− 𝜇)2]𝑑𝑥− 𝐸2
ℎ =

=
𝑝
√
𝜋
𝐽0 − 𝐸2

ℎ. (20)

Now, we transform

𝐽0 =

∞∫︁
−∞

𝑎2𝑥 exp[−𝑝2(𝑥− 𝜇)2]𝑑𝑥

into a tabulated integral, by using the sequential substitutions
𝑦 = 𝑥− 𝜇, 𝑥 = 𝑦 + 𝜇, and 𝑘 = ln 𝑎 [see Eq. (8)]:

𝐽0 =

∞∫︁
−∞

𝑎2𝑥 exp[−𝑝2(𝑥− 𝜇)2]𝑑𝑥 =

=

∞∫︁
−∞

𝑎2𝑦+2𝜇 exp[−𝑝2𝑦2]𝑑𝑦 =

= 𝑎2𝜇
∞∫︁

−∞

𝑎2𝑦 exp[−𝑝2𝑦2]𝑑𝑦 =

= 𝑎2𝜇
∞∫︁

−∞

exp[ln 𝑎 2𝑦] exp[−𝑝2𝑦2]𝑑𝑦 =

= 𝑎2𝜇
∞∫︁

−∞

exp[−𝑝2𝑦2 + 2𝑘𝑦] = 𝑎2𝜇 𝐽01. (21)

It is evident that

𝐽01 =

∞∫︁
−∞

exp[−𝑝2𝑦2 + 2𝑘𝑦]𝑑𝑦

is also integral (17) with 𝑏 = −𝑘 = − ln 𝑎, 𝑎1 = 𝑝2, and 1/𝑝2 =

2𝐷𝑥. Therefore,

𝐽01 =

√
𝜋

𝑝
𝑎2𝐷𝑥 ln 𝑎.

Using this result and Eq. (18) for 𝐸ℎ, from Eqs. (20) and (21),
we obtain the variance 𝐷ℎ for the function ℎ(𝑥) = 𝑎𝑥 in the
form

𝐷ℎ = 𝐷𝑎𝑥 = 𝑎2𝐸𝑥𝑎𝐷𝑥 ln 𝑎(𝑎𝐷𝑥 ln 𝑎 − 1). (22)

In the case 𝑎 = 𝑒, we have a simplified form

𝐷ℎ = 𝐷exp = 𝑒2𝐸𝑥𝑒𝐷𝑥 (𝑒𝐷𝑥 − 1). (23)

This formula is the error propagation rule for the function
ℎ(𝑥) = 𝑎𝑥.

The mean 𝐸ℎ and the variance
𝐷ℎ for the function ℎ(𝑥) = log𝑎 𝑥

The straightforward calculation of the quantities 𝐸log𝑎 𝑥 and
𝐷log𝑎 𝑥 with the help of tabulated integrals is a rather problem-
atic task. The sought relations can be obtained by considering
the function log𝑎 𝑥 as an inverse function to the function 𝑎𝑥

and by using Eqs. (18) and (22). Really, these equations give
us an explicit relation between four integrals (numbers)–𝐸𝑎𝑥 ,
𝐷𝑎𝑥 , 𝐸𝑥, and 𝐷𝑥:

𝐸𝑎𝑥 = 𝐸𝑎𝑥 (𝐸𝑥, 𝐷𝑥), 𝐷𝑎𝑥 = 𝐷𝑎𝑥 (𝐸𝑥, 𝐷𝑥). (24)

Equations (18) and (22) can also be used to determine the
functions

𝐸𝑥 = 𝐸𝑥(𝐸𝑎𝑥 , 𝐷𝑎𝑥 ), 𝐷𝑥 = 𝐷𝑥(𝐸𝑎𝑥 , 𝐷𝑎𝑥 ), (25)
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which are inverse to functions (24) and also have to properly
describe the mathematical relations among 𝐸𝑎𝑥 , 𝐷𝑎𝑥 , 𝐸𝑥, and
𝐷𝑥. Furthermore, if 𝐸𝑎𝑥 and 𝐷𝑎𝑥 are obtained in a different
way (e.g., they can be measured experimentally) and have the
same numerical values as were calculated from formulas (24),
then they will again satisfy Eqs. (8) and (9) that describe the
relations among four integrals if and only if the quantities 𝐸𝑥

and 𝐷𝑥 have the same values that are given in Eq. (24).
In other words, if we have the relation 𝑦 = 𝑎𝑥 and the inverse

one 𝑥 = log 𝑦, then relations (25) inverse to Eqs. (18) and (22)
will give us the proper values of integral expressions for the
mathematical expectation 𝐸𝑥 and the variance 𝐷𝑥, determined
by Eqs. (8) and (9), for the function of the random variable 𝑦

that is connected with the variable 𝑥 by the law 𝑦 = 𝑎𝑥 (or 𝑥 =

log𝑎 𝑦). Hence, by solving Eqs. (18) and (22) with respect to
𝑥, we can obtain, by using a simple calculation procedure, the
values of 𝐸𝑥 and 𝐷𝑥 from the values of 𝐸𝑦 and 𝐷𝑦 , which are
the means for the measured random variable 𝑦 that is related
to 𝑥 by the formula 𝑥 = log𝑎 𝑦.

In order to solve Eqs. (18) and (22), let us rewrtite them in
the form

𝑎𝐷𝑥 ln 𝑎 =
𝐸2

𝑦

𝑎2𝐸𝑥
(26)

and

𝐷𝑦 = 𝐷𝑎𝑥 = 𝑎2𝐸𝑥𝑎𝐷𝑥 ln 𝑎(𝑎𝐷𝑥 ln 𝑎 − 1), (27)

respectively. Bearing in mind that the integrals 𝐸𝑦 and 𝐷𝑦 are
associated with the function 𝑦 = 𝑎𝑥, whereas the integrals 𝐸𝑥

and 𝐷𝑥 with the function 𝑦 = log𝑎 𝑥, let us solve these equa-
tions with respect to the integrals 𝐸𝑥 and 𝐷𝑥, i.e. let us obtain
the equations inverse to Eqs. (18) and (22), and to Eqs. (26)
and (27). Substituting Eq. (26) into Eq. (27), we obtain

𝐷𝑦 = 𝐸2
𝑦

(︃
𝐸2

𝑦

𝑎2𝐸𝑋
− 1

)︃
,

whence

𝐷𝑦

𝐸2
𝑦

+ 1 =
𝐷𝑦 + 𝐸2

𝑦

𝐸2
𝑦

=
𝐸2

𝑦

𝑎2𝐸𝑥
,

so that

𝑎2𝐸𝑥 =
𝐸4

𝑦

𝐷𝑦 + 𝐸2
𝑦

(28)

and, finally,

𝐸𝑥 =
1

2
log𝑎

(︃
𝐸4

𝑦

𝐷𝑦 + 𝐸2
𝑦

)︃
. (29)

Substituting expression (28) into Eq. (26), after a series of ele-
mentary transformations, we obtain the final expression for 𝐷𝑥:

𝐷𝑥 =
1

ln 𝑎
log𝑎

(︃
𝐷𝑦 + 𝐸2

𝑦

𝐸2
𝑦

)︃
. (30)

Let us rewrite the obtained relations (18), (23), (29), and
(30) in a symbolic form, where 𝑥 is a measured physical quan-
tity (argument), and ℎ is the corresponding function (𝑎𝑥,

log𝑎 𝑥, 𝑒𝑥, or ln 𝑥):

𝐸ℎ = 𝐸𝑎𝑋 = 𝑎𝐸𝑋 𝑎𝐷𝑋 ln 𝑎/2;

𝐷ℎ = 𝐷𝑎𝑋 = 𝑎2𝐸𝑋 𝑎𝐷𝑋 ln 𝑎(𝑎𝐷𝑋 ln 𝑎 − 1);

𝐸ℎ = 𝐸log =
1

2
log𝑎

(︃
𝐸4

𝑋

𝐷𝑋 + 𝐸2
𝑋

)︃
;

𝐷ℎ = 𝐷log =
1

ln 𝑎
log𝑎

(︃
𝐷𝑋 + 𝐸2

𝑋

𝐸2
𝑋

)︃
.

(31)

For the “pure” exponential function (ℎ(𝑥) = 𝑒𝑥 or ln 𝑥), these
expressions look like

𝐸ℎ = 𝐸exp = exp𝐸𝑋 exp

(︂
𝐷𝑋

2

)︂
;

𝐷ℎ = 𝐷exp = exp 2𝐸𝑋 exp𝐷𝑋(exp𝐷𝑋 − 1);

𝐸ℎ = 𝐸ln =
1

2
ln

(︃
𝐸4

𝑋

𝐷𝑋 + 𝐸2
𝑋

)︃
;

𝐷ℎ = 𝐷ln = ln

(︃
𝐷𝑋 + 𝐸2

𝑋

𝐸2
𝑋

)︃
.

(32)

With regard for the results of works [2, 3], it is useful to re-
produce the “analytic” rules of error propagation for two other
pairs of functions:
for cos 𝑥 and arccos 𝑥,

𝐸ℎ = 𝐸cos = exp

(︂
−
𝐷𝑥

2

)︂
cos𝐸𝑥;

𝐷ℎ=𝐷cos=
1

2
[1−exp(−𝐷𝑥)] [1−exp(−𝐷𝑥 ) cos 2𝐸𝑥];

𝐸ℎ=𝐸arccos=arccos
𝐸𝑥

±
√︁

𝐸2
𝑥 +

√︀
(1− 𝐸2

𝑥)
2 − 2𝐷𝑥

;

𝐷ℎ=𝐷arccos=ln

(︃
1

𝐸2
𝑥 +

√︀
(1− 𝐸2

𝑥)
2 − 2𝐷𝑥

)︃
.

(33)

and for 𝑥2 and
√
𝑥,

𝐸𝑥2 = 𝐸2
𝑥 +𝐷𝑥,

𝐷𝑥2 = 2𝐷2
𝑥 + 4𝐸2

𝑥𝐷𝑥,

𝐸4√
𝑥
= 𝐸2

𝑥 −
1

2
𝐷𝑥,

𝐷√
𝑥 = 𝐸𝑥 −

√︂
𝐸2

𝑥 −
1

2
𝐷𝑥.

(34)

In view of the formalization

𝑥𝑎𝑣 ≈ 𝐸𝑥, 𝑘2(Δ𝑥)2𝑎𝑣 ≈ 𝐷𝑥,

the obtained relations give us the sought “propagation rules”
for the means and the errors of the functions 𝑎𝑥, log𝑎 𝑥, 𝑒𝑥,

ln 𝑥, 𝑥2,
√
𝑥, cos 𝑥, and arccos 𝑥:

𝑋𝑎𝑣 → 𝐻𝑎𝑣 , |Δ𝑋|𝑎𝑣 → |Δ𝐻|𝑎𝑣 .
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Г.Г. Роде

ПЕРЕНОС ПОХИБОК
ТА СЕРЕДНIХ ВИМIРIВ ФIЗИЧНОЇ ВЕЛИЧИНИ
ДЛЯ ЕЛЕМЕНТАРНИХ ФУНКЦIЙ 𝑎𝑥 ТА log𝑎 𝑥

Р е з ю м е

Отриманi “правила переносу похибки та середнього” однiєї
вимiрюваної фiзичної величини на iншу, пов’язану з нею
зв’язком 𝑎𝑥 або log𝑎 𝑥. В цi правила по природi закладена
вагова схема Гауса. Тому вони мають добре працювати в
рамках реальної вагової схеми Гауса з дискретними дани-
ми реального фiзичного дослiдження (з “вибiрками”). Ана-
лiтична форма, в якiй представленi згаданi правила (“ана-
лiтичнi правила переносу”), а також їх характер дозволя-
ють спростити i прискорити процедуру обробки й аналiзу
експериментальних даних.
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