
Black Hole Torsion Effect and its Relation to Information

https://doi.org/10.15407/ujpe64.8.683

I. GKIGKITZIS,1 I. HARANAS,2 E. CAVAN 2

1 NOVA, Department of Mathematics
(8333 Little River Turnpike, Annandale, VA 22003, USA; e-mail: igkigkitzis@nvcc.edu)

2 Wilfrid Laurier University
(Waterloo, ON, Canada; e-mail: iharanas@wlu.ca, cava0920@mylaurier.ca)

BLACK HOLE TORSION EFFECT
AND ITS RELATION TO INFORMATION

In order to study the effects of the torsion on the gravitation in space-time and its relation
to information, we use the Schwarzschild metric, where the torsion is naturally introduced
through the spin particle density. In the black hole scenario, we derive an analytic solution
for the black hole gravitational radius with the spin included. Then we calculate its entropy
in the cases of parallel and antiparallel spins. Moreover, four analytical solutions for the spin
density as a function of the number of information are found. Using these solutions in the case
of parallel spin, we obtain expressions for the Ricci scalar as a function of the information
number 𝑁 , and the cosmological constant 𝜆 is also revealed.
K e yw o r d s: gravitation, quantization, torsion, spin, black holes.

1. Introduction
A natural way to talk about spin effects in grav-
itation is through torsion. Its introduction becomes
significant for the understanding of the last stage in
the black hole evaporation. It could be the case of an
evaporating black hole of mass 𝑀𝐻 that disappears
via an explosion burst, which can last for the time
𝑡𝑝 = 10−44 s, when it reaches a mass of the order of
Planck’s mass

𝑚𝑝 =

√︂
~𝑐
𝐺

= 10−15 s. (1)

If this happens, there might be three distinct possi-
bilities for the fate of the evaporating black hole [3]:
The black hole may evaporate completely leaving no
residue, in which case it would give rise to a serious
problem of quantum consistency. If the final state of
evaporation leaves a naked singularity behind, then it
might violate the cosmic censorship at the quantum
level. If a stable remnant of the residue with approx-
imately Planck’s mass remains, the emission process
might stop.

If somebody tries to quantize the gravitational
field, he must know that the quantization has to be
directed with the unique structure of the space-time
itself. The quantization will also imply that some-
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body might try to discretize the space and, proba-
bly, the time. Progress in this direction will also be
related to the introduction of a spin in the theory
of general relativity. The general relativity (GR) is
the simplest theory of gravity which agrees with all
present-day data. A major recent success is the de-
tection of the lensed emission near the event hori-
zon in the center of M-87 supergiant elliptic galaxy
in the constellation Virgo. All the data obtained are
consistent with the presence of a central Kerr black
hole, as predicted by the general theory of relativ-
ity [1]. Somebody might want to formulate a general-
ized theory of general relativity to compare GR with
various theories that explain other physical interac-
tions. As an example, we say that the electromagnetic
forces, strong interactions, and weak interactions are
described with the help of quantum relativistic fields
interacting in a flat Minkowski space. Furthermore,
the fields that represent the interactions are defined
over the space-time. But, at the same time, they are
distinguished from the space-time which, we must
say, is not affected by them. On the other hand, the
gravitational interactions can modify the space-time
geometry, but they are not represented by a new
field. They are just represented by their effect on
the geometry of the space itself. Thus, we can say
that most parts of the modern physics are successful
in being described in a flat rigid space-time geome-
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try. But a small fraction of the remaining physics, i.e.,
macroscopic gravitational physics, requires the use of
a curved dynamical geometric background. To over-
come this difficulty, somebody might try to extend
the geometric principles of GR into microphysics in
order to establish a direct comparison and possibly
some connection between gravity and other interac-
tions. In GR theory, the matter is represented by the
energy-momentum tensor, which essentially gives de-
scription of the mass density distribution in space-
time. Therefore, the idea of mass-energy in GR is
enough to define the properties of classical macro-
scopic bodies.

Looking at the microscopic level, we know that
the matter is composed of elementary particles that
obey the laws of special relativity and quantum me-
chanics. Each particle is characterized not only by its
mass, but also by a spin measured in units of ~. At the
microscopic level, the mass and the spin are two inde-
pendent quantities. The mass distributions in space-
time are described by the energy-momentum tensor,
whereas the spin distribution is described, in field the-
ory, by the spin density tensor. Inside any microscopic
body, the spins of elementary particles are, in gen-
eral, randomly oriented with the total average spin
equal to zero. Therefore, the spin density tensor of
a macroscopic body is zero. This explains why the
energy-momentum tensor is adequate to dynamically
characterize a macroscopic matter. Thus, the gravita-
tional interactions can be sufficiently described by the
Riemannian geometry. Another point that should be
stressed is that the spin density tensor represents the
intrinsic angular momentum of particles, and not the
classical orbital angular momentum due to the macro-
scopic rotation. A fundamental difference is that the
latter can be eliminated by an appropriate coordinate
transformation. On the other hand, the spin density
can be eliminated at a point only. The spin density
tensor is a non-vanishing quantity, if the spins in-
side a body are oriented at least partially along a
preferred direction and, at the same time, are not af-
fected by the rotation of the macroscopic body. At
the macroscopic level, the energy-momentum tensor
is not enough to characterize the dynamics of the mat-
ter sources, because the spin density tensor is also
needed, unless we are considering scalar fields that
correspond to spineless particles. In the case where
GR must be extended to include microphysics, the
matter must be considered and described, by using

the mass and the spin density. On the other hand,
the mass is related to a curvature in a generalized
theory of GR, and the spin should be related to the
spin density tensor or, probably, to a different prop-
erty of the space-time. The geometric property of the
space-time in relation to spin in the U4 theory is the
torsion.

The torsion, thus, can be described by the anti-
symmetric part of Christoffel symbols of the second
kind. Therefore, the torsion tensor reads [5]:

𝑄𝜇
𝜈𝜆 =

1

2
(Γ𝜇

𝜈𝜆 − Γ𝜇
𝜆𝜈) = Γ𝜇

[𝜈𝜆]. (2)

The torsion is characterized by a third-rank tensor
that is antisymmetric in the first two indices and
has 24 independent components. If the torsion does
not vanish, the affine connection is not coincident
with the Christoffel connection. Therefore, the geom-
etry is not any longer the Riemannian, but rather
Riemann–Cartan space-time with a non-symmetric
connection. To introduce the torsion simply repre-
sents a very natural way of modifying GR. The rela-
tion of the torsion and the spin allows one to modify
the GR theory and Riemannian geometry resulting in
a more natural and complete description of the matter
at the microscopical level as well. Finally, the early
Universe is the place, where GR must be applied to-
gether with quantum theory. On the other hand, GR
is a classical field theory. So far, the quantization of
the gravity has been a problem in our effort to develop
a consistent and coherent theory in understanding the
physics of the early Universe.

In the presence of a torsion, the space-time is
called a Riemann–Cartan manifold and is denoted by
U4. When the torsion is taken into consideration, one
can define distances in the following way. Supposing
that we consider a small close circuit, we can write
[5] the non-closure property given by the integral:

ℓ𝜇 =

∮︁
𝑄𝜇

𝜈𝜆𝑑𝑥
𝜈 ∧ 𝑑𝑥𝜇 ̸= 0, (3)

where 𝑑𝑥𝜈𝑑𝑥𝜇 is the area element enclosed by the
loop, 𝜄𝜇 represents the so-called closure failure, and
the torsion tensor 𝑄𝜇

𝜈𝜆 is a true tensorial quantity. In
other words, the geometric meaning of the torsion can
be represented by the failure of the loop closure. It
has now the dimension of length, andn the torsion
tensor itself has the dimension of 𝐿−1 .
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2. Quantum Gravity and Torsion

The inclusion of the torsion into GR might constitute
a way to the quantization of gravity, by considering
the effect of the spin and connecting the torsion to
the defects in the topology of space-time. For that,
we can define a minimal unit of length 𝑙, as well as a
minimal unit of time 𝑡. In GR and quantum field the-
ory, there are now, indeed, difficulties due to the exis-
tence of infinities and singularities. One of the reasons
is the consideration of point mass particles, which re-
sults in the divergence of the energy integrals going
to infinity. In the case of collapsing bodies in GR,
we have singularities. All these difficulties can disap-
pear, if, together with the introduction of a torsion,
we introduce the minimal time and length or, in other
words, if we consider a discretized space-time. If we
want to quantize the gravity, we cannot exactly fol-
low the same procedure of quantization used in other
fields. Indeed, the gravity is not a force, but the cur-
vature and torsion of the space-time. The inclusion of
the torsion in the space-time gives rise to space-time
topology defects. The problem may be avoided, if
the torsion is included. In this case, the asymmetric
part of the connection Γ𝜇

[𝜈𝜆] or, in other words, the
torsion tensor 𝑄𝜇

𝜈𝜆 is a true tensorial quantity. Since
the torsion is related to the intrinsic spin, we see that
the intrinsic spin ~ and, hence, the spin are quan-
tized. We can conclude that the space-time defect in
topology should occur in multiples of Planck’s length
𝑙𝑝 =

√︁
𝐺~
𝑐3 . In other words, we can write [5]∮︁

𝑄𝜇
𝜈𝜆𝑑𝑥

𝜈 ∧ 𝑑𝑥𝜆 = 𝑛

√︂
~𝐺
𝑐3

𝑛𝜇, (4)

where 𝑛 is an integer, and 𝑛𝜇 is a unit point
vector. This is a relation analogous to the Bohr–
Sommerfeld relation in quantum mechanics. The tor-
sion tensor 𝑄𝜇

𝜈𝜆 plays the role of a field strength,
which is analogous to that of the electromagnetic field
tensor 𝐹𝜇𝜈 . Equation (4) defines the minimal funda-
mental length, a minimal length that enters the pic-
ture through the unit of action ~. In other words, ~
represents the intrinsic defect that is built in the tor-
sion structure of space-time, in quantized units of ~
related to a quantized time like-vector with the di-
mension of length. This vector is related to the intrin-
sic geometric structure, when the torsion is consid-
ered. The intrinsic spin in units of ~ characterizes all
the matter, and, therefore, the torsion is now enter-

ing the geometry. Thus, the Einstein–Cartan theory
of gravitation can provide the corresponding quan-
tum gravity effects. At the same time, we can also
define the time at the quantum geometric level again
through the torsion according to the equation:

𝑡 =
1

𝑐

∮︁
𝑄𝜇

𝜈𝜆𝑑𝑥
𝜈 ∧ 𝑑𝑥𝜆 = 𝑛

√︂
~𝐺
𝑐5

. (5)

So, when the torsion is included, it is important that
a minimal time interval given by Eq. (5) exists and is
different from zero. This is the smallest unit of time
𝑡𝑝 = 5.391 × 10−44 s. In the limit as ~ → 0, we
recover the classical geometry of GR and, if 𝑐 → ∞,
the Newtonian case. Finally, the geodesic equations
in the case of a nonzero spin turn to

𝑑2𝑥𝜇

𝑑𝑝2
+ Γ𝜇

𝜈𝜆

𝑑𝑥𝜇

𝑑𝑝

𝑑𝑥𝜈

𝑑𝑝
= −2𝑄𝜇

𝜈𝜆

𝑑𝑥𝜈

𝑑𝑝

𝑑𝑥𝜆

𝑑𝑝
, (6)

where 𝑝 is an affine parameter. To understand the
spin effects in gravitation, we can use the torsion.
Consequently, let us first write a Schwarzschild metric
that includes torsion effects [4]:

𝑑𝑠2 = 𝑐2
(︂
1− 2𝐺𝑀

𝑐2𝑟
± 3𝐺2𝑠2

2𝑟4𝑐6

)︂
𝑑𝑡2 −

−
(︂
1− 2𝐺𝑀

𝑐2𝑟
± 3𝐺2𝑠2

2𝑟4𝑐6

)︂−1

𝑑𝑟2 − 𝑟2
(︀
𝑑𝜃2 + sin2 𝜃𝑑𝜑2

)︀
,

(7)

where 𝑠 is the torsion. We can write 𝑠 = 𝜎𝑟3, where 𝜎
is the spin density [4]. So, the Schwarzschild metric is
modified by the inclusion of torsion effects. The tor-
sion gives a natural way to understand the spin effects
in gravitation. Making use of an expression that re-
lates the torsion to the spin density, we can eliminate
𝑠 and include 𝜎 in Eq. (7). Our primary goal is to
establish a possible relation between the spin density
𝜎 and the information number 𝑁 and between the
Ricci scalar, as derived from Eq. (7), and informa-
tion. This is an effort to understand why information
plays an important role in the space-time structure
in the case wherethe torsion effects are included in
gravitation.

3. Analysis

Consider the case of a Schwarzschild metric with the
torsion. Substituting 𝑠 = 𝜎𝑟3 [4], we get the gravita-
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tional radius:(︂
1− 2𝐺𝑀

𝑐2𝑟
± 3𝐺2𝜎2

2𝑐6
𝑟2
)︂

= 0. (8)

In the case of a spin parallel to the gravitation (plus
sign), we have(︂
1− 2𝐺𝑀

𝑐2𝑟
+

3𝐺2𝜎2

2𝑐6
𝑟2
)︂

= 0. (9)

From whence, we obtain

𝑟𝐻↑↓ =
1

3

[︀
−
(︀
22/3𝑐6

)︀
/
(︀(︀
9𝑐4𝐺5𝑀𝜎4 +

+
√︀

𝑐8𝐺6𝜎6 (2𝑐10 + 81𝐺4𝑀2𝜎2)
)︀1/3)︀]︀±

± 1

3

[︀(︀
21/3

(︀
9𝑐4𝐺5𝑀𝜎4 +

+
√︀
𝑐8𝐺6𝜎6(2𝑐10 + 81𝐺4𝑀2𝜎2)

1/3)︀)︀
/
(︀
𝐺2𝜎2

)︀]︀
, (10)

where the plus sign in Eq. (10) corresponds to the
plus sign of the second term in Eq. (8). The negative
sign in Eq. (10) corresponds to the negative sign in
the second term of Eq. (8). In other words, we deal
with parallel and antiparallel spins. Let us write the
entropy formula as [6]

𝑆 =
𝑘B
4ℓ2𝑝

𝐴𝐻 , (11)

where 𝑘𝐵 is the Boltzmann constant, 𝑙2𝑝 = 𝐺~
𝑐3 is

Planck’s length, and 𝐴𝐻 is horizon area [2]. This
is the Bekenstein–Hawking area-entropy law. This
is a macroscopic formula, and it should be viewed
in the same light as the classical macroscopic ther-
modynamic formulae. It describes how the proper-
ties of event horizons in general relativity change as
their parameters are varied. Substituting Eq. (10) in
Eq. (12), we obtain

𝑆 =
𝜋𝑘B
ℓ2𝑝

(𝑟𝐻↑↓)
2 =

=
𝜋𝑘B
ℓ2𝑝

[︂
1

3

[︂
−
(︁
22/3𝑐6

)︁
/
(︁(︀
9𝑐4𝐺5𝑀𝜎4 +

+
√︀

𝑐8𝐺6𝜎6 (2𝑐10 + 81𝐺4𝑀2𝜎2)
)︀1/3)︁±

±
(︁
21/3

(︀
9𝑐4𝐺5𝑀𝜎4 +

+
√︀

𝑐8𝐺6𝜎6(2𝑐10 + 81𝐺4𝑀2𝜎2)
)︀1/3)︁

/(𝐺2𝜎2)

]︂]︂2
,(12)

where the minus sign in the root stands for the paral-
lel torsion and plus stands for the antiparallel one. We
note that the information number in nats is given
by [8]

𝑁 =
𝑆

𝑘B ln 2
. (13)

Using the positive sign, equating Eqs. (12) and (13),
and solving for the spin density as a function of in-
formation in nat 𝑁, we obtain the following solu-
tions:

𝜎1↑ = 𝜎2↑ = ±𝑖

(︃
4𝑐4𝑀

𝐺ℓ3𝑝𝑁
3
2

(︁ 𝜋

ln 2

)︁3/2
+

𝜋𝑐6

𝐺ℓ2𝑝𝑁 ln 2

)︃1/2
,

(14)

𝜎3↑ = 𝜎4↑ = ±𝑖

(︃
4𝑐4𝑀

𝐺ℓ3𝑝𝑁
3
2

(︁ 𝜋

ln 2

)︁3/2
− 𝜋𝑐6

𝐺ℓ2𝑝𝑁 ln 2

)︃1/2
.

(15)

Similarly, the negative sign (or antiparallel spin) gives
the only real solution:

𝜎1↓ =

[︂
8𝜋3𝑐8𝑀2

3𝐺2ℓ6𝑝

(︁
Φ0 +

6
√
Γ0

𝐺5ℓ9𝑝

)︁1/3 +
2
(︁
Φ0 +

6
√
Γ0

𝐺5ℓ9𝑝

)︁1/3
9𝑁3 ln 23

+

+
4𝜋𝑐6

9𝐺2ℓ2𝑝𝑁 ln 2
+

2𝜋2𝑐12𝑁 ln 2

9𝐺4ℓ6𝑝(Φ0 +
6
√
Γ0

𝐺5ℓ9𝑝
)1/3

]︂1/2
, (16)

where the quantities Γ0 and Φ0 are defined as follows:

Γ0=−48𝜋9𝑐24 ln 29𝑀6𝑁9 +

+24𝜋8𝑐28𝐺2ℓ2𝑝𝑀
4 ln 210𝑁10 +

+𝜋7𝑐32ℓ4𝑝𝑀
2𝑁11 ln 211, (17)

Φ0 =
36𝜋4𝑐14𝑀2𝑁5 ln 25

𝐺4ℓ8𝑝
+

𝜋3𝑐18𝑁6 ln 26

𝐺6ℓ6𝑝
. (18)

4. Calculation of the Ricci
Scalar and Its Relation to Information

Next, we are going to calculate the Ricci scalar in the
cases of parallel and antiparallel spins. So, we define
the metric coefficients to be

𝐴(𝑟) = 𝑐2
[︂
1− 2𝐺𝑀

𝑟𝑐2
± 3𝐺2𝜎2

2𝑐6
𝑟2
]︂
, (19)
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and

𝐵(𝑟) =

[︂
1− 2𝐺𝑀

𝑟𝑐2
± 3𝐺2𝜎2

2𝑐6
𝑟2
]︂−1

. (20)

The correspondent Ricci scalar is given by [9]

𝑅 = − 2

𝑟2𝐵(𝑟)

[︂
1−𝐵(𝑟) +

𝑟2𝐴′′(𝑟)

2𝐴(𝑟)
+

+
𝐴′(𝑟)

𝐴(𝑟)

(︂
𝑟 − 𝑟2𝐴′(𝑟)

4𝐴(𝑟)

)︂
− 𝐵′(𝑟)

𝐵(𝑟)

(︂
𝑟 +

𝑟2𝐴′(𝑟)

4𝐴(𝑟)

)︂]︂
. (21)

In the case of the torsion parallel to the gravity, we
get

𝑅 = −18𝐺2𝜎2

𝑐6
= −9

2

(︂
𝑅Sch

𝑀

)︂2 (︁𝜎
𝑐

)︁2
. (22)

Similarly, in the case of the torsion antiparallel to the
gravity, we obtain

𝑅 =
18𝐺2𝜎2

𝑐6
=

9

2

(︂
𝑅Sch

𝑀

)︂2 (︁𝜎
𝑐

)︁2
. (23)

Next, we proceed in writing the Ricci scalar as a func-
tion of the information number in nats 𝑁 . In this cal-
culation, we will only deal with a parallel spin. The-
refore, we use Eqs. (22) and (15) and obtain

𝑅 (𝜎1/𝜎2)↑ =

=
18𝐺2

𝑐6

[︃(︁ 𝜋

ln 2

)︁3/2 4𝑐4𝑀

3𝐺ℓ3𝑝𝑁
3/2

+
2𝜋𝑐6

3𝐺2ℓ2𝑝𝑁 ln 2

]︃2
, (24)

𝑅 (𝜎3/𝜎4)↑ =

= −18𝐺2

𝑐6

[︃(︁ 𝜋

ln 2

)︁3/2 4𝑐4𝑀

3𝐺ℓ3𝑝𝑁
3
2

− 2𝜋𝑐6

3𝐺2ℓ2𝑝𝑁 ln 2

]︃2
, (25)

which simplifies to

𝑅 (𝜎1/𝜎2)↑ = 12
(︁ 𝜋

ln 2

)︁3/2(︃𝑅Sch

ℓ3𝑝𝑁
3
2

)︃
+

12𝜋

𝑁ℓ2𝑝 ln 2
, (26)

𝑅 (𝜎3/𝜎4)↑ = 12
(︁ 𝜋

ln 2

)︁3/2(︃𝑅Sch

ℓ3𝑝𝑁
3
2

)︃
+

12𝜋

𝑁ℓ2𝑝 ln 2
. (27)

With reference to [6] and [7], we note that

Λ =
3𝜋

𝑁ℓ2𝑝 ln 2
. (28)

Equation (28) gives the cosmological constant as a
function of the information number 𝑁 . Therefore,
Eqs. (26) and (27) for the Ricci scalar become

𝑅 (𝜎1/𝜎2)↑ = 12
(︁ 𝜋

ln 2

)︁3/2(︃ 𝑅Sch

ℓ3𝑝𝑁
3/2

)︃
+ 4Λ, (29)

𝑅 (𝜎3/𝜎4)↑ = 12
(︁ 𝜋

ln 2

)︁3/2(︃ 𝑅Sch

ℓ3𝑝𝑁
3/2

)︃
+ 4Λ. (30)

5. Conclusion

We have examined the effect of a torsion in the
Schwarzschild metric corrected for torsion effects and
its relation to information. In this case, the torsion
effects can be represented by the spin density. We
start by calculating the entropy at the horizon of such
a black hole, and then we equate the entropy to a
known expression that gives the entropy in terms of
the information number 𝑁 . Thus, we obtain analyt-
ical expressions for the spin density as a function of
the information number 𝑁 . We obtain two spin den-
sity solutions. One of them is real, and another one is
imaginary. Moreover, we have found that, for the spin
density, both real and imaginary roots scale propor-
tionally to the information number 𝑁 according to
the relation 𝜎 ∝ 1

𝑁
3
2
− 1

𝑁 . In the case of parallel spin,
we find that Ricci scalar also depends on the informa-
tion number according to the relation 𝑅 ∝ 𝑁

3
2 +𝑁−1

for both parallel and antiparallel spins. This comes
from an extra term that is equal to the cosmological
constant 𝜆 expressed as a function of the informa-
tion number 𝑁 adds the information dependence to
the Ricci scalar via the cosmological constant 𝜆. In
this aspect, we can perceive the cosmological constant
as a cosmological depository of information that af-
fects the space-time structure or is included as an
important parameter in the space-time structure and
in the geometry of the Universe. Therefore, we con-
clude that information enters this torsion-corrected
metric via the dependence of the spin density on the
information number 𝑁, as well as the cosmological
constant itself.
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Й.Ґiкiцiс, Й.Харанас, Е.Каванз

ЕФЕКТ КРУЧЕННЯ ЧОРНОЇ ДIРИ
ТА ЇЇ ВIДНОШЕННЯ ДО IНФОРМАЦIЇ

Р е з ю м е

Для вивчення впливу кручення на гравiтацiю в просторi-
часi та його вiдношення до iнформацiї ми користуємося ме-
трикою Шварцшiльда, де кручення природно вводиться че-
рез спiнову щiльнiсть частинки. В сценарiї чорної дiри ми
отримали аналiтичний розв’язок для гравiтацiйного радiуса
чорної дiри з включенням спiну, звiдки ми обчислили ен-
тропiю для випадкiв паралельних та антипаралельних спi-
нiв. Бiльше того, ми знайшли чотири аналiтичнi розв’язки
для спiнової щiльностi в залежностi вiд числа iнформацiї.
Користуючись цими розв’язками, ми отримали вирази для
коефiцiєнтiв Рiччi як функцiї числа iнформацiї 𝑁 ; отрима-
но також значення для космологiчної константи.
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