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KINETIC THEORY OF THE FRACTURE
OF THE COAL (ROCK) EDGE BY THE GAS-FILLED
CRACKS. INSTANTANEOUS LOADING-OUT

The kinetic theory of the fracture of brittle materials is applied to the study of undercritical and
critical growths of cracks in gas-filled rocks. In this type of the materials, the gas filtration from
the environment to the cavity of a growing crack plays an important role. The proper account
for this factor combined with the dynamics of the stressed state of the bed allows the estimation
of the rate of growth of the main crack on the assumption of the Griffith criterion validity. It
is found that, immediately after the instantaneous loading-out of the bed in the course of
excavation, the cracks of certain size and orientation are exploded with the succeeding growth
dependent on the gas entry into the cracks. The time of the filtration growth of the cracks has
been estimated. The intervals of the control parameters (formational gas pressure, crack size,
overburden pressure, surface energy of coal/rock, modulus of elasticity), where the spontaneous
fracture of the bed becomes possible, have been found. The results open a way to the forecast
of instantaneous outbursts of coal, rock, and gas.
K e yw o r d s: coal bed, gas-filled crack, filtration, outburst.

1. Introduction
In a virgin fractured gas-saturated coal/rock bed, no
fracture occurs, despite the bursting pressure of the
gas filling the cavities of the cracks. The cracks are
suppressed by the rock pressure. In the course of ex-
cavation, the edge of the bed is loaded-out of the
stresses caused by the overburden pressure [1]. For
the sake of definiteness, we consider a flat dip. In this
case, vertical stresses, i.e., the overburden pressure it-
self, are redistributed and sharply increased near the
face. The horizontal stresses normal to the edge sur-
face vanish in a vicinity of the surface at a distance
about the depth of the stratum. In other words, be-
ing present within the bed, the natural cracks parallel
to the face surface are dispensed with the compress-
ing overburden pressure. They tend to growth under
the tensile stresses caused by the pressure of a gas
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contained by the cracks [2, 3]. The flat tip cracks and
the oblique ones, to certain extent, stay incapable
of the growth. At the same time, they play an im-
portant role in the fracture of the selvage. They are
the main transport channels that control the gas fil-
tration from coal/rock to both the cavities of grow-
ing cracks and the mined-out space outside [4, 5]. In
turn, the rate of gas filtration determines the gas pres-
sure in the growing cracks and the rate of growth as
well. Because of the non-homogeneity of the overbur-
den pressure, the bed permeability can vary over the
bed course and vanish in a vicinity of the maximum
of the abutment (overburden) pressure. As a result,
a “plug” can be formed. This disables the gas release
into the mined-out space and provides the start of the
spontaneous fracture accompanied by the outburst of
coal, rock, and gas [6]. The present work pays a sub-
stantial attention to the problem. In coal beds and
wallrocks, a gas (methane, as a rule) is concentrated
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mostly in cracks and pores in the free form, but a
part of methane molecules is dissolved in the coal
matrix in the form of a solid solution [1]. The gas
pressure in the crack cavities of a virgin bed (for-
mation pressure) is several times smaller than the
overburden pressure. In the course of excavation af-
ter the loading out, it is the gas pressure that initi-
ates the fracture. The gas tends to burst the bed. The
cohesion forces prevent the fracture. By Griffith [7–
9], the rupture occurs when the coefficient of stress
concentration at the tip of a crack (proportional to
the stresses on the crack edges, i.e., in the consid-
ered case, the gas pressure) exceeds the modulus of
cohesion of the coal/rock. It is known [3, 10, 11] and
clear due to simple physical contemplations that the
evolution of cracks after the instantaneous loading-
out includes a stage that should be called an impact
one. The impact stage lasts for pro mille of a sec-
ond: the crack swells up instantaneously because of
the vanished compressing horizontal stresses that are
about a half of the overburden pressure. At this stage,
the role of the gas pressure is negligible, because it
is small as compared to the overburden pressure, as
mentioned above. An increase in the crack volume is
totally due to an increment in the gap. It is deter-
mined by the loading-out, initial size of the crack,
and elastic moduli of the matrix. The gas amount
contained in the crack at the impact stage of the evo-
lution remains the same because of a short duration of
the stage. The gas pressure in the crack at the end of
the stage is reduced because of the crack swelling-up,
as compared to the initial formational pressure. The
gas pressure obeys the gas law. If the coefficient of
stress concentration exceeds the modulus of cohesion
despite the reduced gas pressure in the crack at the
end of the stage, the crack seems to penetrate the
bed instantaneously. In [12], a similar phenomenon,
namely, the slip-stick along the boundary of grains,
have been discussed. Actually, it should be taken into
account [13] that the volume of a crack increases as
the crack propagates. So, the pressure of a gas with
constant amount is reduced. That is why the stepwise
growth of a crack is restricted by the size, where Grif-
fith’s inequality is transformed into the equality. This
is the mechanism of a known phenomenon called
crack burst [14]. In the presented work, the intervals
of the control parameters, where the crack burst oc-
curs, have been found. After the burst, a relatively
slow period of the crack growth starts. It is called the

filtration stage and is determined by the fact that
the gas pressure in the crack after the termination
of the impact stage becomes and stays less than the
formational pressure of the gas in the environment
of the crack. Thus, a thermodynamic force, i.e., a
gradient of the chemical potential of methane that
makes the gas to flow along the filtration channels
from the coal/rock to the crack cavity, is generated
[15]. Though the gas fills the crack, the gas pressure in
the crack is reduced because of the increasing crack
volume in the course of the crack growth. In addi-
tion, the gas pressure is dropped down because of the
gas discharge by the filtration toward the mined-out
space. The rate of crack growth at the filtration stage
is controlled by the permeability and non-uniformity
of the bed. For the first time, the presented work re-
ports a quantitative description of the filtration stage
of the crack growth, which is based on the derivation
and solution of adequate filtration equations supple-
mented by the assumption about that the Griffith
critical relation between the coefficient of stress con-
centration and the modulus of cohesion is valid at any
given time during this stage. A practically important
result is the estimation of the time of the crack pen-
etration through a bed. At representative values of
the control parameters (formational pressure, initial
crack size, cavitation, bed permeability, and surface
energy of coal/rock), the rate of growth of the main
crack is about one meter per a minute. In general,
in the present work, the kinetic theory of the frac-
ture of gas-containing materials is illustrated by the
burst of the edge of a coal/rock bed by the natural
gas-filled cracks. The processes paving the way and
initiating the instantaneous outbursts of coal, rock,
and gas in the course of blasting are discussed. The
work does not deal with the modern methods of com-
puter modeling [16]. A combination of these meth-
ods with the classical analysis of the physics and me-
chanics of fracture will lead to important practical
results.

2. Theoretical Modeling

2.1. Shock stage evolution of cracks

In an undisturbed gas-saturated bed, the cracks are
under stresses determined by the rock pressure and
the formational pressure 𝑃0 of the gas present in the
cavities of cracks. Despite the bursting effect of in-
tracavitary gas pressure, the cracks do not develop,
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because they are pressed by compression stresses. In
the course of mining work, the stresses affecting the
coal bed are redistributed (we consider a bed of a flat
dip for the sake of definiteness). The rock pressure 𝜎II

(see Fig. 1) becomes inhomogeneous (abutment pres-
sure). The stresses normal to the exposed surface van-
ish. The loading-out of the bed occurs with respect to
this component of stresses. These stresses are equal to
zero on the very exposed surface. The stresses 𝜎⊥ in-
crease with the distance from the surface and achieve
the maximum 𝜎𝑚 at the distances about a few thick-
nesses of the bed ℎ. That is why the loading-out is
characterized by the difference 𝜎𝑚 − 𝜎⊥.

After the loading-out, the process of destruction
of the material can start due to the development of
cracks in a plane parallel to the exposed surface (see
Fig. 1). The cracks of another orientation are still
suppressed by the rock pressure [17, 18].

Let us consider one of the cracks of a selected ori-
entation. We use a two-dimensional model that sim-
plifies the calculations without any loss of similarity
of the results.

In the strict sense, we should consider an assembly
or a system of cracks. Instead, only one main crack
is described, and the rest of pores and cracks modify
the stress fields in a vicinity of the main crack, be-
ing a reservoir of the gas infiltrating to the cavity of
the crack. This approach is a well-known mean-field
approximation.

The crack volume is determined by the volume of
the original cavity and the stresses operating at the
edges. The solution of a classical problem of elasticity
theory yields the crack volume (substituted by the
cross-section area in the two-dimensional case) in the
form

𝑉 = 𝑉𝑐 +
𝜎

𝐵
𝐿2, (1)

where 𝑉𝑐 is the volume of the original cavity, 𝐵 is
the modulus of elasticity of the material, 𝐿 is the
crack length, 𝜎 are the stresses at the edges. In an
undisturbed bed, 𝜎 consists of two terms. These are
the compressing stresses 𝜎𝑚 and overburden gas pres-
sure. Thus, the volume of a crack in the undisturbed
bed is equal to

𝑉0 = 𝑉𝑐 −
𝜎𝑚 − 𝑃0

𝐵
𝐿2
0, (2)

where 𝐿0 is the initial length of the crack. In a de-
clining bed, i.е., in a loaded-out one, 𝜎 = −𝜎⊥ + 𝑃1,

Fig. 1. Scheme of the crack location in a gas-saturated coal
bed (a) and the distribution of horizontal stresses along the
bed (b)

because the gas pressure in the crack cavity decreases
from 𝑃0 to 𝑃1 due to an increase in the crack volume
up to

𝑉1 = 𝑉𝑐 −
𝜎⊥ − 𝑃1

𝐵
𝐿2
0. (3)

It follows from (3) and (2) that the crack volume
after the loading-out is

𝑉1 = 𝑉0 +
𝜎𝑚 − 𝜎⊥ − 𝑃0 + 𝑃1

𝐵
𝐿2
0. (4)

The crack length remains the same in the course of
the bed unloading. In practice [1], the gas pressure
is usually in fraction of the rock pressure. Thus, the
pressure difference 𝑃0 − 𝑃1 can be ignored, as com-
pared to the unloading 𝜎𝑚 − 𝜎⊥. As a result, the
change of the crack volume after the loading-out does
not depend on the pressure of a gas in the crack:

𝑉1 = 𝑉0 +
𝜎𝑚 − 𝜎⊥

𝐵
𝐿2
0 = 𝑉0

[︂
1 +

𝜎𝑚 − 𝜎⊥

𝐵

𝐿2
0

𝑉0

]︂
. (5)
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The gap of a crack 𝑧0 is defined as

𝑧0 ≡ 𝑉0

𝐿0
. (6)

A dimensionless parameter is

𝑎 ≡ 𝜎𝑚 − 𝜎⊥

𝐵

𝐿0

𝑧0
. (7)

Thus,

𝑉1 = 𝑉0 (1 + 𝑎) = 𝑉0

[︂
1 +

𝜎𝑚 − 𝜎⊥

𝐵

𝐿0

𝑧0

]︂
. (8)

The parameter 𝑎 is the product of a small parame-
ter 𝑉1 =

𝜎𝑚−𝜎⊥
𝐵 and a large parameter 𝑉1 = 𝐿0

𝑧0
, i.e.,

the relative loading-out and the ratio of the crack
length (cross-section) to the gap, respectively. For in-
stance, when

𝜎𝑚 = 2× 107 Pa,

𝐵 = 109 Pa,

𝐿0 = 10 cm,

𝑧0 = 1 mm,

we get 𝑎 = 2. It is obvious that the value of 𝑎 can
vary in a wide range from 𝑎 ≪ 1 to 𝑎 ≫ 1. Up to
now, the bed unloading was discussed irrespectively
of the rate of unloading. We suggest further that the
loading-out was momentary as a result of the explo-
sion, for example. As the time period is small, the
amount of a gas in the cavity of the original crack is
not changed. According to the equation of state for
the ideal gas at a constant temperature, we have

𝑃1𝑉1 = 𝑃0𝑉0. (9)

Employing (8), we obtain the gas pressure in the
crack after the unloading:

𝑃1 =
𝑃0

1 + 𝑎
, (10)

i.е., the pressure is reduced immediately after the
loading-out. Now, we pass directly to the problem
of crack development. As is known (7), (9), Griffith
found that the crack size (in our case, 𝐿) increases,
when the coefficient of stress concentration at the tip
of a crack becomes higher than the modulus of co-
hesion 𝑀𝑐, which is determined by the forces of in-
teraction of crack edges at its tip. Within the two-
dimensional model, the coefficient of concentration is

𝜋
2𝜎

√
𝐿, where 𝜎 is the stress at the crack edges. In the

considered case, 𝜎 = 𝑃1 − 𝜎⊥ immediately after the
unloading. So, according to Griffith, the crack does
not propagate, when

𝜋

2
(𝑃1 − 𝜎⊥)

√︀
𝐿0 < 𝑀𝑐. (11)

In a coal massive,

𝑀0 ≡ 𝜋

2
𝑃0

√︀
𝐿0 < 𝑀𝑐. (12)

Since 𝑃1 < 𝑃0 (10), inequality (11) will be valid con-
servatively, i.е., the crack will not propagate along its
length, and the process will be restricted by the crack
swelling and an increase in the gap. So, inequality
(12) is a sufficient condition of outburst safety. Using
the representative values of parameters entering into
(12), namely,

𝑃𝑜 = 106 Pa,

𝐵 = 4× 109 Pa,

𝐿0 = 10−2 m,

𝑀𝑐 ≈
√︀
𝐵𝜒,

𝜒 = 10 Pa · m,

being the specific surface energy of coal, we see that
inequality (12) is valid. However after a small increase
in the rock pressure or the length of the main crack,
inequality (12) fails, and the inverse inequality be-
comes valid instead of (12):

𝑀0 ≡ 𝜋

2
𝑃0

√︀
𝐿0 > 𝑀𝑐. (13)

This fact does not mean that the fracture starts
obligatorily. Two possible scenarios can proceed. 1) If
𝜋
2 (𝑃1 − 𝜎⊥)

√
𝐿0 < 𝑀𝑐, the crack will not prop-

agate immediately after the unloading, it will just
swell. Further, due to a gas flow determined by the
appeared pressure gradient 𝑃0 − 𝑃1, the inner gas
pressure can reach a critical limit. Griffith’s inequal-
ity (11) will be transformed into the equality, and the
crack length will grow. 2) If 𝜋

2 (𝑃1 −𝜎⊥)
√
𝐿0 > 𝑀𝑐, a

jump increase in the cross-section of the crack up to
𝐿2 and a related decrease in the pressure down to 𝑃2

occur. So, Griffith’s equality

𝜋

2
(𝑃2 − 𝜎⊥)

√︀
𝐿2 = 𝑀𝑐 (14)
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becomes valid, and the crack will rise from 𝐿0 to
𝐿2. To find 𝐿2, we note that the primary swelling
and the succeeding expulsion of the crack are almost
momentary, taking about 10−5 s. So, the amount of
a gas in the crack remains the same. We have

𝑃2𝑉2 = 𝑃0𝑉0. (15)

Similar to (5), the crack volume after the swelling
and expulsion is equal to

𝑉2 = 𝑉0

[︂
1 + 𝑎

𝐿2
2

𝐿2
0

]︂
. (16)

So, we have three equations (14), (15), and (16)
with three unknown variables, 𝑃2, 𝑉2, and 𝐿2. For the
sake of simplicity, we consider the maximum unload-
ing, when 𝜎⊥ = 0, and unloading is 𝜎𝑚 − 𝜎⊥ = 𝜎𝑚.
Let us introduce 𝜆 ≡

√︁
𝐿2

𝐿0
. The method of elimina-

tion of the unknowns yields

𝜆

1 + 𝑎𝜆4
=

𝑀𝑐

𝑀0
. (17)

The graphical solution of (17) is presented in Fig. 2.
Figure 2 demonstrates that Eq. (17) has either

two or no real roots. The first case is realized, if the
inequality

𝑎 <
𝑀0

𝑀𝑐
− 1,

𝜎𝑚 − 𝜎⊥

𝐵

𝐿0

𝑧0
<

𝑀0

𝑀𝑐
− 1 (18)

is valid. The root with 𝜆 > 1, i.e., 𝜆𝑝, should be
selected among the two roots (Fig. 2), because the
crack never collapses, and the size can be only in-
creased. The crack is chambered, i.е., the size in-
creases very rapidly from 𝐿0 to 𝜆2

𝑝𝐿0. In this sense,
it is the impact stage of crack development. If the
unloading is maximal and equals 𝜎𝑚, the same
criterion (18) is easily derived from the inequal-
ity 𝜋

2𝑃1

√
𝐿0 > 𝑀𝑐. To satisfy the criterion of crack

chambering (18), the validity of Griffith’s criterion
𝑀0 > 𝑀𝑐 is necessary, but insufficient for an undis-
turbed bed. Moreover, for an unloaded bed, the pa-
rameter 𝑎 must be small enough. This situation is
associated with a high initial gap of the crack and
a low level of maximum unloading, i.е. when the
rock pressure is not so high. With increasing the
excavation depth, the formational pressure usually
increases and facilitates the crack development. At
the same time, the unloading is increased as well,

Fig. 2. Graphical solution of Eq. (17)

the crack is expanded, and the gas pressure is re-
duced. As a result, the possibility of a crack growth
decreases. Evidently, there exists an excavation depth
of gas-saturated coal beds, which is the most haz-
ardous with respect to the crack growth and out-
bursts. In summary, it can be stated that the crite-
rion inequality (18) indicating the jump-like growth
of a crack is a generalization of Griffith’s criterion
in the case where the breaking stresses are gener-
ated by a gas contained in the crack cavity. As for
the relative increment of the crack size, it increases
with the value of 𝑀0

𝑀𝑐
: when the formational pres-

sure increases, the modulus of cohesion decreases,
the gap increases, and the unloading decreases. If
a bed or a rock has a system of parallel cracks at
a comparatively small distance between them, and
the chambering of the crack, which is the nearest to
the surface, occurs, the instantaneous loading-out of
a material in a vicinity of the neighbor crack hap-
pens, and this crack is expanded. Further, this pro-
cess will obey the domino effect: the sudden out-
burst of coal, rock, and gas is realized by the layer-
by-layer breakage by [2, 6]. The breakage attenua-
tion is caused by the destruction of the structure
of a system of parallel cracks, for instance. The dis-
tance between the cracks associated with the layer-
by-layer breakage can be estimated, by using inequal-
ity (11). In place of 𝜎⊥, we should take the value
of compressing stresses in a crack at the distance
𝑥 from the surface, where 𝑥 is the sought distance
between the cracks. It is quite correct to suppose
that

𝜎⊥(𝑥) = 𝜎𝑚
𝑥

ℎ
, (19)
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where ℎ is about the bed thickness by order. In addi-
tion, if we assume that 𝑃1 ≈ 𝑃0, we get the inequality

𝜎𝑚

𝑃0

𝑥

ℎ
< 1− 𝑀𝑐

𝑀0
. (20)

As is seen from the estimations listed above, for
𝐿0 ≈ 20 cm, 𝜎𝑚

𝑃0
≈ 4 and 𝑀𝑐

𝑀0
≈ 0.4, 𝑥 is assessed as

𝑥 < 0.1ℎ. (21)

In other words, in a bed 1 m in thickness, the dis-
tance between the cracks associated with the layer-by-
layer breakage should be less than 10 cm. Inequality
(20) can be considered as a criterion of outburst
generation.

2.2. Filtration stage of the crack evolution

Now, we proceed with the crack behavior after the
swelling and/or chambering. Because of an instan-
taneous increase in the crack volume, the gas pres-
sure in the crack drops rapidly. Thus, there appears
a driving force for a gas flow to the crack cavity
from the surrounding filtration volume. In order to
establish the laws governing this process in the strict
sense, a diffusion-like equation (Darcy’s equation for
the filtration) should be solved with the related ini-
tial and boundary conditions. The initial condition
is given by the pressures at the initial time moment
both in crack cavities and the environment. As the
boundary condition, the equality of gas pressures at
both edges of a crack is employed. It is found that if
the crack size is large as compared to the “diffusion”
length, the so-called impedance relation of the theory
of parabolic equations can be applied to our problem
in the form

𝑑𝑁(𝑡)

𝑑𝑡
=

2𝛾𝐿(𝑡)
√︀
𝐷𝑓√

𝜋𝑇

𝑑

𝑑𝑡

𝑡∫︁
𝑜

𝑃𝑒(𝜏)− 𝑃 (𝜏)√
𝑡− 𝜏

𝑑𝜏. (22)

Here, 𝑁(𝑡) is the number of gas molecules within
the crack cavity, 𝐷𝑓 is the coefficient of gas filtration,
𝑃 (𝑡) is the unknown gas pressure in the crack, 𝑡 is the
time, 𝛾 is the void factor of the solid mass, i.е., the
ratio of the volume of cavities filled by a gas to the
volume of the solid, factor 2 emerges because of the
presence of two crack edges, 𝑃𝑒(𝑡) is the gas pressure
in the environment of the crack, and 𝑇 is the absolute
temperature. Relation (22) should be supplemented

with the ideal gas law at an arbitrary time for an
isothermal process (𝑇 is the absolute temperature in
the energetic units):

𝑃 (𝑡)𝑉 (𝑡) = 𝑁(𝑡)𝑇, (23)

and the formula for the crack volume is

𝑉 (𝑡) = 𝑉0

[︂
1 + 𝑎

𝐿2
2

𝐿2
0

]︂
. (24)

In the simplest case where the crack length is con-
stant (𝐿(𝑡) = 𝐿0), the written equations allow us to
explicitly estimate the dynamics of the gas pressure
in a crack cavity. As a result, we have

𝑑𝑃 (𝑡)

𝑑𝑡
=

2𝛾𝐿0

√︀
𝐷𝑓√

𝜋𝑉0(1 + 𝑎)

𝑑

𝑑𝑡

𝑡∫︁
𝑜

𝑃𝑒(𝜏)− 𝑃 (𝜏)√
𝑡− 𝜏

𝑑𝜏. (25)

From whence, we get

𝑃 (𝑡) = 𝑃1 +
2𝛾𝐿0

√︀
𝐷𝑓√

𝜋𝑉0(1 + 𝑎)

𝑡∫︁
𝑜

𝑃𝑒(𝜏)− 𝑃 (𝜏)√
𝑡− 𝜏

𝑑𝜏, (26)

where 𝑃1 is the gas pressure in the crack at the initial
time moment derived from (10). The time of the gas
filtration to the crack can be introduced as

𝑡
(1)
𝑓 ≡ 𝜋(1 + 𝑎)

2
𝑧20

4𝛾2𝐷𝑓
. (27)

It follows from (27) that the “diffusion” length dis-
cussed above is equal by order to (1 + 𝑎) 𝑧0/𝛾. The
introduction of the dimensionless time with 𝑡𝑓 yields
an equation that does not contain any parameter ex-
cept 𝑃𝑒(𝑡). We write this equation, where the time
normalized to 𝑡𝑓 is designated by the same symbol as
the dimensional time, as

𝑃 (𝑡) = 𝑃1 +

𝑡∫︁
𝑜

𝑃𝑒(𝜏)− 𝑃 (𝜏)√
𝑡− 𝜏

𝑑𝜏. (28)

If 𝑃𝑒(𝑡) = 𝑃0 = const, the equation can be solved
in the known tabulated functions:

𝑃 (𝑡) = (𝑃1 − 𝑃0)(1− Φ(
√
𝜋𝑡))𝑒𝜋𝑡 + 𝑃0, (29)

where Φ(𝑥) is the probability integral. It follows from
(29) that, at small times (𝑡 ≪ 1), the pressure in-
creases by a square-root law, 𝑃 (𝑡) ≈ 𝑃1 + 2(𝑃𝑒 −
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−𝑃1)
√
𝑡. When the time is large, 𝑡 ≫ 1, the pressure

approaches 𝑃0 from below as the inverse square root
of the time. As the pressure 𝑃1 is below the thresh-
old of Griffith’ crack initiation, and 𝑃0 is above this
threshold, there comes a time when the current pres-
sure 𝑃2 provides the crack growth. The duration of
the corresponding preparation stage is about 𝑡

(1)
𝑓 , as

seen from (29). The duration is strongly dependent
on the crack gap (proportional to 𝑧02). It increases, as
the void factor and filtration permeability of coal de-
crease, and the level of unloading increases (through
the parameter 𝑎). The value of 𝑡

(1)
𝑓 can be roughly

estimated to be about several minutes, and it can be
interpreted as the outburst initiation time in the case
where the suitable conditions are present. In the gen-
eral case, the external gas pressure 𝑃𝑒(𝑡) is reduced
in time because of the gas release through the face to
the entry. That is why (29) is valid, when the time of
the outside gas release is much more than 𝑡

(1)
𝑓 . This

fact is confirmed by calculations based on (28), when
the decrease in the external pressure is modeled by a
linear function of time:
𝑃𝑐(𝑡) = 𝑃0(1− 𝛾𝑡), (30)

where 𝛾 is the inverse time of the gas release from the
crack environment.

Figure 3 demonstrates that, at 𝑡𝑓 ≪ 1, a change of
the pressure dynamics 𝑃 (𝑡) is insignificant, as com-
pared to (29). The assessment of the time of the gas
release from the zone of oriented cracks [9] gives 𝑙20

𝐷𝑓
,

𝑙0 is about the distance from the face to the place
with the abutment pressure peak, and 𝑙0 3–5 m.

At 𝐷𝑓 ≈ 10−6 m2/s, this time is about a day, being
much longer than 𝑡𝑓 . This fact means that if the in-
equality 𝑀0 > 𝑀𝑐 is valid, and if the total unloading
occurs, the oriented main crack will grow despite an
increase in the volume because of the loading-out and
the related drop in the pressure inside. Only a defi-
nite delay 𝑡

(1)
𝑓 will be observed, being determined by

the gas filtration from the environment to the crack
cavity.

2.3. Gas inleakage to the moving crack

Hereupon, a new stage of evolution, which is con-
trolled by the gas inleakage to the moving crack,
starts with 𝐿 = 𝐿(𝑡). We suppose that, at this stage
at an arbitrary time, Griffith’s equality
𝜋

2
𝑃 (𝑡)

√︀
𝐿(𝑡) = 𝑀𝑐 (31)

Fig. 3. Numerical solution of Eq. (28) with regard for (30)

is valid. Thus, relations (22), (23), and (24) yield

1

𝐿(𝑡)

𝑑

𝑑𝑡

[︂
𝑃 (𝑡)𝑉0

(︂
1 +

𝑎𝐿2(𝑡)

𝐿2
0

)︂]︂
=

=
2𝛾

√︀
𝐷𝑓√
𝜋

𝑑

𝑑𝑡

𝑡∫︁
0

𝑃𝑒(𝜏)− 𝑃 (𝜏)√
𝑡− 𝜏

𝑑𝜏. (32)

As before, it is quite warranted that 𝑃𝑒(𝑡) = 𝑃0. In
this situation, the pressure should be measured in
units of 𝑃0, i.е., 𝑝(𝑡) ≡ 𝑃 (𝑡)

𝑃0
, and the time should be

measured in units of

𝑡
(2)
𝑓 =

𝜋𝑧20
4𝛾2𝐷𝑓

(︂
𝑀0

𝑀𝑐

)︂2
. (33)

In view of (31), we get the intermediate equation

𝑝2(𝑡)
𝑑

𝑑𝑡

[︃
𝑝(𝑡) +

(︂
1 +

𝑎𝑀𝑐
4

𝑀4
0 𝑝

4(𝑡)

)︂4]︃
=

𝑑

𝑑𝑡

𝑡∫︁
0

1− 𝑝(𝜏)√
𝑡− 𝜏

𝑑𝜏.

(34)

As before, the dimensionless time 𝑡/𝑡
(2)
𝑓 inherits

the same designation as the dimensional one. Fur-
ther transformations are aimed at the elimination of
derivatives in Eq. (34). The result is as follows:

1

3
(𝑝3(𝑡)−𝑝32)− 𝑎

(︂
𝑀𝑐

𝑀0

)︂4(︂
1

𝑝(𝑡)
− 1

𝑝2

)︂
=

𝑡∫︁
0

1− 𝑝(𝜏)√
𝑡− 𝜏

𝑑𝜏,

(35)

where 𝑝2 is the pressure at the final of the preceding
stage. It can be the pressure after the chambering de-
rived from the system of (14)–(16) (case 2); it can be
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Fig. 4. Diagram of the scenarios of crack evolution

also the pressure after the crack swelling in the course
of filtration (case 1). Since the crack length can in-
crease only, it follows from (31) that the gas pressure
in the crack can only decrease at this stage. Now, we
consider the consequences of this statement and find
the asymptotics of solution (35) for early and late
times. At 𝑡 = 0, 𝑝(0) = 𝑝2. With regard for the pres-
sure increment Δ𝑝 at 𝑡 ≪ 1, we obtain(︂
𝑝22 −

𝑎𝑀4
𝑐

𝑀4
0 𝑝

2
2

)︂
Δ𝑝 = 2(1− 𝑝2)

√
𝑡. (36)

In other words, a very fast (proportional to
√
𝑡) pres-

sure change takes place at early stages, as well as a
fast increase in the crack length in accordance with
(31). As mentioned earlier, Δ𝑝 < 0, and a positive
quantity is on the right-hand side of (36). Then the
following inequality should be valid:

𝑝42 < 𝑎

(︂
𝑀𝑐

𝑀0

)︂4
, i.е. 𝑝2 < 𝑎1/4

𝑀𝑐

𝑀0
. (37)

The criterial inequality (37) means that if it is sat-
isfied, the considered stage of crack evolution charac-
terized by its elongation and a drop in the gas pres-
sure is realized. If the inverse inequality takes place,
the instantaneous fracture by Griffith occurs. Now,
we should find the laws of increase in the crack
length and decrease in the gas pressure for late times
(𝑡 ≫ 1). For this purpose, only one term with 𝑝(𝑡) in-
volved reciprocally should be left on the left-hand side
of Eq. (38). Suppose that 𝑝(𝜏) = 0 on the right-hand

side of the equation, we obtain

𝑝(𝑡) ≈
(︂
𝑀𝑐

𝑀0

)︂4
2𝑎√
𝑡
. (38)

According to (37) with the normalization of time
by 𝑡2𝑓 , we have

𝐿(𝑡) ≡ 𝑉𝑐𝑡 ≈ 𝐿0
𝑀6

0

4𝑎2𝑀6
𝑐

𝑡

𝑡
(2)
𝑓

, (39)

i.е., the crack moves with constant velocity 𝑉𝑐. We
estimated that 𝑉𝑐 is about a meter per minute for
standard quantities entering (39).

3. Results and Discussion

Now, we summarize the results of the above study
of a crack evolution after the instantaneous unload-
ing. First of all, if 𝜋

2𝑃0

√
𝐿0 ≡ 𝑀0 < 𝑀𝑐, the crack

will not grow, it will slightly swell, the pressure will
be reduced to 𝑃1 = 𝑃0

1+𝑎 , and then a gas will fill the
crack. Neglecting the gas release outward the bed, the
pressure within the crack will regain the value of 𝑃0

due to the gas inleakage. When 𝑀0 > 𝑀𝑐, different
variants of crack evolution are possible.

1. If 𝑎 > 𝑀0

𝑀𝑐
−1, as before, the gas inleakage will im-

mediately start after the loading-out and the pressure
decrease, which will last up to the point of validity of
Griffith’s equality 𝑝2 ≡ 𝑃2

𝑃0
= 𝑀𝑐

𝑀0
.

a) Additionally, if inequality (37) is valid, i.е., 𝑎 >
> 1, the inleakage will proceed together with an in-
crease in the crack size until the breakage.

b) When 𝑎 < 1, i.е. inequality (37) is not satis-
fied, the breakage will happen immediately after the
primary inleakage.

2. If 𝑎 < 𝑀0

𝑀𝑐
− 1, the problem is reduced to the

analysis of the system of equalities 𝑝𝜆 = 𝑀𝑐

𝑀0
, 𝜆
1+𝑎𝜆4 =

= 𝑀𝑐

𝑀0
and inequality (37). The results of the analysis

are:
a) When 𝑎 > 1

16

(︁
𝑀0

𝑀𝑐

)︁4
, the crack chambers imme-

diately after the loading-out, the crack size increases
from 𝐿0 to 𝐿2 , and the pressure decreases abruptly to
𝑃2 (17). Further, the crack grows up to the material
breakage, and the pressure drops to zero according to
(38) and (39), despite the gas inleakage.

b) If 𝑎 < 1
16

(︁
𝑀0

𝑀𝑐

)︁4
, the crack spreads instantly

through the bed. The diagram illustrating different
scenarios of crack growth depending on the parame-
ters 𝑀0

𝑀𝑐
and 𝑎 is presented in Fig. 4.
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The regions of the diagram are designated as fol-
lows: А – the cracks do not grow; В – the cracks
grow in two stages due to the gas infiltration to the
cavity; the first and second stages are associated with
the swelling and the crack growth, respectively; С –
the instantaneous propagation of cracks after the gas
inleakage; D – the chambering followed by the propa-
gation at the rate of filtration; E – the instantaneous
propagation without filtration.

The diagram in Fig. 4 is constructed for the case
of total loading-out of a part of the bed, where the
crack is located. The diagram should be corrected
in the case of partial unloading, but the trends of
the parameters 𝑎 and 𝑀0

𝑀𝑐
are conserved. However, it

should be kept in mind that the unloading involves
not only the parameter 𝑎, but also Griffith’s crite-
rion. In addition, when considering the filtration, the
exhaustion of a coal matrix with respect to a gas
due to a great number of cracks should be taken into
account.

4. Conclusions

We have established that the crack growth in gas-
saturated porous compressed materials (e.g., coals,
sandstones, shales, some of the reactor materials)
after the instantaneous loading-out (decompression)
occurs in two stages. At the first impact stage, the
crack volume is instantaneously increased at the
rate of expansion of the gap. The material swells
out. Then, at a certain initial gas pressure, un-
der the decompression, for the crack size, modu-
lus of cohesion, and modulus of elasticity, which
have been evaluated above, the crack can burst, and
the crack length can increase by several times. Grif-
fith’s criterion has been modified to be applied to
the considered situation. The kinetic equations de-
scribing the filtration stage of crack evolution have
been derived and solved. The filtration stage is con-
trolled by the gas inleakage from the environment
to the crack cavity. The rate of crack growth at
this stage has been found. The developed theory
has been applied to the estimation of the param-
eters determining the characteristics of the pro-
cesses that precede instantaneous outbursts of coal,
rock, and gas in the course of the blasting of coal
deposits. The estimative diagram showing the out-
burst hazard of the edge of a coal bed has been
constructed.
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Е.П.Фельдман, Н.О.Калугiна, Т.М.Мельник

КIНЕТИЧНА ТЕОРIЯ РУЙНУВАННЯ
ВУГIЛЬНОЇ/ПОРОДНОЇ КРАЙОВОЇ ДIЛЯНКИ
ГАЗОНАПОВНЕНИМИ ТРIЩИНАМИ.
РАПТОВЕ РОЗВАНТАЖЕННЯ.

Р е з ю м е

Кiнетична теорiя руйнування крихких матерiалiв застосо-
вана до дослiдження докритичного i критичного зростання
трiщин у газонасичених гiрських породах. У таких матерi-
алах важливу роль вiдiграє фiльтрацiя газу з оточення в
порожнину зростаючої трiщини. Явний облiк цього чинни-
ка в поєднаннi з динамiкою напруженого стану пласта до-

зволив, в припущеннi, що виконується критерiй Грiффiтса,
встановити швидкiсть росту магiстральної трiщини. Вста-
новлено, що пiсля раптового розвантаження пласта при
його вiдпрацюваннi, трiщини певних розмiрiв i орiєнтацiї
негайно “вистрiлюють”, пiсля чого їх подальше зростання
вiдбувається в мiру надходження газу всередину трiщин.
Дана оцiнка часу фiльтрацiйного зростання трiщин. Зна-
йдено областi змiни керуючих параметрiв (пластового ти-
ску газу, розмiрiв трiщин, надлишкового тиску, поверхневої
енергiї вугiлля/породи, модуля пружностi), всерединi яких
спонтанне руйнування пласта стає можливим. Це вiдкриває
шлях до прогнозування раптових викидiв вугiлля, породи
i газу.
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