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SELF-SIMILAR MODE OF METALS
FRAGMENTATION UNDER SEVERE
PLASTIC DEFORMATION

In the framework of nonequilibrium evolution thermodynamics, the influence of additive fluc-
tuations on the kinetics of structural defects under severe plastic deformation has been stud-
ied. The applied method is a new one for the description of fragmentation modes and corre-
sponding self-organization processes. It is found that a fragmented metallic specimen demon-
strates a self-similar behavior, which results in the formation of a grain structure with various
grain sizes. Such a behavior takes place provided that the probability distribution for the grain
boundary density has a power-law dependence. A comparison of the results obtained in the Itô
and Stratonovich forms demonstrates the absence of qualitative changes in the behavior of the
system.
K e yw o r d s: grain boundary, dislocation, phase transition, phase diagram, internal energy,
additive noise, self-similarity.

1. Introduction
It is known that, during the fragmentation of a metal
specimen, which is performed with the help of se-
vere plastic deformation (SPD) methods and under
certain conditions, the so-called fractal structures are
formed in the material [1–8]. As a result, the emerged
grain (stationary) structure of the metal is character-
ized by the power-law size distribution for the en-
semble of grains with various sizes. The character-
istic scale of those grains cannot be determined (in
our case, we are interested in the scale for the den-
sity of grain boundaries (GBs), ℎ𝑔). When the spec-
imen surface increases (the growth factor can be ar-
bitrary in this case), the system demonstrates a self-
similar behavior, i.e. the surface morphology always
remains similar to itself. In other words, the system
preserves relationships between its state parameters
[9, 10].

To describe the process of metal structure fragmen-
tation, a generalized thermodynamic model was de-
veloped in works [11–18]. This model combines the
methods of the classical non-equilibrium thermody-
namics and the Landau theory of phase transitions. It
allowed one to describe the kinetics of the defect
subsystem (dislocations and GBs) and to analyze
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both the formation conditions and the stability of the
formed submicrocrystalline (SMC) or nanocrystalline
(NC) boundary (stationary) structures. At the same
time, the proposed theory considers the influence of
fluctuations of the main parameters (noise), which
can substantially change the evolution of the system
in some cases and even lead to the appearance of new
states [16, 19–22]that cannot be realized in the deter-
ministic case [11–14, 23–25].

In this work, it was shown that the introduction of
additive noise for the main parameters makes it pos-
sible to describe the self-similar behavior of structural
defects during the formation of SMC or NC bound-
ary structures. The conditions for the formation of
quasifractal granular structures were analyzed. It was
found that the grain-size distribution function ac-
quires a power-law form, if the GB density parameter
lies within the interval 10−5 m−1 . ℎ𝑔 . 1010 m−1. A
comparison of the results obtained showed that the
choice of the Itô and Stratonovich calculus affects
only the dispersion of fluctuations of the state pa-
rameter ℎ𝑔 around the stationary values of the system
and gives rise to the renormalization of the spectral
distribution of grain sizes in the formed NC or SMC
boundary structure. At the same time, the actual sta-
tionary values of the GB density do not depend on the
interpretation choice.
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2. Effective Potential

Let us consider the basic potential for the internal
energy density in the form [11, 19]:

𝑢 (ℎ𝑔, ℎ𝐷) = 𝑢0+
∑︁

𝑚=𝑔,𝐷

(︂
𝜙0𝑚ℎ𝑚 − 1

2
𝜙1𝑚ℎ

2
𝑚 +

+
1

3
𝜙2𝑚ℎ

3
𝑚 − 1

4
𝜙3𝑚ℎ

4
𝑚

)︂
+𝜙𝑔𝐷ℎ𝑔ℎ𝐷 −𝜓𝑔𝐷ℎ

2
𝑔ℎ𝐷, (1)

where

𝑢0 =
1

2
𝑀 (𝜀𝑒𝑖𝑖)

2
+ 2𝜇𝐼2, (2)

𝜙0𝑚 = 𝜙*
0𝑚 + 𝑔𝑚𝜀

𝑒
𝑖𝑖 +

(︂
1

2
�̄�𝑚 (𝜀𝑒𝑖𝑖)

2
+ 2�̄�𝑚𝐼2

)︂
, (3)

𝜙1𝑚 = 𝜙*
1𝑚 + 2𝑒𝑚𝜀

𝑒
𝑖𝑖. (4)

In formulas (1)–(4), 𝑢0 is a part of the internal en-
ergy that does not depend on the imperfection in the
material structure (the reference level); ℎ𝑔 and ℎ𝐷
are the GB and dislocation densities, respectively 1;
the subscript values 𝑚 = 𝑔 and 𝑚 = 𝐷 denote the
GBs and dislocations, respectively; 𝑀 = 𝜆 + 2𝜇 is
the modulus of uniaxial compression of a material
[26, 27]; 𝜆 and 𝜇 are the Lamé constants; 𝜀𝑒𝑖𝑖 and
𝐼2 ≡ (−𝜀𝑒𝑖𝑖𝜀𝑒𝑗𝑗 + 𝜀𝑒𝑖𝑗𝜀

𝑒
𝑗𝑖)/2 are the first and second, re-

spectively, invariants of the elastic strain tensor; 𝜙*
0𝑚

is the characteristic defect energy involving the defect
dimensionality (per unit length for dislocations and
per unit surface area for GBs); 𝜙0𝑚 is an analog of
𝜙*
0𝑚 taking the influence of elastic deformations in the

linear (the constant 𝑔𝑚) and quadratic approxima-
tions into account; the positive constant 𝑔𝑚 is respon-
sible for either the generation of structural defects at
stretching (𝜀𝑒𝑖𝑖 > 0) or their annihilation at compres-
sion (𝜀𝑒𝑖𝑖 < 0); �̄�𝑚 and �̄�𝑚 are elastic constants that
reflect the decrease of corresponding elastic moduli
owing to the presence of structural defects; 𝜙1𝑚 and
𝜙*
1𝑚 are coefficients that are responsible for the re-

crystallization (defect annihilation) considering and
not considering, respectively, the influence of an elas-
tic deformation in the linear approximation (constant
𝑒𝑚); accordingly, the parameter 𝑒𝑚 characterizes the
enhancement of the annihilation process at 𝜀𝑒𝑖𝑖 > 0
(in the case 𝜀𝑒𝑖𝑖 < 0, the backward process is implied);
and 𝜙𝑔𝐷 is a parameter that characterizes the interac-
tion energy of selected structural defects. In the gen-
eral case, the positive terms in relation (1) are respon-
sible for the generation of structural defects, and the

1 The approximate value of the grain size 𝑑 is assumed to be
inversely proportional to ℎ𝑔 , i.e. 𝑑 ∼ 1/ℎ𝑔 .

negative terms correspond to the inverse processes,
the defect annihilation (recrystallization).

Expression (1) for the internal energy density dif-
fers from the initial one [11–14] by the presence of
the last term, which describes the self-consistent be-
havior of the GB density ℎ𝑔 and the dislocation den-
sity ℎ𝐷. According to it, the additive noise transforms
into the multiplicative one [19]. The minus sign in
front of this term ensures the formation of stationary
states (the maximum of the thermodynamic or syn-
ergetic potential) and reflects the Le Chatelier princi-
ple. According to the latter, the thermodynamic pro-
cess of a higher rank aims at compensating effects
from the thermodynamic processes of lower ranks. It
should be noted that such treatment methods are con-
sidered, at which the temperature at the contacting
surfaces of the specimen can increase by 50–70∘C, but
the melting does not occur.

The series expansion of Eq. (1), provided that the
coefficients 𝜙𝑘𝑚 (𝑘 = 0÷3) are positive, may result
in the formation of two maxima. In the GB case,
these maxima correspond to the appearance of a two-
mode distribution over the grain size. In the dislo-
cation case, the mode corresponding to the smaller
imperfection value describes a stochastic (uniform)
distribution of the presented defect; accordingly, a
larger imperfection value corresponds to an ensemble
of dislocations that form a cell structure. Note that,
in order to describe the formation of a boundary (sta-
tionary) structure, a higher order of approximation
of the internal energy (1) in the GB density is re-
quired. But in the case of dislocations, it is sufficient
to restrict the series expansion to the second power of
the defect density (𝜙2D = 0 J m3 and 𝜙3𝐷 = 0 Jm5).

For the further consideration, the coefficients were
assigned with the values that are quoted in Ta-
ble 1. Those parameters were partially substantiated
in works [11, 12]. It should be noted that the values
for the main coefficients were obtained experimen-
tally while studying the copper structure. Neverthe-
less, the proposed model (1) has a wider scope of ap-
plications. If necessary and provided that the proper
parameter values are used, it will produce good re-
sults for any metal.

3. Langevin and Fokker–Planck Equations

Since the Gaussian white noise is one of the sim-
plest mathematical models that is often used to de-
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Table 1. Parameters of the two-defect model with noise

𝑀 , Pa 𝜙*
0𝑔 , J ·m−2 𝑔𝑔 , J ·m−2 �̄�𝑔 , J ·m−2 �̄�𝑔 , J ·m−2 𝜙*

1𝑔 , J ·m−1 𝑒𝑔 , J ·m−1 𝜙2𝑔 , J 𝜙3𝑔 , J ·m

2.08 · 1010 0.4 12 2.5× 105 3× 105 3× 10−6 3.6× 10−4 5.6× 10−13 3× 10−20

𝜇, Pa 𝜙*
0𝐷, J ·m−1 𝑔𝐷, J ·m−1 �̄�𝐷, J ·m−1 �̄�𝐷, J ·m−1 𝜙*

1D, J ·m 𝑒𝐷, J ·m 𝜙𝑔𝐷, J 𝜓𝑔𝐷, J ·m

2.08× 1010 5× 10−9 2× 10−8 0 1.65× 10−4 10−24 6× 10−23 10−16 10−23

scribe physical processes, let us analyze the influence
of additive noises on the formation of SMC or NC
boundary structures. The relevant system of kinetic
equations for the order parameters looks as follows:
[13, 14, 19]:

𝜏ℎ𝐷
ℎ̇𝐷 = 𝜙0𝐷 −𝜙1Dℎ𝐷 +𝜙𝑔𝐷ℎ𝑔 −𝜓𝑔𝐷ℎ

2
𝑔 +
√︀
𝑁𝐷𝜉𝐷,

(5)

𝜏ℎ𝑔
ℎ̇𝑔 = 𝜙0𝑔 − 𝜙1𝑔ℎ𝑔 + 𝜙2𝑔ℎ

2
𝑔 − 𝜙3𝑔ℎ

3
𝑔 + 𝜙𝑔𝐷ℎ𝐷 −

− 2𝜓𝑔𝐷ℎ𝑔ℎ𝐷 +
√︀
𝑁𝑔𝜉𝑔, (6)

where 𝜏ℎ𝑚
are the reciprocal kinetic coefficients cor-

responding to the relaxation times of the disloca-
tion and GB densities. The stochastic sources de-
scribe the fluctuations of main parameters (internal
noise) with the intensities 𝑁𝐷,𝑔 [28]; namely, these
are various heterogeneities (substance phases, impu-
rities, inclusion, vacancies, structural defects of other
levels, thermal fluctuations, and so forth), as well
as changes in the external thermostat, in particu-
lar, the defects of the experimental installation. As
is known, SPD governs the formation of GBs of two
types. The first ones are large-angle, or geometri-
cally necessary, boundaries, which arise as a result
of various activities of the sliding system around the
GBs. The second ones are the boundaries or sub-
boundaries of cells, which are often called random
dislocation boundaries, because they arise at the mu-
tual implementation of a statically random disloca-
tion intersection inside the grains [27,29]. The bound-
aries between arbitrarily arranged grains are much
more mobile than the latter. Grain boundaries pos-
sess a higher non-equilibrium energy, because they
accumulate structural defects of other levels during
the treatment, which leads to the activation of re-
laxation processes by invoking a plastic flow. In the
course of deformation, owing to the accumulation of

dislocations, the cells gradually transform into sub-
grains, which are confined by small-angle bound-
aries, but become high-angle nanograins in the fu-
ture. In the case of the simplest kind of interac-
tions between defects belonging to the same level,
the emergence of fluctuations of internal variables
takes place owing to the self-organization processes
[20–22].

Let us introduce the functions 𝜉𝑖(𝑡), where 𝑖 = 𝐷 or
𝑔, which represent random Gaussian quantities (white
noise). They have an autocorrelation function that is
mathematically described with the help of the Dirac
𝛿-function and satisfies the equalities [30]

⟨𝜉𝑖(𝑡)⟩ = 0, ⟨𝜉𝑖(𝑡)𝜉𝑗(𝑡′)⟩ = 2𝛿𝑖𝑗𝛿(𝑡− 𝑡′). (7)

The multiplier 2 in front of the Kronecker delta 𝛿𝑖𝑗
makes it possible to unambiguously write down the
Fokker–Planck equation and to ascribe the mean-
ing of the diffusion coefficient to the function 𝑁(ℎ𝑔)
[see Eq. (10) below] 2. Expression (10) for 𝑁(ℎ𝑔) also
takes the constants into account, which determine the
fluctuation intensities for random quantities.

According to the regularities observed during SPD,
the self-organization process in cellular structures,
which results in the formation of new grain bound-
aries, takes a longer time than the formation of el-
ementary dislocations does (here, a large difference
between the main defects – dislocations and GBs –
is meant). In this connection, the establishment of a
dynamic equilibrium in the system follows the evolu-
tion of the grain boundary density, so that we may
use the adiabatic approximation, 𝜏ℎ𝑔

≫ 𝜏ℎ𝐷
. In the

framework of the latter, we put 𝜏ℎ𝐷
𝜕ℎ𝐷/𝜕𝑡 = 0 in

Eq. (5) and obtain the Langevin stochastic differen-

2 In this sense, the diffusion coefficient reflects the process of
mutual penetration of structural defects belonging to differ-
ent levels, which results in the self-organized equalizing of
defect concentrations over the whole volume.
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tial equation (SDE) for the random variable ℎ𝑔 3,

𝜏ℎ𝑔
ℎ̇𝑔 = 𝐹 (ℎ𝑔) +

√︁
𝑁(ℎ𝑔) 𝜉(𝑡). (8)

The deterministic force 𝐹 (ℎ𝑔) and the effective inten-
sity of fluctuations

√︀
𝑁(ℎ𝑔) of the random variable

are formulated as follows [19]:

𝐹 (ℎ𝑔) ≡ 𝜙0𝑔 +
𝜙0𝐷𝜙𝑔𝐷

𝜙1D
+

+

(︃
𝜙2
𝑔𝐷

𝜙1D
− 2

𝜓𝑔𝐷𝜙0𝐷

𝜙1D
− 𝜙1𝑔

)︃
ℎ𝑔 +

+

(︂
𝜙2𝑔 − 3

𝜓𝑔𝐷𝜙𝑔𝐷

𝜙1D

)︂
ℎ2𝑔 +

(︃
2
𝜓2
𝑔𝐷

𝜙1D
− 𝜙3𝑔

)︃
ℎ3𝑔, (9)

𝑁(ℎ𝑔)≡
(𝜙𝑔𝐷 − 2𝜓𝑔𝐷ℎ𝑔)

2

𝜙2
1D

𝑁𝐷 +𝑁𝑔. (10)

When proving relation (10), which corresponds to
the multiplicative noise, the dispersion properties of
the independent Gaussian random variables [30] were
taken into account. To avoid misunderstanding, a re-
mark should be made that the direct transformations
lead to the stochastic terms[︂
(𝜙𝑔𝐷 − 2𝜓𝑔𝐷ℎ𝑔)

𝜙1D

√︀
𝑁𝐷 +

√︀
𝑁𝑔

]︂
𝜉(𝑡), (11)

for which the square of their amplitudes is different
from the effective noise intensity (10).

To develop the analysis further, the Langevin equa-
tion (8) has to be put in correspondence with a def-
inite form of the Fokker–Planck equation, which de-
scribes the evolution of the distribution density func-
tion 𝑝(ℎ𝑔, 𝑡) for stochastic fluctuating variables (in
our case, this is the parameter ℎ𝑔). The following ap-
proaches are used most often when determining the
solution: the calculus in the Itô interpretation (the
𝐼-form), the Stratonovich calculus (the 𝑆-form), and
the kinetic form (the 𝐾-form) [30, 31].

In the case of Itô calculus, the stochastic processes
ℎ𝑔(𝑡) and 𝑑𝑊 (𝑡) 4 satisfy the criterion of the Markov

3 Every implementation 𝜉(𝑡) of the random process is assumed
to correspond to the formation of ℎ𝑔(𝑡) of a new random
process, i.e. the GB density acquires a random value at any
time moment 𝑡.

4 This is a representation of the Wiener process for the
stochastic differential equation (20) [30], which is a math-
ematical model of the Brownian motion for a random oscil-
lation with the continuous time.

process and seem to be statistically independent [32],
because the definition of the Itô integral reflects the
absence of correlations between the random process
ℎ𝑔(𝑡) and the random force 𝑊 (𝑡) at the time moment
𝑡. In the general case, the Itô form is used for solv-
ing the systems with discrete-time dynamics, which
are mainly dealt with in biological systems (for ex-
ample, to simulate the birth and death of living or-
ganisms) [28].

Integrating Eq. (8) with the help of the Stratono-
vich form makes it possible to automatically take the
correlations between the random process ℎ𝑔(𝑡) and
the random variable 𝑊 (𝑡) at short time intervals into
account. For this purpose, the corresponding calcula-
tions should be performed at the intermediate points
of the integration mesh,√︃
𝑁

(︂
ℎ𝑔

(︂
𝑡𝑖 + 𝑡𝑖−1

2

)︂)︂
𝑑𝑊 (𝑡𝑖). (12)

This procedure reflects the behavior of real physical
systems with continuous time and memory [1, 33, 34].

Hence, in this work, the Stratonovich approach was
applied to the description of the fragmentation pro-
cess in a metal polycrystalline structure under the ac-
tion of SPD. This approach did not reveal qualitative
changes in comparison with the Itô calculus.

The corresponding Fokker–Planck equation is writ-
ten as follows [19]:

�̇�(ℎ𝑔, 𝑡) = − 𝜕

𝜕ℎ𝑔
𝐷(1)(ℎ𝑔)𝑝(ℎ𝑔, 𝑡)+

+
𝜕2

𝜕ℎ2𝑔
𝐷(2)(ℎ𝑔)𝑝(ℎ𝑔, 𝑡), (13)

where the functions

𝐷(1)(ℎ𝑔) =
𝐹 (ℎ𝑔)

𝜏ℎ𝑔

+

√︃
𝑁(ℎ𝑔)

𝜏2ℎ𝑔

𝑑
√︁
𝑁(ℎ𝑔)/𝜏2ℎ𝑔

𝑑ℎ𝑔
, (14)

and

𝐷(2)(ℎ𝑔) =
𝑁(ℎ𝑔)

𝜏2ℎ𝑔

(15)

(or the Kramers–Moyal coefficients) [30] play the role
of the drift and diffusion coefficients, respectively.

The stationary solutions (these are the probability
density distributions for the realization of the states
ℎ𝑔 at 𝜕𝑝(ℎ𝑔, 𝑡)/𝜕𝑡 = 0) of Eqs. (8) and (13) look like

𝑝(ℎ𝑔) = 𝑍−1 exp(𝑈ef(ℎ𝑔)). (16)
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Here, the normalizing constant 5

𝑍 =

+∞∫︁
0

exp(𝑈ef(ℎ̂𝑔))𝑑ℎ̂𝑔 (17)

and the effective synergetic potential

𝑈ef(ℎ𝑔) = −1

2
ln(𝑁(ℎ𝑔)) + 𝜏ℎ𝑔

ℎ𝑔∫︁
0

𝐹 (ℎ̂𝑔)

𝑁(ℎ̂𝑔)
𝑑ℎ̂𝑔, (18)

which evaluates the effective energy of the system,
but does not have the physical sense of its internal
energy, were introduced.

Let us derive an equation for the stationary val-
ues of the GB density ℎ𝑔. It is determined from a
necessary condition for the existence of extrema in
distribution density (16) or effective potential (18):
𝑑𝑝(ℎ𝑔)/𝑑ℎ𝑔 = 0. The obtained maxima of the effec-
tive synergetic potential correspond to the maxima of
the distribution density, which describe the formation
of stable states (boundary structures), whereas the
minima correspond to unstable realizations. Thus,
the stationary condition brings about the expression

𝑑𝑈ef(ℎ𝑔)

𝑑ℎ𝑔
≡ 𝐹 (ℎ𝑔)−

1

2𝜏ℎ𝑔

𝑑𝑁(ℎ𝑔)

𝑑ℎ𝑔
= 0.

Its transformation makes it possible to obtain an
equation that determines the positions of stationary
states [19],(︃
2
𝜓2
𝑔𝐷

𝜙1D
− 𝜙3𝑔

)︃
ℎ3𝑔 +

(︂
𝜙2𝑔 − 3

𝜓𝑔𝐷𝜙𝑔𝐷

𝜙1D

)︂
ℎ2𝑔 +

+

(︃
𝜙2
𝑔𝐷

𝜙1D
− 2

𝜓𝑔𝐷𝜙0𝐷

𝜙1D
− 4

𝜓2
𝑔𝐷

𝜏ℎ𝑔𝜙
2
1D

𝑁𝐷 − 𝜙1𝑔

)︃
ℎ𝑔 +

+𝜙0𝑔 +
𝜙0𝐷𝜙𝑔𝐷

𝜙1D
+ 2

𝜓𝑔𝐷𝜙𝑔𝐷

𝜏ℎ𝑔
𝜙2
1D

𝑁𝐷 = 0. (19)

It is evident that the positions of the extrema in the
effective synergetic potential (18), which separate the
modes of metal fragmentation at SPD, do not depend
on the noise intensity 𝑁𝑔.

Note also that expression (19) derived in the frame-
work of the Stratonovich approach is somewhat dif-
ferent from its counterpart derived in the framework

5 The integration limits are restricted by the physical inter-
pretation of the parameter ℎ𝑔 .

of the Itô calculus. Namely, in the latter variant, the
terms that involve the interaction with the fluctua-
tions of 𝑁𝐷 (these are two terms in Eq. (19) that
include the quantity 𝑁𝐷 as a multiplier) are addition-
ally multiplied by 2. Thus, the two-fold increase in the
intensity of the dislocation density fluctuations, 2𝑁𝐷,
makes it possible to obtain results in the framework
of the Stratonovich interpretation that are equivalent
to those obtained in the Itô approach.

However, it is worth noting that the synergetic po-
tential (18) and, accordingly, the distribution den-
sity 𝑝(ℎ𝑔) [Eq. (16)] acquire another form owing to
the renormalization of the effective noise intensity
𝑁(ℎ𝑔). It is so because the latter differs from its
counterpart in the Itô approach only in the first
term (a constant of 1/2 is available). This constant
leads to the redistribution of the probability distri-
bution density 𝑝(ℎ𝑔(𝑡)) of the stochastic variable ℎ𝑔,
which obviously favors modifications in the charac-
ter of time dependences of the GB density. In other
words, the intensity of fluctuations of the parameter
ℎ𝑔 around the stationary system states changes. Ho-
wever, the formed stationary morphology of the ma-
terial (a boundary structure with a constant value
of ℎ𝑔) remains unchanged irrespective of the calculus
form choice.

In work [19], stationary solutions of the effective
synergetic potential (18) and the formation of phase
diagrams with the help of the Stratonovich calculus
were studied. This approach of stochastic integration
was used in this work as well, because its aim was
not reduced to the study of only the formation of
stationary SMC or NC structures, but it also included
the study of the peculiarities in the evolution of ℎ𝑔
during SPD.

4. Procedure for Constructing
the Time Dependences of GB Densities

In order to analyze the kinetics of the GB density ℎ𝑔
with regard for fluctuations of the basic parameters
𝑁𝐷,𝑔, let us write down the Langevin equation with
the multiplicative noise in the stochastic differential
form. For this purpose, we should multiply Eq. (8) by
𝑑𝑡. As a result, we obtain

𝜏ℎ𝑔𝑑ℎ𝑔 = 𝐹 (ℎ𝑔)𝑑𝑡+
√︁
𝑁(ℎ𝑔)𝑑𝑊 (𝑡), (20)

where 𝑑𝑊 (𝑡) =𝑊 (𝑡+𝑑𝑡)−𝑊 (𝑡) ≡ 𝜉(𝑡)𝑑𝑡 is a Wiener
process with the white-noise properties [28, 30, 32]
⟨𝑑𝑊 (𝑡)⟩ = 0, ⟨(𝑑𝑊 (𝑡))2⟩ = 2𝑑𝑡. (21)
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In this case, the noise is determined as the time
derivative of the Wiener process, 𝜉(𝑡) = 𝑑𝑊 (𝑡)/𝑑𝑡.

Recall that the distribution of random fluctuations
𝜉(𝑡) over their 𝜉-values is the normal (Gaussian) dis-
tribution [30]

𝑃 (𝜉) =
1

𝜎
√
2𝜋

exp

{︂
− (𝜉 − 𝜇)2

2𝜎2

}︂
, (22)

for which the first and second moments of the stochas-
tic source are determined as follows:

𝜇 ≡ ⟨𝜉(𝑡)⟩ = 0, 𝜎2 ≡ ⟨𝜉2(𝑡)⟩ = 2𝛿 (0) = 2.

It is worth noting that, in the framework of the exam-
ined case, the Gaussian white noise is considered as
a limit of the real physical noise with a finite source
intensity.

Let us rewrite Eq. (20) in a more general form,

𝑑ℎ𝑔 = 𝐷(1)(ℎ𝑔)𝑑𝑡+
√︁
𝐷(2)(ℎ𝑔)𝑑𝑊 (𝑡). (23)

Hence, in the framework of the Stratonovich approach
(the 𝑆-form), the diffusion process is governed by the
drift coefficient 𝐷(1)(ℎ𝑔) [Eq. (14)] and the diffusion
coefficient 𝐷(2)(ℎ𝑔) [Eq. (15)] [30].

Note that the Stratonovich and Itô calculus forms
are interrelated and allow a mutual transformation
to be carried out [28, 32]. If the initial SDE (20) is
given in the Stratonovich interpretation, then, tak-
ing properties (21) into account, it is always possible
to pass to the equivalent SDE in the framework of
the Itô interpretation 6 by subtracting the expression
𝑔(ℎ𝑔)𝑑𝑔(ℎ𝑔)/𝑑ℎ𝑔, where 𝑔(ℎ𝑔) =

√︁
𝑁(ℎ𝑔)/𝜏2ℎ𝑔

, from
expression (14) for the drift coefficient. In turn, the
backward transfromation is performed by adding the
expression 𝑔(ℎ𝑔)𝑑𝑔(ℎ𝑔)/𝑑ℎ𝑔. In such a way, the ini-
tial and equivalent forms of SDE will have a single
common solution.

Depending on the choice of the interpretation form
for coefficients (14) and (15), the Langevin SDE (23)
will be different in form and have a different phys-
ical meaning. It is evident that SDE in the Strato-
novich form describes the diffusion process with a

6 Below, to make the consideration unambiguous, the calculus
form of SDE, which is determined by the form of coefficients
(14) and (15), is interpreted in accordance with the original
interpretation irrespective of the stochastic process represen-
tation.

transfer, since the second term in the definition of
the drift coefficient (14), 𝑔(ℎ𝑔)𝑑𝑔(ℎ𝑔)/𝑑ℎ𝑔, generates
a noise-induced transition. This term is more com-
monly known in the literature as the “fault” transfer,
since it does not enter the original phenomenologi-
cal equation (8) or SDE (20) [28, 30]. However, it is
known that this term only results in physical con-
sequences, because it simulates real systems with a
medium, in which fast fluctuations take place; i.e. it
involves the correlation between the random medium
and the system.

It should be noted that if the kinetics of the sys-
tem undergoes the action of an additive noise, i.e. if
𝑁(ℎ𝑔) = const in Eq. (20), there is no principal differ-
ence between the Itô and Stratonovich calculus sys-
tems. However, in the case of multiplicative noise,
i.e. if 𝑁(ℎ𝑔) ̸= const, and if the effect of random
force depends on the system state, the correlation
contained in the Stratonovich integral leads to a sys-
tematic contribution to the evolution of the random
process ℎ𝑔(𝑡). Hence, the SDE in the Stratonovich
form is more appropriate for the description of a real
physical situation associated with rapid changes in
the medium [28, 30]. However, it is worth noting that
there are no objective reasons that would give the
unambiguous preference to a definite SDE interpreta-
tion. In any case, a decisive criterion for the choice to
be correct is the correspondence of analytically found
results to experimental data.

In particular, the correctness of a theoretical con-
sideration dealing with the behavior of the main vari-
ables of a physical system (in our case, this is ℎ𝑔)
is usually confirmed by comparing the results of nu-
merical simulations for a number of SDE forms. Des-
pite a wide spectrum of available calculus forms, the
Stratonovich approach, in which the diffusion process
is taken into account, and the Itô form are considered
to be the most justified.

The numerical solution of relation (23) can be
found making use of the Euler method [20, 22]. By
applying the discrete approximation to the differen-
tial of the random variable, 𝑑𝑊 (𝑡) =

√
Δ𝑡𝑊𝑖, we

obtain a standard iterative procedure for integrating
(solving) Eq. (23):

ℎ𝑔𝑖+1 = ℎ𝑔𝑖 +𝐷(1)(ℎ𝑔𝑖)△𝑡+
√︁
𝐷(2)(ℎ𝑔𝑖)△𝑡𝑊𝑖. (24)

Using coefficients (14), (15) and expressions (9), (10),
let us calculate the time dependence of the GB den-
sity ℎ𝑔. In particular, in the case of the Stratonovich
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calculus, the iterative procedure has the following ex-
plicit form:

ℎ𝑔𝑖+1 = ℎ𝑔𝑖 +

+

[︃
𝐹 (ℎ𝑔𝑖)

𝜏ℎ𝑔

+ 2

(︀
2𝜓2

𝑔𝐷ℎ𝑔𝑖 + 𝜙𝑔𝐷𝜓𝑔𝐷

)︀
𝜏2ℎ𝑔

𝜙2
1D

𝑁𝐷

]︃
△𝑡+

+

√︃
𝑁(ℎ𝑔𝑖)

𝜏2ℎ𝑔

△𝑡 𝑊𝑖. (25)

The solution of SDE (23) was determined in the
time interval 𝑡 ∈ [0, 𝑇 ] for a definite number of iter-
ations 𝑁 (the number of points in the time depen-
dence). Accordingly, the time increment was deter-
mined by the expression Δ𝑡 = 𝑇/𝑁 . The force 𝑊𝑖

has the following characteristics:

⟨𝑊𝑖⟩ = 0, ⟨𝑊𝑖𝑊𝑖′⟩ = 0, ⟨𝑊 2
𝑖 ⟩ = 2, (26)

which corresponded to the white noise moments (21).
The simulation of a random force with the proper-

ties of a white noise was carried out using the Box-
Muller model [35],

𝑊𝑖 = 𝜎
√︀
−2 ln 𝑟1 cos(2𝜋𝑟2), 𝑟1,2 ∈ (0, 1], (27)

where, according to the second moment in Eq. (26),
the dispersion 𝜎 =

√
2, and 𝑊𝑖 is a completely

random number, whose properties are described by
Eqs. (26) and (22). The pseudorandom numbers 𝑟1
and 𝑟2 have a uniform distribution and were repeated
after a certain period.

5. Self-Similar Fragmentation Mode

Let us determine conditions for a self-similar behav-
ior to appear in the proposed two-defect system. This
behavior is obtained by differentiating the multidi-
mensional thermodynamic potential (1) (or the den-
sity of the effective internal energy). The correspond-
ing uniform distribution function, which is typical of
self-similar systems, is defined by the dependence

𝑃𝑞(𝑦) = 𝑦−𝑞Π(ℎ𝑔), 𝑦 = ℎ𝑔ℎ
𝑠
𝑔, (28)

where 𝑞 is the uniformity order or the power exponent
of distribution [9], which determines the slope angle
of the linear plot. Note that the power exponent can
acquire both integer and fractional values. In partic-
ular, the mode of self-organized criticality is formed
for the power exponent 2𝑞 = 1.5 [36].

Let us analyze the stationary distribution of the
density ℎ𝑔 [Eq. (16)], which is determined by the
effective synergetic potential (18). If the condition
𝑁𝑔 ≫ 𝑁𝐷 is satisfied, then, at 𝑁𝐷 = 0, the effec-
tive noise intensity equals 𝑁(ℎ𝑔) ≡ 𝑁𝑔 [see definition
(10)]. Accordingly, the distribution density is deter-
mined by the formula

𝑝(ℎ𝑔) = 𝑍−1𝑁−1/2
𝑔 exp

⎛⎜⎝𝜏ℎ𝑔

𝑁𝑔

ℎ𝑔∫︁
0

𝐹 (ℎ̂𝑔)𝑑ℎ̂𝑔

⎞⎟⎠. (29)

It is evident that expression (29) differs substantially
from the uniform distribution function (28).

The fluctuations of the dislocation density under
the condition

𝑁𝐷 ≫ 𝑁𝑔 (30)

– in this case, we may put 𝑁𝑔 = 0 in Eq. (10) –
bring about the following expression for the effective
synergetic potential:

𝑈ef(ℎ𝑔) = ln

(︃
(𝜙𝑔𝐷 − 2𝜓𝑔𝐷ℎ𝑔)

2

𝜙2
1D

𝑁𝐷

)︃−1/2

+

+ 𝜏ℎ𝑔
𝑁−1

𝐷 𝜙2
1D

ℎ𝑔∫︁
0

𝐹 (ℎ̂𝑔)(︁
𝜙𝑔𝐷 − 2𝜓𝑔𝐷ℎ̂𝑔

)︁2 𝑑ℎ̂𝑔. (31)

In turn, the distribution density reads

𝑝(ℎ𝑔) = 𝑍−1 (𝜙𝑔𝐷 − 2𝜓𝑔𝐷ℎ𝑔)
−1
𝜙1D𝑁

−1/2
𝐷 ×

× exp

⎛⎜⎝𝜏ℎ𝑔
𝜙2
1D

𝑁𝐷

ℎ𝑔∫︁
0

𝐹 (ℎ̂𝑔)(︁
𝜙𝑔𝐷 − 2𝜓𝑔𝐷ℎ̂𝑔

)︁2 𝑑ℎ̂𝑔
⎞⎟⎠. (32)

It is evident that the resulting distribution is char-
acterized by the power-law asymptotics 𝑝(ℎ𝑔) ∝ ℎ−1

𝑔

at 𝜙𝑔𝐷 → 0 and in the interval 0 < ℎ𝑔 ≤ ℎmax
𝑔 . Then

Eq. (32) is reduced to the canonical form (28)

𝑃𝑞(𝑦) = 𝑦−1Π(ℎ𝑔), 𝑦 = ℎ𝑔ℎ
𝑠
𝑔, (33)

where

Π(ℎ𝑔) = 𝑍−1(−2)−1𝜓−1
𝑔𝐷 𝜙1D 𝑁

−1/2
𝐷 ×

× exp

⎛⎜⎝𝜏ℎ𝑔𝜙
2
1D

𝑁𝐷

ℎ𝑔∫︁
0

𝐹 (ℎ̂𝑔)

4𝜓2
𝑔𝐷ℎ̂

2
𝑔

𝑑ℎ̂𝑔

⎞⎟⎠. (34)
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Fig. 1. Integrand (35) plotted for the parameters values
𝜀𝑖𝑖 = −0.1%, 𝐼2 = 10−4%, and 𝑁𝐷 = 2 (1 ), 10 (2 ), and
100 J2s m−2 (3 )

Hence, distribution (33) is uniform, if the func-
tion Π(ℎ𝑔) [Eq. (34)] acquires a constant value,
i.e. Π(ℎ𝑔) = const.

Let us determine conditions for the formation of a
self-similar distribution. For this purpose, let us ana-
lyze the subintegral expression in Eq. (34),

𝐼 =
𝜏ℎ𝑔𝜙

2
1D

𝑁𝐷

[︃
𝜙0𝑔

4𝜓2
𝑔𝐷ℎ

2
𝑔

−

(︃
𝜙0𝐷

2𝜙1D𝜓𝑔𝐷
+

𝜙1𝑔

4𝜓2
𝑔𝐷

)︃
1

ℎ𝑔
+

+
𝜙2𝑔

4𝜓2
𝑔𝐷

+

(︃
1

2𝜙1D
− 𝜙3𝑔

4𝜓2
𝑔𝐷

)︃
ℎ𝑔

]︃
. (35)

From this result, one can see that the contributions
of the first and second terms decrease as ℎ𝑔 grows,
whereas the third term gives a small contribution at
𝜙2𝑔 ≈ 0 J. In particular, the influence of those terms
can be considerably reduced by increasing the value
of the parameter 𝜓𝑔𝐷. However, as the GB density
ℎ𝑔 grows, the fourth term gives a significant con-
tribution to the distribution function (33), because
it changes the distribution character: the transition
from the power-law dependence to the exponential
one takes place. From this viewpoint, the power-law
distribution will be realized only at 𝜙1D ≪ 1 J m or
𝑁𝐷 ≫ 1 J2 s m−2 and in the limited interval of GB
densities 0 < ℎ𝑔 ≤ ℎmax

𝑔 .
The direct physical meaning of the indicated self-

similarity conditions can be understood more clearly
from expression (10), because, under such conditions,

the effective intensity of the noise increases and, ac-
cordingly, the spread of the values of the GB density
ℎ𝑔 increases. However, it should be noted that the or-
der parameter ℎ𝑔 cannot be infinitely large, because,
from the physical viewpoint, a fragmented metallic
specimen corresponds to an amorphous structure un-
der such conditions, and this is practically impossible,
if only the known SPD methods are applied. Thus, a
quasifractal structure with characteristic grain size
is formed only in a limited interval. At a high GB
density ℎ𝑔, the distribution rapidly decreases and be-
comes exponential. Accordingly, it is assumed that
smaller grains are not formed in the cellular struc-
ture of a metal.

In Fig. 1, function (35), i.e. the integrand in
Eq. (34), is plotted. According to this figure, the
integral in expression (34) is the smallest at ℎ𝑔 <
< 1010 m−1. Above this value, the contribution of
the function Π(ℎ𝑔) [Eq. (34)] to the distribution be-
gins to increase gradually. Accordingly, the integral
gives a main contribution to the resulting distribu-
tion function (33), which is accompanied by an expo-
nential reduction (see Fig. 2). Thus, a necessary con-
dition for self-similarity is the power-law character of
the distribution function, because the reduction rate
of such a dependence is much lower in comparison
with that of the exponential one.

Hence, the power-law distribution, which is char-
acteristic of the self-similar behavior, really exists in
a limited interval of the GB density values. When ℎ𝑔
exceeds a certain critical value ℎmax

𝑔 , the system loses
its self-similar properties. Note that distribution (33)
was obtained in the framework of the Stratonovich
calculus. In the case of Itô calculus, the power expo-
nent of the distribution acquires a value of −2. Howe-
ver, as was mentioned above, the choice of a calculus
has only a quantitative effect on the behavior of the
system, which reveals itself in the renormalization of
the noise intensities 𝑁𝐷 and 𝑁𝑔.

Note also that if the necessary conditions for the
self-similar behavior are satisfied (𝜙𝑔𝐷 = 0 J and
𝜙1D ≪ 1 J m or 𝑁𝐷 ≫ 1 J2 s m−2), the phase di-
agram, which determines fragmentation modes [19],
makes no sense. This conclusion follows from the fact
that, at the indicated parameter values, only those
terms make substantial contributions that involve the
interaction with the fluctuations of 𝑁𝐷. These are
the terms with the multiplier 𝑁𝐷 in Eq. (19). In this
case, according to Eq. (33) with ℎ𝑔 = 0 m−1, the dis-
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tribution diverges, because the integral in the func-
tion Π(ℎ𝑔) [Eq. (34)] does not contribute. With the
growth of ℎ𝑔, the distribution remains to be power-
law until the contribution of the last term in Eq. (35)
becomes substantial and distribution (33) acquires an
exponentially decaying character. Hence, in the se-
lected interval, the system has a single maximum of
the distribution function at the point ℎ𝑔 ≈ 0 m−1;
then, up to ℎ𝑔 = ℎmax

𝑔 , the distribution is power-law;
and at ℎ𝑔 > ℎmax

𝑔 , it begins to exponentially decay
(see Fig. 2). In the latter case, the probability of the
formation of GB densities ℎ𝑔 > ℎmax

𝑔 is small, but
different from zero.

Let us consider the dependences 𝑃 (ℎ𝑔) (33), which
are plotted in Fig. 2. Note that the results ob-
tained are numerically normalized in the given in-
terval of ℎ𝑔-values. In the general case, the calcula-
tion of the analytic normalizing constant is impossi-
ble, because the distribution diverges at ℎ𝑔 → 0 m−1.
All the curves in Fig. 2 were plotted on the log-
log scale, which allows one to observe the forma-
tion of a power-law dependence at ℎ𝑔 < 1010 m−1

and, accordingly, the realization of the self-similar
mode. As one can see, the value ℎ𝑔 ≈ 1010 m−1

determined from Fig. 1 corresponds to the exhib-
ited dependences, although the distribution pre-
serves visually its tendency for some time. The plot-
ted dependences testify that, as the noise inten-
sity 𝑁𝐷 increases, the interval of GB density val-
ues, at which the distribution function 𝑃 (ℎ𝑔) be-
comes uniform, grows (see the inset). In particular,
the slope of the linear sections is constant irrespec-
tive of the model noise parameters. Hence, if con-
dition (30) is satisfied, a self-similar behavior is es-
tablished, which is determined by the absence of a
characteristic scale for the GB density in the interval
ℎ𝑔 < 1010 m−1. However, in order to obtain statis-
tical parameters for the time dependences of ℎ𝑔, a
more detailed multifractal fluctuation analysis [37] is
required.

Let us check the linearity of the dependences de-
picted in Fig. 2 in the indicated limits 0 < ℎ𝑔 ≤
≤ 1010 m−1. For this purpose, let us apply the cor-
relation analysis [35, 38]. Doing in such a way and
applying the least squares method in the interval
10−5 m−1 ≤ ℎ𝑔 ≤ 1010 m−1, we obtain the regres-
sion equation

lg(𝑃 (ℎ𝑔)) = 𝐴 lg(ℎ𝑔) +𝐵. (36)

Fig. 2. Distribution function (33) plotted for the parameters
values 𝜙𝑔𝐷 = 0, 𝜀𝑖𝑖 = −0.1%, 𝐼2 = 10−4%, 𝑁𝑔 = 0, and
𝑁𝐷 = 2 (1 ), 10 (2 ), and 100 J2s m−2 (3 )

The quality of the regression model is determined in
a standard manner with the help of the coefficient of
determination 𝑅2, which is calculated as follows:

𝑅2 = 1−
∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦)2∑︀𝑛
𝑖=1(𝑦𝑖 − 𝑦)2

, (37)

where 𝑦 ≡ lg(𝑃 (ℎ𝑔)), 𝑦 are the values correspond-
ing to Eq. (36), 𝑦 =

∑︀𝑛
𝑖=1 𝑦𝑖/𝑛 is the mean value,

and the values 𝑦𝑖 are determined from expression
(33). The number of points in the indicated interval
10−5 m−1 ≤ ℎ𝑔 ≤ 1010 m−1 was taken to be equal to
𝑛 = 105.

The values of the coefficients 𝐴, 𝐵, and 𝑅2 are
quoted in Table 2 for each case. One can see that the
values of the coefficient 𝐴 obtained for the curves in
Fig. 2 approximately equal to −1, which agrees with
the power-law form of expression (equal 𝐴 ≈ −1)

Table 2. Parameters of linear regression
(36) and the coefficients of determination (37)
for the curves depicted in Fig. 2

Curve
number

𝐴 𝐵 𝑅2

1 −1.032 −2.533 0.9992

2 −1.006 −4.087 0.9995

3 −1.001 −5.407 0.9995

ISSN 2071-0194. Ukr. J. Phys. 2019. Vol. 64, No. 6 495



A.V. Khomenko

a

0 0.5 .5
10

20

10
10

10
0

10
10

t

b

0 0.2 0.4 0.6 0.8
10

20

10
10

10
0

10
10

t

c
Fig. 3. Time dependences of ℎ𝑔 for the parameters values
𝜙𝑔𝐷 = 0, 𝜀𝑖𝑖 = −0.1%, 𝐼2 = 10−4%, 𝑁𝑔 = 0, and 𝑁𝐷 = 2 (𝑎),
10 (b), and 100 J2s m−2 (c)

provided the integer value 𝑞 = 1 of the power ex-
ponent. The corresponding correlation coefficients 𝑅2

[Eq. (37)], which are also quoted in Table 2, testify
to a high correlation between the regression equa-
tion (36) and expression (33) in the corresponding
linear sections. Therefore, distribution (33) is really
a power-law one. Furthermore, as was already men-
tioned, the growth of the noise intensity 𝑁𝐷 increases
the lengths of linear ℎ𝑔-sections (see the boundaries
of linear sections marked with dashed lines in the in-
set). Hence, the limiting size of grains in a quasifrac-
tal metal structure formed during SPD will perma-
nently decrease under the established conditions.

Figure 3 demonstrates the time dependences of ℎ𝑔,
which correspond to the parameters of curves 1–3 in
Fig. 2 and were calculated following the method de-
scribed in Section 4. The evolution of the GB density
values is exhibited on the logarithmic scale, which
makes it possible to demonstrate the self-similar be-
havior of the order parameter of the system in a cer-
tain limited interval. In particular, one can see that
this behavior reveals itself at the expense of a drastic
increase of the parameter ℎ𝑔 on various scales. From
the obtained results, it is evident that the increase
of the intensity of the dislocation density fluctuations
𝑁𝐷 gives rise to the realization of a self-similar behav-
ior in a larger range of scales, which is confirmed by
the extent of the power-law distribution in Fig. 2. The
dashed curves correspond to the maximum permis-
sible values for the maximum of the parameter ℎ𝑔,
below which the self-similar behavior is observed (see
the inset in Fig. 2). In addition, the analysis of time
dependences shows that the power-law form of the
distribution function 𝑃 (ℎ𝑔) [Eq. (33)] is restricted not
only by the maximum, but also the minimum value
of the GB density, which decreases with the growth
of the noise intensity 𝑁𝐷.

Hence, the self-similar character of the metal struc-
ture evolution is realized by activating the self-orga-
nized processes of various kinds, which arise as a re-
sult of the noise inherent to main parameters. It is
known that it is the interaction of structural defects
with one another and with defects of other structural
levels–in our case, this is the interaction of GBs with
dislocations, other boundaries, and structural inho-
mogeneities, such as structural defects of other levels,
thermal fluctuations, thermodynamical phases of the
substance, impurities, vacancies, and so forth–that
leads to the manifestation of internal fluctuations and
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the changes in grain misorientations in the granular
structure of a metal specimen [1, 27, 29, 39, 40]. As a
result, the emerged boundary structure contains crys-
tallites with a specific structure. Namely, according
to the results of X-ray studies, those crystallites are
fragmented into separate regions of coherent scatter-
ing (cells, subgrains) [1, 41–43].

6. Conclusions

On the basis of nonequilibrium evolution thermody-
namics, the fragmentation process in a metal struc-
ture under the influence of SPD has been studied. As
a result, the integrated picture of the basic modes for
the ordinary and severe plasticities is obtained. The
simulation of the defect formation processes is carried
out in the framework of the two-defect model and
making allowance for noise. Grain boundaries and
dislocations were considered as the main structural
defects, since the dislocations play a significant role in
the formation of a fine grain structure and determine
the plastic flow limit. A modification of the power-
series expansion of the internal energy density allowed
the self-consistent behavior of structural defects dur-
ing the formation of SMC or NC boundary structures
to be described more accurately. The fluctuations of
main parameters were assumed to reflect the stochas-
tic interaction with other, unaccounted structural in-
homogeneities (thermodynamic phases of the sub-
stance, impurities, inclusions, vacancies, structural
defects of other levels, thermal fluctuations, and oth-
ers), which are always available in a real metal struc-
ture. It is the result of such interactions in the course
of SPD treatment that is responsible for the competi-
tion and transitions among different structural states
(phases).

It is shown that the additive noise of the lower level
demonstrates a multiplicative character at the upper,
macroscopic level, which results in non-equilibrium
transitions and the formation of new states in the sys-
tem. A comparison of the Itô and Stratonovich calcu-
lus forms is carried out. In particular, it is shown that
the change of the calculus gives rise only to the renor-
malization of the probability density for the stochas-
tic variable distribution (realizations of the GB den-
sity). This renormalization manifests itself only in the
character of the time dependences of the GB density
owing to the changes in the intensity of GB density
fluctuations around stable configurations and does

not result in the changes of its stationary values. It
is found that, for the given formulation of the prob-
lem, it is the Stratonovich approach that allows the
actual fragmentation process to be described more
adequately, because it involves rapid changes in the
medium, as well as the prehistory of the crystalline
structure development.

The conditions required for the formation of self-
similar structures are analyzed. It is found that, un-
der definite conditions, a self-similar behavior in a
fragmented metallic specimen can be observed. It is
found that, in the limited interval of order parameter
values, ℎ𝑔 ∼ (10−5÷1010) m−1, the distribution func-
tion of the GB density acquires a power-law form. In
particular, the growth in the intensity of stochastic
source fluctuations results in a larger extension of
the power-law distribution. As a result, there arises
a quasifractal structure in a metal or alloy in a wider
range of scales of the parameter ℎ𝑔. Under the in-
dicated conditions, the maximum grain size perma-
nently decreases.
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О.В.Хоменко

САМОПОДIБНИЙ РЕЖИМ
ФРАГМЕНТАЦIЇ МЕТАЛIВ ПРИ IНТЕНСИВНIЙ
ПЛАСТИЧНIЙ ДЕФОРМАЦIЇ

Р е з ю м е

В рамках нерiвноважної еволюцiйної термодинамiки прове-
дено подальше дослiдження впливу адитивних флуктуацiй
на кiнетику структурних дефектiв при iнтенсивнiй пласти-
чнiй деформацiї, що являє новий метод опису режимiв фра-
гментацiї та вiдповiдних процесiв самоорганiзацiї. Встанов-
лено, що у фрагментованому металевому зразку спостерi-
гається самоподiбна поведiнка, при якiй утворюється мно-
жина граничних структур iз рiзними розмiрами зерен. Та-
кий режим реалiзується за умови, що розподiл ймовiрностi
реалiзацiї значень густини меж зерен має степеневий вид.
Порiвняння отриманих результатiв у формах Iто та Стра-
тоновича продемонструвало вiдсутнiсть якiсних змiн у по-
ведiнцi системи.
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