The comprehensive theoretical study is performed to determine the best proximity potentials in reproducing 6He + 65Cu fusion reactions. Twenty three different versions of proximity potentials that consist of Prox 66, Prox 76, Prox 77, Prox 79, Prox 81-I, Prox 81-II, Prox 81-III, Prox 84, Prox 88, Mod-Prox-88, Prox 95, Prox 2003-I, Prox 2003-II, Prox 2003-III, Prox 2010, BW 91, AW 95, Bass 73, Bass 77, Bass 80, CW 76, Ngo 80, and D are used. The theoretical results are compared with experimental data on 6He + 65Cu fusion reactions. The appropriate proximity potentials are determined.

Keywords: fusion cross-sections, proximity potentials, halo nuclei.

Section 2 gives a brief description of proximity potentials used in the theoretical calculations. Section 3 presents the calculation procedure. Section 4 shows the results and the discussion of calculations. Section 5 provides the summary and conclusion.

2. Proximity Potentials

In the theoretical analysis of fusion cross sections of $^6\text{He} + ^{65}\text{Cu}$ reactions, we apply twenty three different versions of proximity potentials. These potentials are explained in the following subsections.

2.1. Prox 66, Prox 76, Prox 77, Prox 79, Prox 81, Prox 84, Prox 88, Mod-Prox-88, Prox 95, Prox 2003, Prox 2010 potentials

Prox 77 version of the proximity potential [20, 21] is in the following form:

$$V_N^{\text{Prox 77}}(r) = 4\pi \gamma b R \Phi \left(\zeta = \frac{r - C_1 - C_2}{b} \right) \text{MeV},$$

(1)

where

$$R = \frac{C_1 C_2}{C_1 + C_2}, \quad C_i = R_i \left[1 - \left(\frac{b}{R_i} \right)^2 + \ldots \right], \quad b \approx 1 \text{fm},$$

(2)

R_i (effective radius) has the form

$$R_i = 1.28A_i^{1/3} - 0.76 + 0.8A_i^{-1/3} \text{ fm} \quad (i = 1, 2),$$

(3)

and γ (surface energy coefficient) is taken as

$$\gamma = \gamma_0 \left[1 - k_s \left(\frac{N - Z}{N + Z} \right)^2 \right],$$

(4)

where $N(Z)$ is the total number of neutrons(protons). The universal function $\Phi(\zeta)$ is evaluated as

$$\Phi(\zeta) = \begin{cases}
\frac{1}{2}(\zeta - 2.54)^2 - 0.0852(\zeta - 2.54)^3 & \text{for } \zeta \leq 1.2511, \\
-3.437 \exp \left(-\frac{\zeta}{0.75} \right) & \text{for } \zeta \geq 1.2511.
\end{cases}$$

Table 1. γ_0 and k_s values of Prox 66, Prox 76, Prox 77, Prox 79, Prox 81, Prox 84, Prox 88, Mod-Prox-88, Prox 95, Prox 2003, and Prox 2010 potentials

<table>
<thead>
<tr>
<th>Potential type</th>
<th>γ_0, MeV/fm2</th>
<th>k_s</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prox 66</td>
<td>1.01734</td>
<td>1.79</td>
<td>[22]</td>
</tr>
<tr>
<td>Prox 76</td>
<td>1.460734</td>
<td>4.0</td>
<td>[23]</td>
</tr>
<tr>
<td>Prox 77</td>
<td>0.9517</td>
<td>1.7826</td>
<td>[22]</td>
</tr>
<tr>
<td>Prox 79</td>
<td>1.2402</td>
<td>3.0</td>
<td>[24]</td>
</tr>
<tr>
<td>Prox 81-I</td>
<td>1.1756</td>
<td>2.2</td>
<td>[25]</td>
</tr>
<tr>
<td>Prox 81-II</td>
<td>1.27326</td>
<td>2.5</td>
<td>[25]</td>
</tr>
<tr>
<td>Prox 81-III</td>
<td>1.2502</td>
<td>2.4</td>
<td>[25]</td>
</tr>
<tr>
<td>Prox 84</td>
<td>0.9517</td>
<td>2.6</td>
<td>[26]</td>
</tr>
<tr>
<td>Prox 88</td>
<td>1.2496</td>
<td>2.3</td>
<td>[27]</td>
</tr>
<tr>
<td>Mod-Prox-88</td>
<td>1.65</td>
<td>2.3</td>
<td>[28]</td>
</tr>
<tr>
<td>Prox 95</td>
<td>1.25284</td>
<td>2.345</td>
<td>[29]</td>
</tr>
<tr>
<td>Prox 2003-I</td>
<td>1.08948</td>
<td>1.9830</td>
<td>[30]</td>
</tr>
<tr>
<td>Prox 2003-II</td>
<td>0.9180</td>
<td>0.7546</td>
<td>[30]</td>
</tr>
<tr>
<td>Prox 2003-III</td>
<td>0.911445</td>
<td>2.2938</td>
<td>[30]</td>
</tr>
<tr>
<td>Prox 2010</td>
<td>1.460734</td>
<td>4.0</td>
<td>[21,31,32]</td>
</tr>
</tbody>
</table>

Then a lot of studies have been performed on the proximity potentials. Different values of γ_0 and k_s have been proposed as a result of these studies. The other parameters of these potentials are the same as for Prox 77 potential. In this context, there are fifteen various potentials examined in this work. The γ_0 and k_s values of these potentials values are given in Table 1.

2.2. Broglia and Winther 1991 (BW 91) potential

BW 91 potential [27] is used as [33]

$$V_N^{\text{BW 91}}(r) = -\frac{V_0}{1 + \exp \left(\frac{r - R_0}{a} \right)} \text{MeV},$$

(5)

where

$$V_0 = 16\pi R_1 R_2 \gamma a, \quad a = 0.63 \text{ fm},$$

(6)

and

$$R_0 = R_1 + R_2 + 0.29,$$

(7)

$$R_i = 1.233A_i^{1/3} - 0.98A_i^{-1/3} \quad (i = 1, 2),$$

(8)

where γ, γ_0, and k_s, are, respectively,

$$\gamma = \gamma_0 \left[1 - k_s \left(\frac{N_p - Z_p}{A_p} \right) \left(\frac{N_t - Z_t}{A_t} \right) \right],$$

(9)

$$\gamma_0 = 0.95 \text{ MeV/fm}^2, \quad k_s = 1.8.$$
2.3. Age Winther (AW 95) potential
The only difference between AW 95 and BW 91 potentials [33, 34] is
\[
a = \left[\frac{1}{1.17(1 + 0.53(A_1^{1/3} + A_2^{1/3}))}\right] \text{ fm},
\]
and
\[
R_0 = R_1 + R_2, \quad R_i = 1.2 A_i^{1/3} - 0.09 \quad (i = 1, 2).
\]

2.4. Bass 1973 (Bass 73) potential
A different version of the proximity potentials from [35, 36] is Bass 73 potential given by [21]
\[
V_N^{\text{Bass 73}}(r) = -\frac{da_i A_i^{1/3} A_i^{1/3}}{R_{12}} \exp\left(-\frac{r - R_{12}}{d}\right) \text{ MeV},
\]
where
\[
R_{12} = 1.07(A_1^{1/3} + A_2^{1/3}) \quad d = 1.35 \text{ fm}, \quad a_s = 17 \text{ MeV}.
\]

2.5. Bass 1977 (Bass 77) potential
Bass 77 potential [37] is considered as [33]
\[
V_N^{\text{Bass 77}}(s) = -\frac{R_1 R_2}{R_1 + R_2} \phi(s = r - R_1 - R_2) \text{ MeV},
\]
where
\[
R_i = 1.16 A_i^{1/3} - 1.39 A_i^{-1/3} \quad (i = 1, 2).
\]
The universal function \(\phi(s = r - R_1 - R_2)\) is parametrized by
\[
\phi(s) = A \exp\left(\frac{s}{d_1}\right) + B \exp\left(\frac{s}{d_2}\right)^{-1},
\]
where \(A = 0.030 \text{ MeV}^{-1} \text{ fm} \), \(B = 0.0061 \text{ MeV}^{-1} \text{ fm} \), \(d_1 = 3.30 \text{ fm} \), and \(d_2 = 0.65 \text{ fm} \).

2.6. Bass 1980 (Bass 80) potential
The difference between Bass 80 and Bass 77 potentials is the function \(\phi(s = r - R_1 - R_2)\) shown by [27, 33]
\[
\phi(s) = \left[0.033 \exp\left(\frac{s}{3.5}\right) + 0.007 \exp\left(\frac{s}{0.65}\right)\right]^{-1},
\]
and
\[
R_i = R_s \left(1 - \frac{0.98}{R_i^2}\right) \quad (i = 1, 2),
\]
\[
R_s = 1.28 A_1^{1/3} - 0.76 + 0.8 A_i^{-1/3} \text{ fm} \quad (i = 1, 2).
\]

2.7. Christensen and Winther 1976 (CW 76) potential
CW 76 potential [38] is parametrized by [21]
\[
V_N^{\text{CW 76}}(r) = -\frac{50 R_1 R_2}{R_1 + R_2} \phi(r - R_1 - R_2) \text{ MeV},
\]
where
\[
R_i = 1.233 A_i^{1/3} - 0.978 A_i^{-1/3} \text{ fm} \quad (i = 1, 2).
\]
The universal function \(\phi(s = r - R_1 - R_2)\) is
\[
\phi(s) = \exp\left(-\frac{r - R_1 - R_2}{0.63}\right).
\]

2.8. Ngô 1980 (Ngo 80) potential
The Ngo 80 form of a proximity potential is formulated by [39]
\[
V_N^{\text{Ngo 80}}(r) = \mathcal{R} \phi(r - C_1 - C_2) \text{ MeV},
\]
where
\[
\mathcal{R} = \frac{C_i C_j}{C_1 + C_2}, \quad C_i = R_i \left[1 - \left(\frac{b}{R_i}\right)^2 + ...\right],
\]
\[
R_i = \frac{N R_{ni} + Z R_{pi}}{A_i}, \quad (i = 1, 2),
\]
\[
R_{pi} = r_{0pi} A_i^{1/3}, \quad R_{ni} = r_{0ni} A_i^{-1/3},
\]
\[
\Phi(s) = \begin{cases} -33 + 5.4(s - s_0)^2, & \text{for } s < s_0, \\ -33 \exp\left[-\frac{1}{5}(s - s_0)^2\right], & \text{for } s \geq s_0, \\ s_0 = -1.6 \text{ fm}. \end{cases}
\]

2.9. Denissen (D) potential
D potential evaluated in the analysis of fusion reactions is given by [33, 40]
\[
V_V(r) = -1.989843 \frac{R_1 R_2}{R_1 + R_2} \phi(r - R_1 - R_2 - 2.65) \times
\]
\[
\left[1 + 0.003525139 \left(\frac{A_1}{A_2} + \frac{A_2}{A_1}\right)^{3/2} \right. -
\]
\[
- 0.4113263(I_1 + I_2) \right] \text{ MeV},
\]
where

\[I_i = \frac{N_i - Z_i}{A_i}, \tag{27} \]

and

\[R_i = R_{ip} \left(1 - \frac{3.413817}{R_{ip}^2} \right) + 1.284589 \left(I_i - \frac{0.4A_i}{A_i + 200} \right), \tag{28} \]

\[R_{ip} = 1.24A_i^{1/3} \left(1 + \frac{1.646}{A_i} \right) - 0.191 \left(\frac{A_i - 2Z_i}{A_i} \right) (i = 1, 2). \tag{29} \]

The function \(\phi(s = r - R_1 - R_2 - 2.65) \) is considered as

\[
\phi(s) = \begin{cases}
1 - \frac{s}{0.7881663} + 1.229218s^2 - 0.2234277s^3 - 0.1038769s^4 - \frac{R_1R_2}{R_1 + R_2} (0.1844935s^2 + 0.0750701s^3 + (I_1 + I_2)(0.04470645s^2 + 0.0334687s^3)) & (-5.65 \leq s \leq 0), \\
1 - s^2 \left(\frac{0.05410106}{R_1R_2} \frac{R_1R_2}{R_1 + R_2} \exp \left(-\frac{s}{1.76058} \right) - 0.539542(I_1 + I_2) \exp \left(-\frac{s}{2.424408} \right) \right) \times \exp \left(-\frac{s}{0.7881663} \right) (s \geq 0).
\end{cases}
\]

3. Calculation Procedure

In the present study, the total interaction potential can be assumed as

\[
V_{\text{total}}(r) = V_C(r) + V_N(r), \tag{30}
\]

where \(V_C \) is the Coulomb potential shown by [41]

\[
V_C(r) = \begin{cases}
\frac{Z_pZ_Te^2}{r}, & r \geq R_c \tag{31} \\
\frac{Z_pZ_Te^2}{2R_c} \left(3 - \frac{r^2}{R_c^2} \right), & r < R_c \tag{32}
\end{cases}
\]

\[R_c = 1.25(A_p^{1/3} + A_T^{1/3}), \tag{33} \]

and \(V_N \) is the nuclear potential. The real part of the nuclear potential is acquired by using twenty three different versions of a proximity potential. These potentials have been clearly defined in the subsections above. The imaginary part of the nuclear potential is taken as the Woods–Saxon potential shown by

\[
W(r) = \frac{W_0}{1 + \exp \left(\frac{r-R_w}{a_w} \right)}, \quad R_w = r_w(A_T^{1/3} + A_p^{1/3}), \tag{34}
\]

where \(W_0 \) is the potential depth, \(r_w \) is the radius parameter, \(a_w \) is the diffuseness parameter, and \(A_P \) \((A_T)\) is the mass of a projectile (target) nucleus, respectively. The code FRESCO is used in the calculations of fusion cross-sections [42].

4. Results and Discussion

As the first step, we have calculated the nuclear parts of the total interaction potentials of \(^6\text{He} + 65\text{Cu}\) and \(^8\text{He} + 65\text{Cu}\) systems. With this goal, we have achieved the real parts of nuclear potentials, by using twenty three different proximity potentials such as Prox 66, Prox 76, Prox 77, Prox 79, Prox 81-I, Prox 81-II, Prox 81-III, Prox 84, Prox 88, Mod-Prox-88, Prox 95, Prox 2003-I, Prox 2003-II, Prox 2003-III, Prox 2010, BW 91, AW 95, Bass 73, Bass 77, Bass 80, CW 76, Ngo 80, and D ones. The distance-dependent variations of the real parts of nuclear potentials have been displayed in Fig. 1. Then we have applied the Woods–Saxon potential for the imaginary parts of the nuclear potentials of \(^6\text{He} + 65\text{Cu}\) and \(^8\text{He} + 65\text{Cu}\) reactions. We have set free the \(W_0, r_w \), and \(a_w \) parameters of the imaginary potential in order to obtain agreement of the theoretical results with the experimental data. We have listed the values of \(W_0, r_w \), and \(a_w \) used in the calculations in Tables 2 and 3. When we examine the values of the imaginary potential parameters from Tables 2 and 3, we observe that the imaginary part of the nucleus-nucleus potential in obtaining the cross-sections of fusion reactions has a strong effect on the results.

The fusion cross-sections of \(^6\text{He} + 65\text{Cu}\) reaction have been shown as a function of the center-of-mass energy in Fig. 2. The potential parameters of the imaginary part of the nuclear potential have been given in Table 2. It has been observed that the theoretical results of the proximity potentials except for Bass 73 potential are very similar to each other. The results of other potentials are more smooth and the result of the Bass 73 proximity potential is more oscillating. This makes the result of the Bass 73 potential
even better than other potentials. It can be said that different versions of proximity potentials applied in this work can explain the experimental data on the $^6\text{He} + ^{65}\text{Cu}$ fusion cross-section.

The fusion cross-sections of the $^8\text{He} + ^{65}\text{Cu}$ system have been obtained, by using twenty three different potentials. The results have been compared with the experimental data as a function of the center-of-mass energy in Fig. 3. Additionally, the imaginary potential parameters of the nuclear potential have been listed in Table 3. Similarly to the results of $^6\text{He} + ^{65}\text{Cu}$ reaction, the results of $^8\text{He} + ^{65}\text{Cu}$ reaction except for Bass 73 potential are very close to one another. The results are in a very good agreement with the experimental data. Unlike $^6\text{He} + ^{65}\text{Cu}$ reaction, the results with Bass 73 potential for $^8\text{He} + ^{65}\text{Cu}$ reaction are not better than other potentials. It can be concluded that the proximity potentials evaluated in this study can provide a good agreement with the experimental data on $^6\text{He} + ^{65}\text{Cu}$ fusion cross-section.

Table 2. The potential parameters W_0 (in MeV), r_ω (in fm) and a_ω (in fm) used in the calculations of the fusion cross-sections of ^6He on ^{65}Cu target nucleus, by using Prox 66, Prox 76, Prox 77, Prox 79, Prox 81-I, Prox 81-II, Prox 81-III, Prox 84, Prox 88, Mod-Prox-88, Prox 95, Prox 2003-I, Prox 2003-II, Prox 2003-III, Prox 2010, BW 91, AW 95, Bass 73, Bass 80, CW 76, Ngo 80, and D potentials

<table>
<thead>
<tr>
<th>Reaction</th>
<th>W_0 (MeV)</th>
<th>r_ω (fm)</th>
<th>a_ω (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prox 66</td>
<td>15.0</td>
<td>0.9</td>
<td>0.82</td>
</tr>
<tr>
<td>Prox 76</td>
<td>15.0</td>
<td>0.9</td>
<td>0.50</td>
</tr>
<tr>
<td>Prox 77</td>
<td>15.0</td>
<td>0.9</td>
<td>0.83</td>
</tr>
<tr>
<td>Prox 79</td>
<td>15.0</td>
<td>0.9</td>
<td>0.60</td>
</tr>
<tr>
<td>Prox 81-I</td>
<td>15.0</td>
<td>0.9</td>
<td>0.70</td>
</tr>
<tr>
<td>Prox 81-II</td>
<td>15.0</td>
<td>0.9</td>
<td>0.60</td>
</tr>
<tr>
<td>Prox 81-III</td>
<td>15.0</td>
<td>0.9</td>
<td>0.63</td>
</tr>
<tr>
<td>Prox 84</td>
<td>15.0</td>
<td>0.9</td>
<td>0.80</td>
</tr>
<tr>
<td>Prox 88</td>
<td>25.0</td>
<td>0.9</td>
<td>0.55</td>
</tr>
<tr>
<td>Mod-Prox-88</td>
<td>7.00</td>
<td>0.9</td>
<td>0.50</td>
</tr>
<tr>
<td>Prox 95</td>
<td>25.0</td>
<td>0.9</td>
<td>0.60</td>
</tr>
<tr>
<td>Prox 2003-I</td>
<td>25.0</td>
<td>0.9</td>
<td>0.60</td>
</tr>
<tr>
<td>Prox 2003-II</td>
<td>25.0</td>
<td>0.9</td>
<td>0.76</td>
</tr>
<tr>
<td>Prox 2003-III</td>
<td>25.0</td>
<td>0.9</td>
<td>0.75</td>
</tr>
<tr>
<td>Prox 2010</td>
<td>10.0</td>
<td>0.9</td>
<td>0.50</td>
</tr>
<tr>
<td>BW 91</td>
<td>8.80</td>
<td>0.9</td>
<td>0.50</td>
</tr>
<tr>
<td>AW 95</td>
<td>5.00</td>
<td>0.9</td>
<td>0.50</td>
</tr>
<tr>
<td>Bass 73</td>
<td>4.60</td>
<td>0.9</td>
<td>0.50</td>
</tr>
<tr>
<td>Bass 77</td>
<td>19.0</td>
<td>0.9</td>
<td>0.80</td>
</tr>
<tr>
<td>Bass 80</td>
<td>4.10</td>
<td>0.9</td>
<td>0.50</td>
</tr>
<tr>
<td>CW 76</td>
<td>37.0</td>
<td>0.9</td>
<td>0.50</td>
</tr>
<tr>
<td>Ngo 80</td>
<td>17.0</td>
<td>0.9</td>
<td>0.85</td>
</tr>
<tr>
<td>D</td>
<td>35.0</td>
<td>0.9</td>
<td>0.87</td>
</tr>
</tbody>
</table>
Fig. 3. Fusion cross-sections of $^8\text{He} + ^{65}\text{Cu}$ reaction in comparison with the experimental data, by using Prox 66, Prox 76, Prox 77, Prox 79, Prox 81-I, Prox 81-II, Prox 81-III, Prox 84, Prox 88, Mod-Prox-88, Prox 95, Prox 2003-I, Prox 2003-II, Prox 2003-III, Prox 2010, BW 91, AW 95, Bass 73, Bass 77, Bass 80, CW 76, Ngo 80, and D potentials. The experimental data are taken from Ref. [3].

Fig. 4. Distance-dependent changes of the imaginary parts of nuclear potentials for Prox 66, Prox 76, Prox 77, Prox 79, Prox 81-I, Prox 81-II, Prox 81-III, Prox 84, Prox 88, Mod-Prox-88, Prox 95, Prox 2003-I, Prox 2003-II, Prox 2003-III, Prox 2010, BW 91, AW 95, Bass 73, Bass 77, Bass 80, CW 76, Ngo 80, and D potentials.

By carefully examining Figs. 2 and 3, we can notice that the cross-sections of $^8\text{He} + ^{65}\text{Cu}$ reaction show the appearance of wobbling, while the cross-sections of $^8\text{He} + ^{65}\text{Cu}$ do not present it. ^8He nucleus has a $4n + \text{core}$ configuration, and ^6He nucleus displays the $2n + \text{core}$ configuration. This leads to the differentiation in the binding energies of ^6He and ^8He nuclei. As a result, we think that $^6\text{He} + ^{65}\text{Cu}$ reaction displays a wobble structure as compared to $^8\text{He} + ^{65}\text{Cu}$ reaction. In other words, we can say that the structural differences of ^6He and ^8He nuclei cause differences in the cross-sections.

The distance-dependent changes of imaginary potentials of ^6He and ^8He nuclei have been also displayed in Fig. 4. When the depths of the imaginary potentials are examined, it is observed that the potential depth of ^8He nucleus is generally deeper than that of ^6He nucleus. Additionally, it is seen that ^6He nucleus goes to zero faster than ^8He nucleus. It can be said that ^8He nucleus is more attractive and diffusive than ^6He nucleus.

5. Summary and Conclusions

In this study, we have investigated the effects of twenty three different versions of proximity poten-

Table 3. The same as in Table 2, but for $^8\text{He} + ^{65}\text{Cu}$ reaction

<table>
<thead>
<tr>
<th>Reaction</th>
<th>W (MeV)</th>
<th>r_ω (fm)</th>
<th>a_ω (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^8\text{He} + ^{65}\text{Cu}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prox 66</td>
<td>24.0</td>
<td>1.33</td>
<td>0.53</td>
</tr>
<tr>
<td>Prox 76</td>
<td>19.0</td>
<td>1.33</td>
<td>0.53</td>
</tr>
<tr>
<td>Prox 77</td>
<td>24.0</td>
<td>1.33</td>
<td>0.53</td>
</tr>
<tr>
<td>Prox 79</td>
<td>22.0</td>
<td>1.33</td>
<td>0.53</td>
</tr>
<tr>
<td>Prox 81-I</td>
<td>22.0</td>
<td>1.33</td>
<td>0.53</td>
</tr>
<tr>
<td>Prox 81-II</td>
<td>21.0</td>
<td>1.33</td>
<td>0.53</td>
</tr>
<tr>
<td>Prox 81-III</td>
<td>21.0</td>
<td>1.33</td>
<td>0.53</td>
</tr>
<tr>
<td>Prox 84</td>
<td>25.0</td>
<td>1.33</td>
<td>0.53</td>
</tr>
<tr>
<td>Prox 88</td>
<td>21.0</td>
<td>1.33</td>
<td>0.53</td>
</tr>
<tr>
<td>Mod-Prox-88</td>
<td>18.0</td>
<td>1.33</td>
<td>0.53</td>
</tr>
<tr>
<td>Prox 95</td>
<td>21.0</td>
<td>1.33</td>
<td>0.53</td>
</tr>
<tr>
<td>Prox 2003-I</td>
<td>22.0</td>
<td>1.33</td>
<td>0.53</td>
</tr>
<tr>
<td>Prox 2003-II</td>
<td>23.0</td>
<td>1.33</td>
<td>0.53</td>
</tr>
<tr>
<td>Prox 2003-III</td>
<td>24.0</td>
<td>1.33</td>
<td>0.53</td>
</tr>
<tr>
<td>Prox 2010</td>
<td>19.0</td>
<td>1.33</td>
<td>0.53</td>
</tr>
<tr>
<td>BW 91</td>
<td>22.0</td>
<td>1.33</td>
<td>0.53</td>
</tr>
<tr>
<td>AW 95</td>
<td>20.0</td>
<td>1.33</td>
<td>0.53</td>
</tr>
<tr>
<td>Bass 73</td>
<td>5.00</td>
<td>1.33</td>
<td>0.40</td>
</tr>
<tr>
<td>Bass 77</td>
<td>25.0</td>
<td>1.33</td>
<td>0.53</td>
</tr>
<tr>
<td>Bass 80</td>
<td>15.0</td>
<td>1.33</td>
<td>0.53</td>
</tr>
<tr>
<td>CW 76</td>
<td>18.0</td>
<td>1.33</td>
<td>0.53</td>
</tr>
<tr>
<td>Ngo 80</td>
<td>25.0</td>
<td>1.33</td>
<td>0.55</td>
</tr>
<tr>
<td>D</td>
<td>26.0</td>
<td>1.33</td>
<td>0.56</td>
</tr>
</tbody>
</table>
tials on the fusion cross sections of 6He + 65Cu and 8He + 65Cu reactions. It has been seen that the proximity potentials have given a good agreement results with experimental data. It has been observed that the fusion cross-sections of 6He + 65Cu and 8He + 65Cu systems slightly depend on the shapes of proximity potentials. In addition, it has been noticed that Bass 73 potential in the 6He + 65Cu fusion reaction is slightly better matched to experimental data than other proximity potentials. It has been observed that the results obtained with proximity potentials of 3He + 65Cu fusion reaction, except for Bass 73 potential, are very similar to one another.

Consequently, it can be concluded that different versions of proximity potentials applied in the present work are highly applicable in explaining the experimental data of both 6He + 65Cu and 8He + 65Cu fusion cross-sections. We can say also that the proximity potentials will be interesting in explaining other fusion reactions.

The author would like to thank the anonymous Reviewer for valuable comments.

19. M. Aygun. Comparative analysis of proximity potentials to describe scattering of 13C projectile off 12C, 16O, 28Si and 208Pb nuclei. Rev. Mex. Fis. 64, 149 (2018).

Received 09.02.19

М. Айгүн

ВЛИЯНИЕ ПОТЕНЦИАЛОВ БЛИЗКОСТИ НА ПЕРЕРЫЗ РЕАКЦИЙ СИНТЕЗУ 6,8He $^{+}$65Cu З ГАЛО ЯДРАМИ

Проведено повне теоретичне дослідження потенціалів близькості для найкращого опису реакцій синтезу 6,8He $^{+}$65Cu. Використано такі різні потенціали: Prox 66, Prox 76, Prox 77, Prox 79, Prox 81-I, Prox 81-II, Prox 81-III, Prox 84, Prox 88, Mod-Prox-88, Prox 95, Prox 2003-I, Prox 2003-II, Prox 2003-III, Prox 2010, BW 91, AW 95, Bass 73, Bass 77, Bass 80, CW 76, Ngo 80 і D. Найкращі потенціали визначено на підставі порівняння теоретичних і експериментальних даних по реакціях 6,8He $^{+}$65Cu.