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The Buimistrov–Pekar method has been applied to calculate the polaronic shift of the electron
energy level in a quantum dot. In the framework of the parabolic confinement approximation,
the differential equation for the phonon amplitude is exactly solved, by using the Green’s func-
tion method. The results of various approximations have been compared.
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1. Introduction

In recent years, new physical properties of semicon-
ductor nanostructures have been a subject of intense
researches. Owing to the localization of charge car-
riers in nano-sized objects, the energy is quantized.
In this connection, a particular attention is paid to
studying the influence of phonons on the electron
spectrum in low-dimensional semiconductor struc-
tures (i.e. nanostructures) [1–3]. In polar crystals,
the interaction between charge carriers and polar op-
tical phonons is strong. Therefore, the study of po-
laron effects typical of low-dimensional systems is of
considerable interest. To calculate the polaronic ef-
fects in nanostructure materials, researchers take ad-
vantage of various approximations [4–9]. In so doing,
along with the Feynman method of path integration,
the methods of canonical transformations (CTs) are
also applied [8–10].

In the method of parametrized CTs [8, 9], the Lee–
Low–Pines transformation and the transformation of
a phonon amplitude displacement are applied con-
secutively by introducing certain variational parame-
ters. In the Buimistrov–Pekar method [10], the dif-
ferential equation for the phonon displacement am-
plitude was obtained with the use of the CT method.
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However, since the solution of this equation is cum-
bersome, the phonon displacement amplitudes were
chosen as linear combinations of the limiting expres-
sions corresponding to the cases of weak and strong
couplings.

In this work, the polaronic shift of the electron
level in a quantum dot is calculated with the use
of the method developed in works [10, 11]. The dif-
ferential equation for the phonon displacement am-
plitude is solved exactly, by using the Green’s func-
tion (GF) method. To simplify the problem, the con-
finement potential is considered to be parabolic. The
results obtained in various approximations are com-
pared with one another.

2. Model

The Hamiltonian of an interacting electron-phonon
system in nanostructures can be written in the form

𝐻 = − ~2

2𝑚
Δ + 𝑉 (𝑟)+

+
∑︁
q

[︀
𝑣q𝑏q𝑒

𝑖qr + 𝑣*q𝑏
+
q 𝑒

−𝑖qr
]︀
+
∑︁
q

~𝜔0𝑏
+
q 𝑏q, (1)

where 𝑚 is the band mass of an electron, 𝑏+q and 𝑏q
are the creation and annihilation, respectively, op-
erators of a phonon with the momentum q, 𝜔0 is



P.J. Baymatov, Sh.T. Inoyatov

the frequency of optical phonons, 𝑣q the form factor
of the electron-phonon interaction, 𝑉 (𝑟) the confine-
ment potential, and

|𝑣q|2 =
4𝜋𝛼 𝑙0(~𝜔0)

2

Ω𝑞2
, 𝑙0 =

√︂
~

2𝑚𝜔0
,

∑︁
q

... =
Ω

(2𝜋)3

∫︁
𝑑q ..., 𝑉 (𝑟) =

𝜒𝑟2

2
.

(2)

Averaging Hamiltonian (1) in the basis

Ψ = Φph𝜑(𝑟) = 𝑈 |0⟩𝜑(𝑟),

𝑈 = exp

[︃∑︁
q

(︀
𝐹q(𝑟)𝑏

+
q − 𝐹 *

q (𝑟)𝑏q
)︀]︃

,

𝑈+𝑈 = 1, ⟨0 | 0⟩ = 1,

(3)

we obtain the functional

𝐽 [𝐹q(𝑟), 𝜑(𝑟)] = 𝐸0 +
∑︁
q

∫︁
𝑑r𝜑2

[︃
~2

2𝑚
|∇𝐹q|2 +

+ ~𝜔0 |𝐹q|2 + 𝑣q𝐹q𝑒
𝑖qr + 𝑣*q𝐹

*
q𝑒

−𝑖qr

]︃
, (4)

𝐸0 =
~2

2𝑚

∫︁
𝑑r (∇𝜑)

2
+

∫︁
𝑑r𝑉 (𝑟)𝜑

2
. (5)

By varying functional (4) with respect to 𝐹𝑞, we ob-
tain the inhomogeneous differential equation

− ~2

2𝑚
∇2𝐹q(𝑟)− 2

~2

2𝑚

∇𝜑

𝜑
∇𝐹q(𝑟)+

+ ~𝜔0𝐹q(𝑟) + 𝑣*q𝑒
−𝑖qr = 0. (6)

Now, the extreme value of functional (4) looks like

𝐽 [𝜑(𝑟)] = 𝐸0 +
∑︁
q

𝑣q

∫︁
𝑑r𝜑2(𝑟)𝐹q(𝑟)𝑒

𝑖qr. (7)

The solution of Eq. (6) describes the dependences of
the phonon field displacement amplitudes on the elec-
tron coordinate. In the weak-coupling limit, 𝛼 → 0,
i.e. when the electron cloud size is rather big, we may
neglect the gradient of the electron function (the sec-
ond term in Eq. (6)). Then, assuming 𝜑2(𝑟) ∼ 1 in
Eq. (7) (in the absence of a confinement), we obtain
the known result

𝐹q(𝑟) = −
𝑣*q𝑒

−𝑖qr

~2𝑞2/2𝑚+ ~𝜔
, 𝐽 = −𝛼~𝜔0. (8)

Buimistrov and Pekar [10] used the linear combina-
tion 𝐹q(𝑟) = 𝑓q + 𝑔q𝑒

−𝑖qr. When determining the
parameters 𝑓q and 𝑔q by minimizing functional (4),
they obtained a result that approximates the polaron
energy at an arbitrary coupling strength 𝛼.

Following Gross [11], let us introduce the notation
𝐹q = 𝑉 *

qΦq/𝜑 and rewrite Eqs. (6) and (7) in the
form

− ~2

2𝑚
ΔΦq(𝑟) +

~2

2𝑚

Δ𝜑

𝜑
Φq(𝑟)+

+ ~𝜔0Φq(𝑟) + 𝜑(𝑟)𝑒−𝑖qr = 0, (9)

𝐽 [𝜑(𝑟)] = 𝐸0 +
∑︁
q

|𝑉q|2
∫︁

𝑑r 𝜑(𝑟)Φq(𝑟)𝑒
𝑖qr. (10)

Introducing the GF for Eq. (9),

Φq(𝑟) = −
∫︁

𝑑r′ 𝐺(𝑟, 𝑟′)𝜑(𝑟′)𝑒−𝑖qr′ (11)

and considering the relation

∑︁
q

|𝑉q|2𝑒𝑖q(r−r′) =
𝛼𝑙0(~𝜔0)

2

|r− r′|
, (12)

we obtain from Eqs. (9) and (10) that[︂
− ~2

2𝑚
Δ+

~2

2𝑚

Δ𝜑

𝜑
+ ~𝜔0

]︂
𝐺(𝑟, 𝑟′) = 𝛿(r−r′), (13)

𝐽 [𝜑(𝑟)] = 𝐸0 − 𝛼𝑙0(~𝜔0)
2
∫︁

𝑑r𝑑r′
𝜑(𝑟)𝐺(𝑟, 𝑟′)𝜑(𝑟′)

|r− r′|
.

(14)

The equation for the amplitude Φ𝑞 in Eq. (13) and
the functional of the polaron state (14) depend only
on the electron trial function. It is hard to find ana-
lytical solutions of the inhomogeneous equation (13)
for an arbitrary given trial function 𝜑(𝑟). However, if
the ground-state function of a three-dimensional os-
cillator,

𝜑(𝑟) =
1

𝜋3/4

1

𝑎
3/2
𝑠

exp

(︂
− 𝑟2

2𝑎2𝑠

)︂
, 𝜔2

𝑠 =
𝑘

𝑚
,

𝑎𝑠 =

√︂
~

𝑚𝜔𝑠
, 𝐸n = ~𝜔𝑠 (𝑛1 + 𝑛2 + 𝑛3 + 3/2),

(15)

with the variational parameter 𝑎𝑠 is taken as a trial
function, Eq. (13) can be solved by expanding the GF
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in a series of oscillator eigenfunctions,

𝐺(𝑟, 𝑟′) =
∑︁
n

Ψn(𝑟)Ψn(𝑟
′)

𝐸n +𝑊
=

= ~𝜔𝑠

∑︁
n

Ψn(𝑟)Ψn(𝑟
′)

𝑛1 + 𝑛2 + 𝑛3 +𝑊0
,

𝑊0 =
3

2
+

𝑊

~𝜔𝑠
.

(16)

Here, Ψn(𝑟) is the basis set of functions for a three-
dimensional oscillator,

Ψn(𝑟) = Ψ𝑛1
(𝑥)Ψ𝑛2

(𝑦)Ψ𝑛3
(𝑧),

Ψ𝑛1
(𝑥) =

1

𝜋1/4

1

𝑎
1/2
𝑠

1

(𝑛!)
1/2

1

(2
𝑛1)

1/2
×

× exp

(︂
− 𝑥2

2𝑎2𝑠

)︂
𝐻𝑛1

(︂
𝑥

𝑎𝑠

)︂
.

(17)

Using the relation

1

𝑐
=

∞∫︁
0

𝑑𝑡 exp(−𝑡𝑐) (18)

and the Mehler formula for the summation of Hermite
polynomials [12],
∞∑︁

𝑛1=0

(︂
𝑒−𝑡

2

)︂𝑛1 𝐻𝑛1 (𝑥/𝑎𝑠)𝐻𝑛1 (𝑥
′/𝑎𝑠)

𝑛1!
=

=
1√

1− 𝑒−2𝑡
exp

(︃
2𝑥𝑥′𝑒

−𝑡 − (𝑥
2
+ 𝑥′2)𝑒

−2𝑡

𝑎2𝑠(1− 𝑒−2𝑡)

)︃
, (19)

we obtain

𝐺(𝑟, 𝑟′) =
1

~𝜔𝑠𝜋3/2𝑎3𝑠
exp

(︃
−𝑟2 + 𝑟′

2

2𝑎2𝑠

)︃
×

×
∞∫︁
0

𝑑𝑡
𝑒−𝑡𝑊 0

[1− 𝑒−2𝑡]
3/2

exp

(︃
2rr′𝑒

−𝑡 − (𝑟
2
+ 𝑟′

2
)𝑒

−2𝑡

𝑎2𝑠(1− 𝑒−2𝑡)

)︃
.

(20)

Substituting this expression into functional (14) and
integrating over 𝑟 and 𝑟′, we obtain the final formula
for the polaron energy (in ~𝜔0 units),

𝜀𝑝 =
3

2
𝜇2 +

3𝛾2

8𝜇2 − 𝛼

√︂
2

𝜋
𝜇

∞∫︁
0

𝑑𝑡
𝑒−𝑡√︀

1− exp(−2𝜇2𝑡)
,

𝜇 =
𝑙0
𝑎𝑠

, 𝛾 =
Ω

𝜔0
, Ω2 =

𝜒

𝑚
.

(21)

Here, the coefficient 𝛾 characterizes the dimension-
less confinement strength. In the adiabatic strong-
coupling limit, holding only one term in Eq. (16)
or expanding the integrand in Eq. (21) in the limit
𝜇 → ∞, we obtain

𝜀𝑝 =
3

2
𝜇2 +

3𝛾2

8𝜇2 − 𝛼

√︂
2

𝜋
𝜇. (22)

3. Discussion of Results

The obtained functional (21) differs from other known
results [8–10] in that the exact solution of Eq. (13) was
used in its derivation. In the absence of a confinement
(𝛾 = 0, the free polaron), the critical point 𝛼𝑐 ≈ 5.8
can be obtained for functional (21) in the meaning
that, for 𝛼 < 𝛼𝑐, the electron becomes delocalized. To
compare the results, we consider a functional, which
is obtained with the help of the CT parametrization
method [9] (see formula (8) in work [9]),

𝐸𝑝 =
3

4
𝜇2 +

3

4

𝜔2

𝜇2
− 𝛼

2
√
2𝜋2

×

×
∫︁

𝑑q

𝑞2(1 + 𝑎2𝑞2/2)
exp

[︂
− (1− 𝑎)2𝑞2

2𝜇2

]︂
. (23)

Here, 𝜇 is the variational parameter of the elec-
tron trial function, and 𝛼 is the variational param-
eter introduced in the CTs. Note that the denom-
inator of the integrand in formula (8) in work [9]
is wrong: 1 + 𝑎𝑞2/2. Functional (23) can also be
obtained from Eq. (4), by using the approximation
𝐹q(𝑟) = 𝑔qexp(−𝑖𝑎 qr), where the factor 𝑔q is deter-
mined, by minimizing the total energy.

Making the substitutions 𝐸𝑝 → 𝜀𝑝, 𝜇 →
√
2𝜇, and

𝜔 → Ω in Eq. (23) and integrating over the angles,
we obtain

𝜀𝑝 =
3

2
𝜇2 +

3

8

𝛾2

𝜇2
−

√
2

𝜋
𝛼×

×
∞∫︁
0

𝑑𝑞

1 + 𝑎2𝑞2/2
exp

[︂
− (1− 𝑎)2𝑞2

4𝜇2

]︂
. (24)

For a free polaron (𝛾 = 0), functional (24) yields 𝛼𝑐 ≈
≈ 8.5. Hence, for 𝛼 > 5.8, the energy of a free polaron
21) is always lower than energy (24). Since the wave
function of an electron is usually localized within the
quantum dot, the critical point 𝛼𝑐 is suppressed.
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𝛼
Polaron energy 𝜀𝑝

𝛾 (21) (22) (24)

0.1 1 1.39 1.44 1.40
26 38.70 38.71 38.71
46 68.61 68.62 68.61

2 1 −0.78 0.24 −0.50

26 32.85 33.14 33.03
46 61.02 61.24 61.16

5.0 1 −4.39 −2.45 −3.49

26 23.21 23.89 23.64
46 48.63 49.16 48.97

In Table, the results of calculations by formula (21)
are compared with the adiabatic result (22) and func-
tional (24). One can see that formula (21) provides
the most accurate estimations of the energy. The re-
sults obtained with the use of formula (22) become
more adequate at large 𝛾, because the electron beco-
mes “hotter” under the strong confinement condition,
and the adiabatic approximation is satisfied better.

The obtained polaron functional (14) depends only
on the trial electron function, with the phonon coor-
dinates being completely excluded. For the trial oscil-
lator function, there is a critical point 𝛼𝑐 ≈ 5.8. Ac-
cording to Gross [11], this fact results from a strong
localization of this function. For other choices of the
trial electron function, e.g., (1 + 𝛾𝑟) exp(−𝛿𝑟), the
solution of Eq. (13) becomes more complicated.

The authors are grateful to V.D. Lakhno for a use-
ful discussion of this work.
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П.Ж.Байматов, Ш.Т. Iноятов

ВПЛИВ ПОЛЯРИЗАЦIЇ
СЕРЕДОВИЩА НА ЕЛЕКТРОННУ ЕНЕРГIЮ
В КВАНТОВIЙ ТОЧЦI

Р е з ю м е

Метод Буймiстрова–Пекара застосовано до розрахунку по-
ляронного зсуву електронного рiвня в квантовiй точцi. З
використанням параболiчної апроксимацiї конфайнмента,
диференцiальне рiвняння для амплiтуди змiщень фононiв
точно вирiшено методом функцiй Грiна. Порiвняно резуль-
тати рiзних наближень.
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