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ELECTRON DISTRIBUTION
ON A DEFORMED LIQUID-HELIUM SURFACEPACS 71.20.Nr, 72.20.Pa

A simple quasiclassical statistical model for the description of electrons on a liquid-helium
surface in an external electric field is proposed. The model involves the electrostatic interaction
energy with due regards to the medium polarization and electron interactions associated with
the surface deformation. The explanation of some phenomena observed in the experiments
is given. In particular, a method for numerical calculation of inhomogeneities of the charge
distribution in an external electric field is introduced. The obtained results can be used to
explain the peculiarities of the electron distribution function measured in experiments.
K e yw o r d s: liquid helium, electrons, bubblon, two-dimensional electron systems.

Recently, much interest in the experimental and the-
oretical studies of low-dimensional Coulomb-like sys-
tems has been generated. Such systems are widely
presented in experiments with emulsions, foams,
polymers, colloidal suspensions, etc. Considerable at-
tention is attracted to the special case of electrons on
the surface of a dielectric substrate [1, 2]. Studies of
these systems are not only of academic interest, but
can also have some practical applications. For exam-
ple, it is proposed to use the electrons on a dielectric
surface for quantum computations [5].

A possibility of creating a two-dimensional sys-
tem on the surface of a dielectric medium was pre-
dicted in [1, 2, 6]. First experiments were carried out
one year later [7]. Two-dimensional electron systems
are still extensively studied, and many interesting
results have been obtained. Let us say, the first ex-
perimental realization of the Wigner solid, predicted
in the well-known work [3], was made in an elec-
tron system on liquid helium [4]. Let us now discuss
some properties of these systems. Electrons located

c○ B.I. LEV, V.P. OSTROUKH, V.B. TYMCHYSHYN,
A.G. ZAGORODNY, 2015

on a dielectric surface have two degrees of freedom
only [8, 9]. They can exist in the forms of a fluid or
Wigner crystal [3, 4, 10]. Some interesting effects are
caused by the deformation instability of the liquid
helium surface that causes, for example, the phase
transitions between triangle and square Wigner lat-
tices [11]. Electrons on the surface of liquid helium
become localized in macroscopic dimples, when the
electric field perpendicular to the surface exceeds a
critical value. These dimples form a two-dimensional
hexagonal lattice [12]. The phase transition from a
homogeneous two-dimensional charge distribution to
the modulated charge density regime was investi-
gated, and the hysteresis effect was observed, which
means that the transition is discontinuous [13].

Modern research in the field of low-dimensional
electron systems is based mostly on the quantum field
theory [14] and the scaling theory [15]. For example,
the electron transport properties in heterostructures
and the electron structures on the liquid-helium sur-
face can be studied using quantum field theory meth-
ods [16]. As regards the scaling theory, it was worked
out in [17]. Nevertheless, these models are compli-
cated for the analysis and require a lot of calcula-
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tions. Therefore, it would be highly desirable to intro-
duce simpler quasiclassical models of the type [18,19],
which could be efficient for the description of prop-
erties of the low-dimensional electron systems. The
main goal of the present contribution is to work out
such model for the description of electrons on a he-
lium surface.

It is well known that an electron is attracted to the
surface of any dielectric media [20]. But, in addition
to the attractive part of the electron-helium binding
potential, there is the repulsive part. Electrons can-
not just go through this surface, as being pushed out
due to quantum effects [8, 21–23]. This means that
the electrons are floating above the liquid helium sur-
face. In the presence of an external field, the elec-
trons can be pressed against the helium surface with
a force that exceeds the gravitational one by many
orders. Thus, as shown in [11], the pressing field re-
sults in distorting the surface at the position of each
electron and, hence, in inducing an attractive force
between the electrons. In [11], system’s behavior is
described in terms of the interplay between the repul-
sive Coulomb interaction and the attractive surface-
induced interaction between individual electrons.

The system of electrons floating on the liquid he-
lium surface is interesting as a representative of a wide
class of systems with Coulomb-like interaction. These
systems can significantly differ by physical proper-
ties, but their interparticle interaction resembles the
Coulomb interaction. One of many possible exam-
ples can be dusty plasma. Electrons on the liquid he-
lium surface and dust particles in plasma are much
alike. Dust particles even can form some stable pe-
riodical structures similar to a Wigner crystal and
undergo the melting or crystallization [18, 24–26].

In this article, we will try to look at electrons on
the liquid helium surface in a way more typical of
Coulomb-like systems. On the other hand, we will
develop the necessary formalism basing on modern
research in the field of statistical equilibrium descrip-
tion of such a kind of systems in the mean-field ap-
proximation [18]. These methods will be used to de-
velop some simple quasiclassical model that describes
the electron behavior and can predict the parame-
ters of structures they form depending on the exter-
nal electric field intensity and the temperature. As a
result, we will obtain the electron distribution func-
tion and conditions for the distribution to be changed
from the uniform to the periodic one. The obtained

results can be easily generalized to the case of three-
dimensional systems using the appropriate expres-
sions for interaction energy. This is an additional ad-
vantage of the proposed model, which provides a sim-
pler description of the properties of the Coulomb-like
systems than that given by a more sophisticated for-
malism [18, 19]. One more important difference be-
tween our studies and the results obtained earlier
is that we consider simultaneously additional effects
such as the polarization of a medium and the inter-
action due to a surface deformation.

Our theoretical description employs the free energy
written in terms of the density distribution function
in the mean-field approximation. Actually, the free
energy consists of two parts, i.e.,

𝐹 = 𝐹int + 𝐹𝑠. (1)

The first part of the free energy, which produces the
interaction between electrons, can be written as

𝐹int =

+𝐿∫︁∫︁
−𝐿

+∞∫︁∫︁
−∞

𝜌(r)𝜌(r′)𝑉 (r− r′)𝑑r𝑑r′, (2)

where 𝑉 (r − r′) is the energy of interaction between
electrons on the surface. The entropy part 𝐹𝑠 of the
free energy can be written in the standard form [30]:

𝐹𝑠 = 𝑘𝑇

∫︁ {︀
𝜌(r) ln 𝜌(r)+[1−𝜌(r)] ln[1−𝜌(r)]

}︀
𝑑r. (3)

The interaction between electrons consists of two
parts 𝑉 (r − r ′) = 𝑉𝑒−𝑒(r − r′) + 𝑉def(r − r′), i.e.,
the direct electrostatic interaction and the interac-
tion through a deformation of the surface [11]. The
more detailed discussion of the electron-electron and
electron-helium interactions, as far as the item 𝑉𝑒−𝑒,
can be found in [21]. As for the last term 𝑉def , we
refer to [11].

All these items will be treated as being two-
dimensional. Of course, there is some contribution
caused by the third dimension. But it is known that
this contribution can be neglected, and all electrons
are supposed to be at the same distance above the
helium surface [8]. That’s why all calculations given
in what follows have been done in the 2D-model. Any
contribution to the action caused by the third dimen-
sion is supposed to be constant and having no influ-
ence on its minimization functional.
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According to [11], the direct electron interaction
energy can be presented as

𝑉𝑒−𝑒(𝑟) =
𝑒2

4𝜋𝜀0𝑟
− 4Λ𝑠√︀

𝑟2 + (2𝑑)2
,

Λ𝑠 =
𝜀𝑠 − 𝜀He

16𝜋𝜀0(𝜀𝑠 + 𝜀He)
𝑒2,

(4)

where 𝜀𝑠 and 𝜀He are the dielectric constants of
the substrate and liquid helium, respectively, 𝑟 is
the distance between electrons, 𝑑 is the helium film
thickness. The first part is caused by the ordinary
Coulomb interaction, and the second one is induced
by the liquid helium and substrate polarizations. Our
direct interaction is different from the one in [11] by
its second part that involves the helium polarization
caused by electrons.

Electron localization on the helium surface is topo-
logical, in the sense that the surface of liquid helium is
deformed, by exhibiting periodic troughs and peaks
so that the electrons are more likely to be trapped
inside the troughs. The lateral capillary interaction
between two particles is given by [11]

𝑉def(𝑟) ∝
𝑓2

2𝜋𝜎
K0(𝜆𝑟) = 𝑐(𝐸2)K0(𝜆𝑟).

Here, 𝑓 = 𝑒𝐸 is the actual force that acts on each
particle, 𝜎 is the surface tension, 𝑟 is the distance
between particles, K0 is the modified Bessel func-
tion, and 𝜆 is the capillary length that depends on
the fluid properties only. With no external field, the
surface deformations are small, but the external elec-
tric field produces a greater deformation and changes
the energy of interaction between electrons through a
deformation of the helium surface. The coefficient of
capillary interaction 𝑐(𝐸2) will depend on the exter-
nal electric field.

Due to the long-range nature of Coulomb-like
forces, the boundary conditions may notably change
the result, because the particles start to “feel” the
size of the system. Moreover, they introduce restric-
tions to the properties of the density function, which
simplifies not only analytical, but computer calcula-
tions as well. In [27–29], the exponentially decreasing
potential was chosen, so the boundaries could be ig-
nored. But, for the system under consideration, they
should be taken into account.

We suppose that the whole system is placed in a
square “metal box” with dimensions −𝐿 ... 𝐿. This as-
sumption is reasonable, because all experiments are

performed for the system between grounded metal
plates. Of course, we can expect electrons to leave
the system through the grounded walls. But the elec-
tron leakage through the boundaries is prevented by
the “guard ring” and the “guard potential” [21]. We
assume that such “guard field” acts only on the elec-
trons in a vicinity of the walls and can be neglected
anywhere else [22]. The existence of these rings means
in our model only that the charge in this system can
be treated as a constant, but it does not violate the
boundary conditions that should be in agree with the
principle of images. This makes our calculations inex-
act near the boundary, but the density disturbance we
are interested in appears far from the “walls” as well.

At this moment, we should explain some featu-
res of the obtained results, because they may seem
non-intuitive. It may seem, that electrons should be
smeared all around the walls. But this is not true.
Electrons are attracted by the walls, but the more
electrons are placed near the walls, the less others
will be attracted there. If we remember that electrons
cannot come closer to the wall, then the guard ring al-
lows us to conclude that the minimum of the potential
energy, even taking only the Coulomb interaction into
account, will be not achieved when all electrons are
on the border near walls, because distance between
them will be “close to zero,” and the distances be-
tween them and their images – not. So some of them
should be far from the walls. This means that we have
to expect some complicated charge distribution in this
system.

Now, let us consider some mathematical model
we will work with. Due to classical electrodynamics,
it can be shown that we should consider imaginary
charges along with real ones (principle of images)
when calculating the total potential energy. To make
our calculations simpler, we will analytically extend
the density distribution function to (−∞;∞). More-
over, we claim it to be symmetric (due to system’s
symmetry) and anti-periodic (due to metal walls):

𝜌(𝑥; 𝑦) =

∞∑︁
𝑖,𝑗=0

𝐶𝑖,𝑗 cos (𝑥𝛼𝑖) cos (𝑦𝛼𝑗), (5)

where 𝛼𝑖 = (𝜋/2𝐿)[2𝑖 + 1]. We leave to the reader
to prove the fact that the charge density 𝑒𝜌(𝑥; 𝑦)
in the form (5) automatically holds the principle
of symmetry (𝑒𝜌(𝑥; 𝑦) = 𝑒𝜌(−𝑥; 𝑦) = 𝑒𝜌(𝑥;−𝑦) =
= 𝑒𝜌(𝑦;−𝑥)). Moreover, when |𝑥| > 𝐿 or |𝑦| > 𝐿,
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𝑒𝜌(𝑥; 𝑦) can be treated as the value of imaginary
charge, for example 𝑒𝜌(𝐿 − 𝑥; 𝑦) = −𝑒𝜌(𝐿 + 𝑥; 𝑦).
Every function that satisfies these conditions can be
represented in the form of the mentioned series.

Changing the variables 𝑥′ → 𝜒 = 𝑥 − 𝑥′ and 𝑦′ →
→ 𝛾 = 𝑦−𝑦′ in (2) and then taking into account that
𝑉 depends on |𝑟 − 𝑟′| in our case, we obtain

𝐹int ≈
+∞∫︁∫︁
−∞

+𝐿∫︁∫︁
−𝐿

𝜌(𝑥; 𝑦)𝜌(𝑥−𝜒; 𝑦−𝛾)𝑑𝑥𝑑𝑦 𝑉 (𝜒; 𝛾)𝑑𝜒𝑑𝛾.

The inner integral has limits from −𝐿 to +𝐿, be-
cause we are integrating all over the system. On the
other hand, the outer integral limits are set from −∞
to +∞ because of image charges. Since every elec-
tron has the infinite number of images, calculating
its energy makes us take them all into account. The
quality in this equation is approximate because of the
summand in 𝑉 that is not caused by electrostatical
forces (4). But we may notice that this summand is
very “short-range”, so we can consider the integration
with infinite limits as well.

Substituting (5) into the previous equation, ex-
panding by the known trigonometric formulas
cos

(︀
[𝑥− 𝜒]𝛼𝑖

)︀
and cos

(︀
[𝑦 − 𝛾]𝛼𝑗

)︀
, and taking the re-

lations

+𝐿∫︁
−𝐿

cos(𝑥𝛼𝑖) sin(𝑥𝛼𝑗)𝑑𝑥 = 0,

+𝐿∫︁
−𝐿

cos(𝑥𝛼𝑖) cos(𝑥𝛼𝑗)𝑑𝑥 = 𝛿𝑖;𝑗

into account, it can be shown that (2) can be written
as

𝐹𝑒−𝑒 =

∞∑︁
𝑖,𝑗=0

𝐶2
𝑖;𝑗𝑘𝑖;𝑗 , (6)

where 𝑘𝑖;𝑗 depends on 𝜀He, 𝜀𝑠, 𝐿, and 𝑑 only:

𝑘𝑖,𝑗 =

+∞∫︁∫︁
−∞

cos(𝜒𝛼𝑖) cos(𝛾𝛼𝑗)𝑉 (𝜒; 𝛾)𝑑𝜒𝑑𝛾.

Now, we recall to the reader that the charge in
such a system is constant. So it should be 𝑄total =

=
∫︀∫︀ +𝐿

−𝐿
𝜌(r)𝑑r. With 𝜌(r) being taken into account,

it is possible to show that the previous relation can
be reduced to 𝑄total =

∑︀∞
𝑖,𝑗=0 𝐶𝑖;𝑗𝑞𝑖;𝑗 , where 𝑞𝑖;𝑗 de-

pends only on 𝐿.
At this point, it might be preferable to employ the

numerical methods. With the previous result being
taken into account, the free energy 𝐹 can be mini-
mized by means of the gradient descent method. This
method was chosen as most suitable due to its sim-
plicity and a low calculation complexity that makes
possible to work with a big amount of variables 𝐶𝑖;𝑗 .
Since we will not get into technical details for those
readers unfamiliar with the gradient descent method,
we recommend to refer to the appropriate literature
(e.g., [31]). But it should be mentioned that there
are some features, when using the gradient descent
method in this paper.

The method can find the values of variables, when
some function reaches its minimum. But here, we
should find when not a function, but rather a func-
tional is minimal. Decomposing 𝜌(r) in a Fourier se-
ries and substituting into the functional, we reduce
the problem to finding the coefficients of the Fourier
series. Of course, there is the infinite number of these
coefficients, so we should limit ourselves with first 𝑁
ones. The more we take them, the more precise the
result will be after the minimization procedure (in
this paper, 104 coefficients were taken), until we still
have a significant number of electrons in one period
of the lowest term of the expansion to use the contin-
uous approximation. The physical parameters were
taken as follows [22]: 𝐿 = 1 cm; 𝜀𝑠 = 11 (silicium);
𝑑 = 0.1 cm. The second feature is that 𝜌 should be
nonnegative so the sign of 𝜌(𝑥; 𝑦) is checked on every
step of the gradient descent method. Due to this cal-
culation, we will obtain some values of the coefficients
𝐶𝑖;𝑗 that minimize the free energy 𝐹 .

The result is that, without an external field, the
electrons form some 2D periodic structure if the tem-
perature is sufficiently low (Fig. 1). The lighter areas
correspond to higher electron concentrations (higher
probability of finding some electrons there). The ob-
tained results mean that the ground state of the
electron system on the liquid helium surface is not
a uniform Wigner crystal. The density of electrons
and the Wigner lattice period are periodically mod-
ulated. This form of the surface can be treated as
a Wigner crystal formed by electron dimples, if we
think of them as charged quasiparticles. The temper-
ature growth makes it possible to observe some smear-
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ing of the electron density function, which confirms
our intuitive speculations (Fig. 2). Since the bound-
aries are grounded, the particle distribution function
is always equal to zero there, so we cannot expect
that the distribution function is uniform. However, it
tends to be so as the temperature is growing up.

We have already mentioned that some inhomo-
geneities of the electron distribution on the liquid-
helium surface exist even without an external field.
Switching-on an external field can only deepen the
difference between the local maximum and the mini-
mum of the electron distribution function. The com-
puter simulation results confirm again the intuitive
conclusions and show some sharpening of the den-
sity function (Fig. 3). This means that the electrons
are collected together due to some additional effec-
tive attraction that is caused by helium-film defor-
mations. The external field presses the electrons into
liquid helium. But, due to some quantum effects,
they are pushed out. So, the electrons make the he-
lium film to “feel” the external field and to be de-
formed according to it. Of course, the zones with
higher particle concentrations undergo stronger de-
formations than those with lower particle concen-
trations. Helium film deformations cause the pres-
ence of some additional terms in the free energy
of the system. So, deformations of the liquid-helium
film with an external field are not only some “sharp-
ened” version of themselves without an external field,
the system rather should find some form of the
helium surface that minimizes the total free en-
ergy and can be qualitatively different from that
without any field. Figure 3 shows that, besides be-
ing sharpened, both local maximum and minimum
are shifted. When the electron density is sufficiently
large, they can be pushed inside helium and form
some kind of a bubble filled with electrons (bub-
blon). Such behavior cannot be taken into account in
terms of our model, but some appropriate estimates
can be done.

Suppose that the electron concentration is suffi-
ciently small and the external field is getting more
and more stronger. The numerical calculation shows
that if the external field is strong enough, it becomes
possible that almost all electrons are collected in the
center of the helium film (Fig. 4). We can see that
such distribution function is convex similarly to the
case of a high temperature and no field. The main
difference between the two distribution functions is

Fig. 1. Plot of the electron distribution function: 𝑇 = 0.02 K,
*𝜌 = 𝜌𝐿2/𝑄total × 100%, no external field

Fig. 2. Plot of the electron distribution function: 𝑇 = 0.4 K,
*𝜌 = 𝜌𝐿2/𝑄total × 100%, no external field

Fig. 3. Plot of the electron distribution function: 𝑇 = 0.02 K,
𝐸 = 1.4× 105 V/m, *𝜌 = 𝜌𝐿2/𝑄total × 100%

Fig. 4. Plot of the electron distribution function: 𝑇 = 0.02 K,
𝐸 = 2× 105 V/m, *𝜌 = 𝜌𝐿2/𝑄total × 100%
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that the distribution function is very sharp in the
first case and tends to become constant in the second
case (Fig. 2).

We can conclude that a simple quasiclassical model
can be built, by using an effective electron poten-
tial on the liquid-helium surface as some empirical
data. This model predicts some effects that can be
observed for the electrons on the liquid helium sur-
face. On the other hand, it is rather simple and thus
may be considered with no use of clusters or other
powerful computer tools. Moreover, after some addi-
tional simplifications, it can be even treated analyti-
cally. We expect that the electron distribution func-
tion on the liquid-helium surface could be measured
by means of modern experimental methods, and it
would be possible to compare our results to the ex-
perimental data.
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Academy of Science of Ukraine.
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РОЗПОДIЛ ЕЛЕКТРОНIВ НА ДЕФОРМОВАНIЙ
ПОВЕРХНI РIДКОГО ГЕЛIЮ

Р е з ю м е

Запропоновано просту квазiкласичну модель для опису еле-
ктронiв на поверхнi рiдкого гелiю в зовнiшньому електри-
чному полi. В межах моделi приймається до уваги енергiя
електростатичної взаємодiї з урахуванням поляризацiї се-
редовища та мiжелектронної взаємодiї, пов’язаної з дефор-
мацiєю поверхнi. Дається пояснення деяких ефектiв, що
спостерiгаються експериментально. В тому числi приводи-
ться спосiб чисельного розрахунку неоднорiдностей розпо-
дiлу заряду у зовнiшньому полi. Отриманi результати мо-
жуть бути використанi для пояснення особливостей функцiї
розподiлу електронiв, що вимiрюється експериментально.
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