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The critical behavior of systems belonging to the universality class of the three-dimensional
Ising model has been studied theoretically. A three-dimensional Ising-like system with expo-
nentially decreasing interaction potential and in the presence of a homogeneous external field
was considered in the framework of the collective variables method. A specific feature in the cal-
culation of the partition function and the free energy of a uniaxial magnet consists in singling
out a reference system. The role of the latter is played by the molecular-field Hamiltonian. A
method to describe the critical behavior with the use of a singled out reference system is de-
veloped on the basis of a non-Gaussian (quartic) distribution of order-parameter fluctuations
(the 𝜌4 model).

K e yw o r d s: Ising model, critical behavior, reference system, non-Gaussian distributions, free
energy.

1. Introduction

In this paper, we study the behavior of a three-
dimensional Ising-like system in a vicinity of its crit-
ical point. Similarly to what is done while studying
the critical behavior of fluid systems [1], we select a
reference system in calculations of the partition func-
tion of the Ising model. This reference system is a
somewhat idealized physical one describing the most
common features of the analyzed system, being rather
simple at the same time. It does not pretend to give a
complete description of the phenomenon, but makes
it possible to obtain an exact or sufficiently general
solution of the problem. An example of such systems
for fluids is an ensemble of hard spheres. In the case
of the Ising model, a model system with the mean-
field Hamiltonian is proposed to be used as a ref-
erence one. The idea of this approach was proposed
in [2], where a complicated equation for the self-
consistent field was obtained up to the fourth virial
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coefficient. However, in the critical region, each of the
virial coefficients contains diverging integrals result-
ing from the application of a Gaussian basis distribu-
tion.

This work aims at constructing a method to de-
scribe the critical behavior, in which the Hamiltonian
of a self-consistent field is used as a reference system,
whereas the partition function is calculated with the
use of the non-Gaussian distributions of fluctuations
of the order parameter. The microscopic description
of the critical behavior of Ising-like systems built in
this work can be applied to develop the theory of
critical phenomena in various three-dimensional sys-
tems. The theoretical description of the critical be-
havior of real systems at a certain stage of calcula-
tions is reduced to the description of a phase transi-
tion in the framework of a definite model [3]. The
development of the method for the calculation of
main thermodynamic and structural characteristics
for one of the basic phase transition models, namely,
the three-dimensional Ising model, opens a way to
the description of more complicated physical sys-
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tems. Therefore, the solution, as complete as possible,
obtained for the three-dimensional Ising-like system
is a key to the description of the critical behavior of
many physical objects.

The research procedure proposed in this work can
be applied, e.g., while studying crystals with strongly
anisotropic interactions, in which the magnetic mo-
ments of molecules can be considered as directed
only “upward” or “downward”; for example, FeCl2
and FeCO3 [4]. Other examples of Ising (anisotro-
pic) ferromagnets include some rare-earth hydroxides
R(OH)3 – e.g., Tb(OH)3, Dy(OH)3, and Ho(OH)3 –
and rare-earth lithium fluorides LiRF4 (LiTbF4 and
LiHoF4) [5]. Rare-earth ortho-aluminates DyAlO3

and TbAlO3, as well as rare-earth aluminate garnets
Dy3Al5O12 and Tb3Al5O12, are also the examples
of Ising antiferromagnets. The Ising model and real
magnetic materials provide a convenient opportunity
for the theory and the experiment to profitably inter-
act with each other [6].

2. Reference System

Let us calculate the partition function of a system
with the Hamiltonian

𝐻 = −1

2

∑︁
i,j

Φ(𝑟ij)𝜎i𝜎j −ℋ
∑︁
l

𝜎l. (1)

Here, 𝜎i = ±1 is the spin variable, Φ(𝑟ij) =
= 𝐴 exp(−𝑟ij/𝑏) is the exponentially decreasing in-
teraction potential characterized by the constants 𝐴
and 𝑏, 𝑟ij is the distance between the particles, and
ℋ is the external field. The summation in Eq. (1) is
performed over the sites of a simple cubic lattice with
period 𝑐. The task consists in calculating the partition
function

𝑍 = Sp 𝑒−𝛽𝐻 (2)

and the free energy

𝐹 (𝑇,ℋ) = −𝑘𝑇 ln𝑍(𝑇,ℋ). (3)

Here, 𝛽 = (𝑘𝑇 )−1 is the inverse temperature. For-
mula (2) will be calculated in the space of collective
variables (CVs) constructed on the operators

𝜌k=
1√
𝑁

∑︁
l

𝜎l𝑒
−𝑖kl, 𝜌0 =

1√
𝑁

∑︁
l

𝜎l,

(𝜌0)
2=

1

𝑁

(︃∑︁
l

𝜎l

)︃2
,

where 𝑁 is the number of particles in the system. In
the CV representation, expression (2) is written in
the form

𝑍 = Sp

{︂∫︁
(𝑑𝜌)𝑁𝑒

1
2

∑︀
k∈ℬ

𝛽Φ(𝑘)𝜌k𝜌−k+ℎ
∑︀
l

𝜎l

×

×
∏︁
k∈ℬ

𝛿(𝜌k − 𝜌k)

}︂
. (4)

Here, ℎ = 𝛽ℋ, 𝜌k is a collective variable defined
in work [2], Φ(𝑘) is the Fourier transform of the in-
teraction potential, and the product contains delta-
functions. The summation is carried out over the
wave vectors belonging to the first Brillouin zone,

ℬ
{︁
k = (𝑘𝑥, 𝑘𝑦, 𝑘𝑧)|𝑘𝑖 = −𝜋

𝑐
+

𝜋

𝑐

𝑛𝑖

𝑁𝑖
;

𝑛𝑖 = 1, 2, ..., 2𝑁𝑖, 𝑖 = 𝑥, 𝑦, 𝑧
}︁
, (5)

where the quantities 𝑁𝑖 determine the total number
of particles, 𝑁 = 𝑁𝑥𝑁𝑦𝑁𝑧.

Let us substitute the term 1
2𝛽Φ(0)𝜌

2
0 in Eq. (4) by

the expression

1

2
𝛽Φ(0)

1

𝑁

(︃∑︁
l

𝜎l

)︃2
.

This operation is valid, because the integrand in
Eq. (4) contains the delta-function 𝛿(𝜌0−𝜌0) enabling
the mutual exchange of the variable 𝜌0 and the oper-
ator 𝜌0 to be done. As a result, expression (4) reads

𝑍 =

∫︁
(𝑑𝜌)𝑁𝑒

1
2

∑︀
𝑘 ̸=0

𝛽Φ(𝑘)𝜌k𝜌−k

𝐽𝑅𝑆(𝜌), (6)

where

𝐽𝑅𝑆(𝜌) = Sp

{︂
𝑒

𝛽Φ(0)
2𝑁

(︂∑︀
l

𝜎l

)︂2

+ℎ
∑︀
l

𝜎l ∏︁
k∈ℬ

𝛿(𝜌k−𝜌k)

}︂
. (7)

In order to calculate the explicit form of expression
(7), let us take advantage of the integral representa-
tion∏︁
k∈ℬ

𝛿(𝜌k − 𝜌k) =

∫︁
(𝑑𝜔)𝑁 exp

[︂
2𝜋𝑖

∑︁
k∈ℬ

(𝜌k − 𝜌k)𝜔k

]︂
,

(8)
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where the variables 𝜔k are conjugate to the CVs
𝜌k. Substituting Eq. (8) into Eq. (7), we obtain

𝐽𝑅𝑆(𝜌) =

∫︁
(𝑑𝜔)𝑁𝑒

2𝜋𝑖
∑︀
k∈ℬ

𝜔k𝜌k

×

×Sp

{︂
𝑒

𝛽Φ(0)
2𝑁

(︂∑︀
l

𝜎l

)︂2

+ℎ
∑︀
l

𝜎l

𝑒
−2𝜋𝑖

∑︀
k∈ℬ

𝜔k𝜌k
}︂
. (9)

Now, let us put Φ(𝑘) = 0 for 𝑘 ̸= 0 in expres-
sion (6) and let us designate the partition function
corresponding to this condition as 𝑍𝑅𝑆 . We come to
the known relation for the partition function in the
molecular field approximation,

𝑍𝑅𝑆 = Sp

{︂
exp

[︂
𝛽Φ(0)

2𝑁

∑︁
l,l′

𝜎l𝜎l′ + ℎ
∑︁
l

𝜎l

]︂}︂
. (10)

The free energy corresponding to formula (10) looks
like [4]

𝐹 = −𝑘𝑇𝑁

{︂
1

2
ln

4

1−𝑀2

}︂
+

1

2
Φ(0)𝑀2. (11)

In this approximation, the magnetization 𝑀 per one
site is given by the expression

𝑀 = tanh [(Φ(0)𝑀 +ℋ)𝛽], (12)

which was obtained in work [7] for the first time. It
is easy to see that, for ℋ = 0, we obtain different so-
lutions for 𝑀 at 𝑇 > 𝑇CM and 𝑇 < 𝑇CM, where 𝑇CM

is the phase transition temperature in the molecular
field approximation, 𝑇CM = Φ(0)/𝑘. The non-zero or-
der parameter exists only at 𝑇 < 𝑇CM. According to
Eq. (12), the known relation can be written down as

ℋ = −Φ(0)𝑀 + 𝑘𝑇 arctanh𝑀. (13)

Let us return to expression (6), where the refer-
ence system is singled out, but no approximations
are made. We intend to use the known identity

𝑒
1
2𝛽Φ(0) 1

𝑁

(︂∑︀
l

𝜎l

)︂2

=

(︂
𝑁

2𝜋𝛽Φ(0)

)︂1/2
×

×
∞∫︁

−∞

exp

(︃
− 𝑁𝜙2

2𝛽Φ(0)
+ 𝜙

∑︁
l

𝜎l

)︃
𝑑𝜙, (14)

which is valid at Φ(0) > 0. Then the partition func-
tion of the system can be expressed in the form

𝑍=

(︂
𝑁

2𝜋𝛽Φ(0)

)︂1/2 ∞∫︁
−∞

𝑑𝜙𝑒−
𝑁𝜙2

2𝛽Φ(0)

∫︁
(𝑑𝜌)𝑁 (𝑑𝜔)𝑁×

× exp

(︂
1

2

∑︁
𝑘 ̸=0

𝛽Φ(𝑘)𝜌k𝜌−k + 2𝜋𝑖
∑︁
k∈ℬ

𝜔k𝜌k

)︂
×

×Sp

{︂
𝑒
(ℎ+𝜙)

∑︀
l

𝜎l−2𝜋𝑖
∑︀
k∈ℬ

𝜔k
1√
𝑁

𝑁∑︀
l=1

𝜎l𝑒
−𝑖kl}︂

. (15)

Executing the Sp operation, we obtain the sought ex-
pression for the partition function in the CV repre-
sentation with the singled out reference system,

𝑍=

(︂
𝑁

2𝜋𝛽Φ(0)

)︂1/2
2𝑁

∞∫︁
−∞

𝑑𝜙𝑒−
𝑁𝜙2

2𝛽Φ(0)×

×
∫︁
(𝑑𝜌)𝑁 (𝑑𝜔)𝑁𝑒

1
2

∑︀
𝑘 ̸=0

𝛽Φ(𝑘)𝜌k𝜌−k

𝑒
2𝜋𝑖

∑︀
k∈ℬ

𝜔k𝜌k

𝐽CM(𝜔).

(16)
Here, we introduced the notation

𝐽CM(𝜔) = exp

[︂∑︁
l

ln cosh (𝜙+ ℎ− 2𝜋𝑖𝜔l)

]︂
, (17)

where

𝜔l =
1√
𝑁

∑︁
k∈ℬ

𝜔k𝑒
−𝑖kl. (18)

Expression (17) can be written in the form of a cu-
mulant series expansion

𝐽CM(𝜔) = exp

(︂∑︁
𝑛≥0

𝐷(𝜔)

)︂
, (19)

where

𝐷𝑛(𝜔)=
(−2𝜋𝑖)𝑛

𝑛!

ℳ𝑛(ℎ, 𝜙)

𝑁𝑛/2−1
×

×
∑︁

k1,...,k𝑛
k𝑖∈ℬ

𝜔k1 ... 𝜔k𝑛𝛿k1+...+k𝑛 , (20)

and 𝛿k1+...+k𝑛 is the Kronecker symbol. For the cu-
mulants ℳ𝑛(ℎ, 𝜙), the following expressions are ap-
plicable:

ℳ0= ln cosh(𝜙+ ℎ), ℳ1 = tanh(𝜙+ ℎ),

ℳ2= 1−ℳ2
1, ℳ3 = −2ℳ1ℳ2,

ℳ4= −2ℳ2 + 4ℳ2
1ℳ2,

ℳ5= 16ℳ1ℳ2
2 − 8ℳ3

1ℳ2,

ℳ6= 16ℳ2
2 − 88ℳ2

1ℳ2
2 + 16ℳ4

1ℳ2, ... .

(21)

Expression (16), in which 𝐽CM is given by formulas
(19)–(21), forms a basis for further calculations. The
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cumulants ℳ𝑛 in Eqs. (21) depend on the exter-
nal field magnitude ℋ and a certain internal field
𝜙. To elucidate the nature of the latter, let us put
𝛽Φ(𝑘) = 0 for all 𝑘 ̸= 0, which takes place, when
we neglect the contributions of many-particle inter-
actions. Then, with the use of Eq. (16) and

𝐽CM(𝜔) = 𝐽CM(0) = 𝑒𝑁 ln cosh(ℎ+𝜙), (22)

we find the corresponding expression for the partition
function,

𝑍0=

(︂
𝑁

2𝜋𝛽Φ(0)

)︂1/2
2𝑁

∞∫︁
−∞

𝑒−
𝑁𝜙2

2𝛽Φ(0)
+𝑁 ln cosh(ℎ+𝜙)𝑑𝜙.

(23)

Applying the saddle-point method, we obtain the free
energy

𝐹0 = −𝑘𝑇𝑁

[︂
− 𝜙2

2𝛽Φ(0)
+ ln cosh(ℎ+ 𝜙)

]︂
, (24)

where the quantity 𝜙 is determined from the equation

𝜙 = 𝛽Φ(0) tanh(ℎ+ 𝜙). (25)

Comparing Eqs. (25) and (12) with each other, we
find

𝜙 = 𝛽Φ(0)𝑀. (26)

Hence, the average value of internal field 𝜙 is con-
nected with the order parameter. However, unlike the
“introduction” of an internal field in the molecular
field method, the proposed approach gives rise to ex-
pression (23), which implies the integration over all
possible fields 𝜙 with a certain distribution function.

In the general case, the quantity 𝛽Φ(𝑘) differs from
zero, and just this circumstance is responsible for
the influence of many-particle interactions on the for-
mation of physical quantities near the second-order
phase transition point. For the partition function, we
have representation (16), where the quantity 𝐽CM(𝜔)
is given by expression (19) containing both even and
odd cumulants, which, in turn, are functions of the
external, ℎ, and internal, 𝜙, fields.

3. Particular Representations
of the Partition Function with the Singled
Out Reference System

The functional representation of the partition func-
tion (16) is rather complicated from the viewpoint of

its further integration over the variable 𝜙 and the de-
termination of the dependence on the external field
ℎ, because each of those quantities governs the cumu-
lants, i.e. ℳ𝑛(ℎ, 𝜙). Therefore, let us return to ex-
pression (15) and write it in the form

𝑍=

(︂
𝑁

2𝜋𝛽Φ(0)

)︂1/2 ∞∫︁
−∞

𝑑𝜙𝑒−
𝑁𝜙2

2𝛽Φ(0)

∫︁
(𝑑𝜌)𝑁 (𝑑𝜔)𝑁 ×

× 𝑒
1
2

∑︀
𝑘 ̸=0

𝛽Φ(𝑘)𝜌k𝜌−k

𝑒
ℎ
√
𝑁𝜌0+2𝜋𝑖

∑︀
k∈ℬ

𝜔k𝜌k

×

×Sp

{︃
𝑒
𝜙
∑︀
l

𝜎l

exp

(︃
−2𝜋𝑖

∑︁
k∈ℬ

𝜔k
1√
𝑁

𝑁∑︁
𝑙=1

𝜎l𝑒
−𝑖kl

)︃}︃
.

(27)

In comparison with Eq. (15), the exponential function
exp (ℎ

∑︀
l 𝜎l) is removed here from the expression un-

der the Sp sign, because of the multiplier 𝛿(𝜌0 − 𝜌0)
is present in the integrand, which allows the operator
𝜌0 to be substituted by the variable 𝜌0. As a result of
this operation, we obtain the following expression for
the partition function:

𝑍=

(︂
𝑁

2𝜋𝛽Φ(0)

)︂1/2
2𝑁

∞∫︁
−∞

𝑑𝜙𝑒−
𝑁𝜙2

2𝛽Φ(0)×

×
∫︁
(𝑑𝜌)𝑁 (𝑑𝜔)𝑁𝑒

1
2

∑︀
𝑘 ̸=0

𝛽Φ(𝑘)𝜌k𝜌−k

×

× exp

(︃
ℎ
√
𝑁𝜌0 + 2𝜋𝑖

∑︁
k∈ℬ

𝜔k𝜌k

)︃
𝐽𝜙(𝜔), (28)

where
𝐽𝜙(𝜔) = exp

[︂∑︁
𝑛≥0

(−2𝜋𝑖)𝑛

𝑛!

ℳ𝑛(𝜙)

𝑁𝑛/2−1
×

×
∑︁

k1,...,k𝑛
k𝑖∈ℬ

𝜔k1
... 𝜔k𝑛

𝛿k1+...+k𝑛

]︂
. (29)

Here, in contrast to Eqs. (21), the cumulants ℳ𝑛(𝜙)
depend only on the internal field 𝜙, whereas the de-
pendence on the external field is contained only in the
term ℎ

√
𝑁𝜌0 entering the argument of the exponen-

tial function in the integrand of expression (28). Now,

ℳ0(𝜙)= ln cosh𝜙, ℳ1(𝜙) = tanh𝜙 ≡ 𝑥𝜙,

ℳ2(𝜙)= 1− 𝑥2
𝜙 ≡ 𝑦𝜙, ℳ3(𝜙) = −2𝑥𝜙𝑦𝜙,

ℳ4(𝜙)= −2𝑦𝜙 + 4𝑥2
𝜙𝑦𝜙,

ℳ5(𝜙)= 16𝑥𝜙𝑦
2
𝜙 − 8𝑥3

𝜙𝑦𝜙,

ℳ6(𝜙)= 16𝑦2𝜙 − 88𝑥2
𝜙𝑦

2
𝜙 + 16𝑥4

𝜙𝑦𝜙, ... .

(30)
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Representation (28) substantially simplifies further
calculations aimed at finding the dependence on the
external field. However, the dependence of cumulants
on the internal field survives.

Expression (15) enables us to write another repre-
sentation for the partition function,

𝑍=

(︂
𝑁

2𝜋𝛽Φ(0)

)︂1/2
2𝑁

∞∫︁
−∞

𝑑𝜙𝑒−
𝑁𝜙2

2𝛽Φ(0)×

×
∫︁
(𝑑𝜌)𝑁 (𝑑𝜔)𝑁𝑒

1
2

∑︀
𝑘 ̸=0

𝛽Φ(𝑘)𝜌k𝜌−k

×

× exp

(︃
𝜙
√
𝑁𝜌0 + 2𝜋𝑖

∑︁
k∈ℬ

𝜔k𝜌k

)︃
𝐽ℎ(𝜔), (31)

where

𝐽ℎ(𝜔) = exp

[︂∑︁
𝑛≥0

(−2𝜋𝑖)𝑛

𝑛!

ℳ𝑛(ℎ)

𝑁𝑛/2−1
×

×
∑︁

k1,...,k𝑛
k𝑖∈ℬ

𝜔k1
... 𝜔k𝑛

𝛿k1+...+k𝑛

]︂
. (32)

Here, the cumulants ℳ𝑛(ℎ) look like expressions
(30), but depend on ℎ rather than 𝜙.

The simplest form for a representation of the par-
tition function with the singled out reference system
is given by the formula

𝑍=

(︂
𝑁

2𝜋𝛽Φ(0)

)︂1/2
2𝑁

∞∫︁
−∞

𝑑𝜙𝑒−
𝑁𝜙2

2𝛽Φ(0)×

×
∫︁
(𝑑𝜌)𝑁 (𝑑𝜔)𝑁𝑒

1
2

∑︀
𝑘 ̸=0

𝛽Φ(𝑘)𝜌k𝜌−k

×

× exp

[︃
(𝜙+ ℎ)

√
𝑁𝜌0 + 2𝜋𝑖

∑︁
k∈ℬ

𝜔k𝜌k

]︃
𝐽(𝜔), (33)

where the transition Jacobian 𝐽(𝜔) looks like

𝐽(𝜔)= exp

[︂∑︁
𝑛≥1

(−2𝜋𝑖)2𝑛

(2𝑛)!
ℳ2𝑛𝑁

1−𝑛×

×
∑︁

k1,...,k2𝑛

𝜔k1
... 𝜔k2𝑛

𝛿k1+...+k2𝑛

]︂
. (34)

Note that all odd cumulants and the cumulant ℳ0

in Eq. (33) equal zero, and the even cumulants have
the following specific numerical values [2]:

ℳ2 = 1, ℳ4 = −2, ℳ6 = 16, ... . (35)

By comparing the expressions obtained above, we
arrive at the following important conclusion. The
functional representation of the partition function for
the Ising model in the presence of an external field
in a singled out reference system (the molecular-field
Hamiltonian) can include only even cumulants, as in
formula (33), or both even and odd cumulants, as in
formulas (16), (28) and (31). Each of the represen-
tations given above is exact and can be used in fur-
ther calculations. Certainly, in specific calculations,
the number of terms in the argument of the exponen-
tial function in the integrand has to be finite. While
describing the phenomena in a vicinity of the second-
order phase transition point, all the terms up to the
fourth order in the variable inclusive have to be taken
into consideration [2]. This makes possible to obtain
a qualitative picture of a phase transition in the pres-
ence of an external field [8]. Taking the sixth-order
terms into consideration allows one to say about the
quantitative results of the theory [9]. Therefore, the
accuracy of a calculation technique should be related
only to the number of terms (cumulants) that were
taken into account, while calculating the partition
function rather than the form of a distribution con-
taining only even (or odd) power exponents of the
variable in the exponential function argument.

4. 𝜌4 Model

For further calculations, let us take expression (33)
as a basis. In the corresponding expression for 𝐽(𝜔),
only the terms of the second and fourth orders in 𝜔k

will be taken into account. In this case, the partition
function of the system reads

𝑍=

(︂
𝑁

2𝜋𝛽Φ(0)

)︂1/2
2𝑁

∞∫︁
−∞

𝑑𝜙𝑒−
𝑁𝜙2

2𝛽Φ(0)×

×
∫︁
(𝑑𝜌)𝑁 (𝑑𝜔)𝑁𝑒

1
2

∑︀
𝑘 ̸=0

𝛽Φ(𝑘)𝜌k𝜌−k

𝑒(ℎ+𝜙)
√
𝑁𝜌0×

× exp

[︂
2𝜋𝑖

∑︁
k∈ℬ

𝜔k𝜌k − (2𝜋)2

2

∑︁
k∈ℬ

𝜔k𝜔−k −

− (2𝜋)4

12

1

𝑁

∑︁
k1,...,k4

k𝑖∈ℬ

𝜔k1 ... 𝜔k4𝛿k1+...+k4

]︂
. (36)

Integrating over the variables 𝜔k and using the cal-
culation procedure described in work [10], we obtain
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the following explicit form for the partition function
in the 𝜌4-model approximation:

𝑍=

(︂
𝑁

2𝜋𝛽Φ(0)

)︂1/2
2𝑁𝑒𝑎0𝑁

∞∫︁
−∞

𝑑𝜙𝑒−
𝑁𝜙2

2𝛽Φ(0)×

×
∫︁
(𝑑𝜌)𝑁𝑒

1
2

∑︀
𝑘 ̸=0

𝛽Φ(𝑘)𝜌k𝜌−k

×

× exp

[︂
(ℎ+ 𝜙)

√
𝑁𝜌0 −

1

2
𝑎2
∑︁
k∈ℬ

𝜌k𝜌−k −

− 1

4!

𝑎4
𝑁

∑︁
k1,...,k4

k𝑖∈ℬ

𝜌k1
· · · 𝜌k4

𝛿k1+···+k4

]︂
. (37)

The coefficients 𝑎2𝑙 are calculated according to the
formulas

𝑎0= ln
[︁
(2𝜋)−1/2(3/2)1/4𝑒𝑦

2/4𝑈(0, 𝑦)
]︁
,

𝑎2= (3/2)1/2𝑈(𝑦), 𝑎4 = (3/2)𝜙(𝑦),
(38)

where 𝑈(𝑦) and 𝜙(𝑦) are the combinations of
parabolic cylinder functions 𝑈(𝑎, 𝑦) [10], with the ar-
gument 𝑦 accepting the value 𝑦 = (3/2)1/2. Then,
𝑎0 = −1.0557, 𝑎2 = 0.6449, and 𝑎4 = 0.1826. By
its functional form, the part of the integrand depen-
dent on CVs is similar to the corresponding expres-
sion obtained in work [8]. There are only two differ-
ences. One of them consists in the substitution of the
dimensionless field ℎ by the quantity

ℎ𝜙 = ℎ+ 𝜙. (39)

The other is associated with the absence of a term
with 𝑘 = 0 in Eq. (37). This circumstance is not
essential from the viewpoint of the step-by-step cal-
culation of the partition function in the framework
of the Yukhnovskii method [2, 10]. The variable 𝜌0
is used in this process only at the final calculation
stage, i.e. after the point of exit of the system from
the critical fluctuation regime. Therefore, according
to the results of work [8], the partition function of
the model with Hamiltonian ((1) takes the form

𝑍 = 2𝑁
∞∫︁

−∞

𝑑𝜙𝑒−
𝑁𝜙2

2𝛽Φ(0) 𝑒−𝛽𝐹𝑎−𝛽𝐹
(+)
CR −𝛽𝐹TR𝑍 ′(𝜙), (40)

where the analytical part of the free energy, 𝐹𝑎, being
a function of the relative temperature 𝜏 = (𝑇−𝑇𝑐)/𝑇,
looks like
𝐹𝑎 = −𝑘𝑇𝑁(𝛾0 + 𝛾1𝜏 + 𝛾2𝜏

2)− 1

2
𝑁Φ(0)Φ̄. (41)

The expressions for the coefficients 𝛾𝑙 and the quan-
tity Φ̄ can be found in work [8].

The contribution to the free energy from the critical
regime of fluctuations equals

𝐹
(+)
CR = 𝑘𝑇𝑁0𝛾

+𝑠−3(𝑛𝑝+1). (42)

Here, 𝑁0 = 𝑁𝑠−𝑑
0 , and 𝑑 = 3 is the space dimen-

sionality. The parameter 𝑠0 determines the interval
of wave vectors, where the Fourier transform of the
potential Φ(𝑘) is well approximated by a parabola.
The coefficient 𝛾+ was determined in work [8], and
𝑠 is the parameter of division of the CV phase space
into layers. For 𝑛𝑝, we have the relation

𝑛𝑝 + 1 = − ln(ℎ̃𝜙 + ℎ𝑐)

ln𝐸1
, (43)

where the notations

ℎ̃𝜙 = 𝑠
𝑑/2
0 (ℎ+ |𝜙|)/ℎ0, ℎ𝑐 = |𝜏 |𝑝0 (44)

are introduced, and

𝜏 = 𝜏 (𝑐1𝑘/𝑓0), 𝑝0 =
ln𝐸1

ln𝐸2
. (45)

Here, 𝐸1 and 𝐸2 are the larger and smaller, respec-
tively, eigenvalues of the matrix for the linear renor-
malization-group transformation. The quantities 𝑐1𝑘
and 𝑓0 characterize one of the coefficients in the solu-
tions of the recurrence relations and one of the fixed
point coordinates, respectively, whereas the parame-
ter ℎ0 determines the normalization condition for the
critical amplitude of the correlation length (at the
critical temperature 𝑇𝑐).

The contribution to the free energy from the tran-
sition region (from non-Gaussian to Gaussian order-
parameter fluctuations) is given by the formula (see
work [8])

𝐹TR = −𝑘𝑇𝑁0𝑓𝑛𝑝+1𝑠
−3(𝑛𝑝+1). (46)

For 𝑍 ′(𝜙) in Eq. (40), we have

𝑍 ′ = 2(𝑁𝑛𝑝+2−1)/2
[︀
𝑄
(︀
𝑃𝑛𝑝+1

)︀]︀𝑁𝑛𝑝+2
𝑍𝑛𝑝+2, (47)

where

𝑍𝑛𝑝+2=

∫︁
(𝑑𝜌)𝑁𝑛𝑝+2 exp

[︂
ℎ𝜙

√
𝑁𝜌0 −

− 1

2

∑︁′

k∈ℬ𝑛𝑝+2

𝑑𝑛𝑝+2(𝑘)𝜌k𝜌−k−
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− 𝑎
(𝑛𝑝+2)
4

4!
𝑁−1

𝑛𝑝+2

∑︁
k1,...,k4

k𝑖∈ℬ𝑛𝑝+2

𝜌k1 ... 𝜌k4𝛿k1+...+k4

]︂
. (48)

The primed sum sign means that, for 𝑘 = 0, the
equality

𝑑𝑛𝑝+2(0) = 𝑎
(𝑛𝑝+2)
2 (49)

is obeyed. For all 𝑘 ̸= 0, the expression

𝑑𝑛𝑝+2(𝑘) = 𝑎
(𝑛𝑝+2)
2 − 𝛽Φ(0)(1− 2𝑏2𝑘2) (50)

is valid. Let us use the notations

𝑟𝑛𝑝+2 = (𝑎
(𝑛𝑝+2)
2 − 𝛽Φ(0))𝑠2(𝑛𝑝+2),

𝑢𝑛𝑝+2 = 𝑎
(𝑛𝑝+2)
4 𝑠4(𝑛𝑝+2),

(51)

where the quantities

𝑟𝑛𝑝+2 = 𝛽Φ(0)𝑓0 (−1 + 𝐸2𝐻𝑐),

𝑢𝑛𝑝+2 = (𝛽Φ(0))
2
𝜙0 (1 + Φ𝑓𝐸2𝐻𝑐)

(52)

were calculated in work [8]. Carrying out the change
of variables,

𝜌k = 𝜂k +
√
𝑁𝜎𝛿k,

in Eq. (48), we obtain

𝑍𝑛𝑝+2=𝑒𝑁𝐸0(𝜎,𝜙)

∫︁
(𝑑𝜂)𝑁𝑛𝑝+2 ×

× exp

[︂
𝐴0

√
𝑁𝜂0 −

1

2

∑︁
k∈ℬ𝑛𝑝+2

𝑑(𝑘)𝜂k𝜂−k −

− �̄�

6

1√︀
𝑁𝑛𝑝+2

∑︁
k𝑖∈ℬ𝑛𝑝+2

𝜂k1
... 𝜂k3

𝛿k1+...+k3
−

− 𝑎
(𝑛𝑝+2)
4

24

1

𝑁𝑛𝑝+2

∑︁
k𝑖∈ℬ𝑛𝑝+2

𝜂k1 ... 𝜂k4𝛿k1+...+k4

]︂
. (53)

Here,

𝐸0(𝜎, 𝜙) = (𝜙+ ℎ)𝜎 − 1

2
𝜎2𝑎

(𝑛𝑝+2)
2 −

−
𝑢𝑛𝑝+2

24
𝑠30𝑠

−(𝑛𝑝+2)𝜎4,

𝐴0 = (𝜙+ ℎ)− 𝜎𝑎
(𝑛𝑝+2)
2 −

𝑢𝑛𝑝+2

6
𝑠30𝑠

−(𝑛𝑝+2)𝜎3,

�̄� = 𝑢𝑛𝑝+2𝑠
3/2
0 𝑠−5/2(𝑛𝑝+2)𝜎.

(54)

As was done in work [8], the shift 𝜎 is determined
from the condition

𝜕𝐸0(𝜎, 𝜙)

𝜕𝜎
≡ 𝐴0 = 0. (55)

It is easy to see that, for large 𝑛𝑝 values (the region
of critical fluctuations), Eq. (55) has a solution

𝜎 =
𝜙+ ℎ

𝑎
(𝑛𝑝+2)
2

. (56)

Comparing the shift value given by formula (56) with
the corresponding expression obtained in work [8]
(where the reference system was not singled out), we
reveal a principal difference. It consists in the absence
of the term 𝛽Φ(0)𝜌20 in the argument of the exponen-
tial function in expression (48).

Substituting Eq. (56) into the formula for 𝐸0(𝜎, 𝜙)
in Eqs. (54), we obtain

𝐸0(𝜙) =
1

2

ℎ2
𝜙

�̄�2
−

𝑢𝑛𝑝+2𝑠
3
0

24�̄�42
𝑠−(𝑛𝑝+2)ℎ4

𝜙. (57)

Here, the notation �̄�2 = 𝑎
(𝑛𝑝+2)
2 is introduced. For

𝑘 = 0, the coefficient 𝑑(𝑘) in expression (53) satisfies
the relation

𝑑(0) = �̄�2 +
1

2
𝑢𝑛𝑝+2𝑠

3
0𝑠

−(𝑛𝑝+2)
ℎ2
𝜙

�̄�22
, (58)

whereas, for all 𝑘 ̸= 0,

𝑑(𝑘) = 𝑟𝑛𝑝+2𝑠
−2(𝑛𝑝+2) +

1

2
𝑢𝑛𝑝+2𝑠

3
0𝑠

−(𝑛𝑝+2)
ℎ2
𝜙

�̄�22
+

+2𝛽Φ(0)𝑏2𝑘2. (59)

In the case where 𝑇 > 𝑇𝑐 and the field is low, the
coefficient 𝑟𝑛𝑝+2 > 0. Therefore, while calculating
Eq. (53), the Gaussian distribution of fluctuations can
be used, as was proposed in work [8]. Then, the con-
tribution to the free energy from Eq. (47) reads

𝐹 ′(𝜙) = −𝑘𝑇𝑁
[︁
𝐸0(𝜙) + 𝑠−3

0 𝑠−3𝑓𝐺𝑠
−3(𝑛𝑝+1)

]︁
. (60)

Here,

𝑓𝐺 =
1

2
ln 2− 1

4
ln 3 + ln 𝑠+

1

4
ln𝑢𝑛𝑝+1 −

1

2
ln 𝑟𝑅 −

− 1

2
ln𝑈(𝑥𝑛𝑝+1)−

3

8
𝑦−2
𝑛𝑝+1 −

1

2
𝑓 ′′
𝐺, (61)
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and
𝑟𝑅 = 𝑟𝑛𝑝+2 +

1

2

𝑢𝑛𝑝+2

�̄�22
𝑠30𝑠

𝑛𝑝+2ℎ2
𝜙,

𝑥𝑛𝑝+1 = 𝑑𝑛𝑝+1(𝐵𝑛𝑝+2, 𝐵𝑛𝑝+1)

(︂
3

𝑎
(𝑛𝑝+1)
4

)︂1/2
,

𝑦𝑛𝑝+1 = 𝑠3/2𝑈(𝑥𝑛𝑝+1)

(︂
3

𝜙(𝑥𝑛𝑝+1)

)︂1/2
,

𝑑𝑛𝑝+1(𝐵𝑛𝑝+2, 𝐵𝑛𝑝+1) = 𝑎
(𝑛𝑝+1)
2 −𝛽Φ(𝐵𝑛𝑝+2, 𝐵𝑛𝑝+1).

(62)

The quantity Φ(𝐵𝑛𝑝+2, 𝐵𝑛𝑝+1) is the average value
of the Fourier transform for the potential Φ(𝑘) in the
wave vector interval k ∈ ℬ𝑛𝑝+1∖ℬ𝑛𝑝+2. For 𝑓 ′′

𝐺, we
obtain

𝑓
′′

𝐺 = ln
(︀
1 + 𝑎2

)︀
− 2

3
+

2

𝑎2
− 2

𝑎3
arctan 𝑎, (63)

where

𝑎 =
𝜋

𝑠0

𝑏

𝑐

(︂
2𝛽Φ(0)

𝑟𝑅

)︂1/2
.

Taking the expressions obtained above into ac-
count, we write the partition function for the Ising
model with the singled out reference system in the
following form:

𝑍 =

∞∫︁
−∞

𝑑𝜙 exp

[︂
− 𝜙2𝑁

2𝛽Φ(0)
− 𝛽𝐹𝑎 − 𝛽𝐹

(+)
CR −

−𝛽𝐹TR − 𝛽𝐹 ′(𝜙)

]︂
. (64)

Here, 𝐹𝑎 describes the analytical part of the free en-
ergy, which does not depend on 𝜙 (see Eq. (41)),
and 𝐹

(+)
CR is the contribution from the critical regime

of fluctuations. The latter is given by formula (42),
where the dependence on 𝜙 is contained in the quan-
tity 𝑛𝑝 from Eq. (43). Formula (64) is calculated us-
ing the saddle-point method. The equation for the ex-
treme point of the integrand in Eq. (64) looks like{︂
𝜙+ ℎ

�̄�2
− 𝜙

𝛽Φ(0)
+

𝜕𝛾
(+)
𝑠

𝜕𝜙
𝑠−3(𝑛𝑝+1) −

−
𝑢𝑛𝑝+2𝑠

3
0

6�̄�42
𝑠−(𝑛𝑝+2)ℎ3

𝜙 − ln 𝑠
𝜕𝑛𝑝

𝜕𝜙
×

×
[︂
3𝛾(+)

𝑠 𝑠−3(𝑛𝑝+1) −
𝑢𝑛𝑝+2𝑠

3
0

24�̄�42
𝑠−(𝑛𝑝+2)ℎ4

𝜙

]︂}︂
𝜙=𝜙

= 0.

(65)

In Eq. (65), all terms proportional to ℎ4
𝜙 are taken

into account, and 𝛾
(+)
𝑠 = 𝑠−3

0 (𝑓𝑛𝑝+1 − 𝛾(+) + 𝑓𝐺/𝑠
3).

The total contribution from all fluctuation regimes
to the free energy of the system at temperatures 𝑇 >
𝑇𝑐 equals

𝐹 = 𝐹𝑎 + 𝐹𝑠(𝜙) + 𝐹
(+)
0 . (66)

Here,

𝐹𝑠(𝜙) = −𝑘𝑇𝑁𝛾(+)
𝑠

(︁
ℎ𝜙 + ℎ𝑐

)︁ 2𝑑
𝑑+2

, (67)

and

𝐹
(+)
0 = −𝑘𝑇𝑁𝐸0(𝜙). (68)

The value of 𝜙 is determined from Eq. (65). In the
case 𝜏 > 𝜏*, the quantity 𝑛𝑝 is constant (close to
unity) and does not depend on ℎ𝜙 and, hence, 𝜙. The-
refore, its derivative with respect to 𝜙 vanishes. The
same is valid for the quantity 𝛾

(+)
𝑠 . Equation (65) re-

produces the result of the molecular field theory for
𝜙. For all 𝜏 < 𝜏*, the dependence of 𝜙 on the vari-
ables 𝜏 and ℎ is not analytical, and, consequently, we
have expression (66) for the free energy in the critical
region.

5. Conclusions

A technique for the description of the critical behavior
of a three-dimensional uniaxial magnet in an exter-
nal field has been developed. In its framework, the
Hamiltonian of the self-consistent field is used as a
reference system, and the partition function is cal-
culated in the quartic approximation for the distri-
bution of order-parameter fluctuations. Various forms
of a functional representation for the partition func-
tion with the singled out reference system are ob-
tained and discussed. Each of them is exact and can
be used for further calculations. The choice of the
simplest representation form for the partition func-
tion, which includes only even power exponents of
the variable (up to the fourth order inclusive), al-
lowed us to apply the results of previous researches,
which were obtained without singling out the refer-
ence system. Proceeding from this simplest form of
a representation, the free energy of a one-component
spin system in the critical region is calculated.
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The performed researches make our knowledge con-
cerning the critical properties of the systems belong-
ing to the Ising class of universality more compre-
hensive, being also a certain methodological contribu-
tion to the theoretical description of critical phenom-
ena. The results of this work obtained for the three-
dimensional Ising-like system in an external field may
be found useful for the description of fluid-gas crit-
ical points in both a one-component fluid [11–13]
and a binary fluid mixture (see, e.g., work [14]). The
functional of the partition function for those systems
corresponds to the partition function of the Ising
model in an external field. A new result in the de-
scription of the fluid-gas critical point in compari-
son with the Ising model is the dependence of the
grand partition function on the temperature and the
chemical potential. The latter is equivalent to the
inclusion of a constant external field into the Ising
model.
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М.П.Козловський, I.В.Пилюк

АНАЛIТИЧНИЙ ОПИС КРИТИЧНОЇ
ПОВЕДIНКИ ТРИВИМIРНОГО ОДНОВIСНОГО
МАГНЕТИКА В ЗОВНIШНЬОМУ ПОЛI
З ВИДIЛЕННЯМ СИСТЕМИ ВIДЛIКУ

Р е з ю м е

Роботу присвячено теоретичному вивченню критичної по-
ведiнки систем класу унiверсальностi тривимiрної моделi
Iзинга. Тривимiрна iзингоподiбна система з експоненцiйно
спадним потенцiалом взаємодiї дослiджується в методi ко-
лективних змiнних за наявностi однорiдного зовнiшнього
поля. Характерною особливiстю розрахунку статистичної
суми та вiльної енергiї одновiсного магнетика є видiлення
системи вiдлiку. Роль останньої вiдiграє гамiльтонiан мо-
лекулярного поля. Метод опису критичної поведiнки з ви-
дiленою системою вiдлiку розвинуто на основi негаусового
(четвiрного) розподiлу флуктуацiй параметра порядку (мо-
делi 𝜌4).
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