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A formulation of the thermodynamic perturbation theory for classical many-particle systems,
which is based on a self-consistent field model as the main approximation, has been pro-
posed. Systems of particles in a spatially homogeneous state and in external fields that in-
crease or decrease as the distance from the surface changes are considered as an example. The
application of the self-consistent field approach as the main approximation is found to en-
able the description of many-particle systems, in which the concentration of particles and the
interactions between them are not low, as well as phase transitions in such systems.
K e yw o r d s: perturbation theory, self-consistent field, thermodynamic quantities, dense gases
and fluids.

1. Introduction

In the case where the energy contains rather small
terms, which can be neglected in the main approx-
imation, the perturbation theory is used to calcu-
late thermodynamic quantities [1]. As the main ap-
proximation, the model of ideal gas is used most
often. In this case, the role of small terms can be
played, e.g., by the potential energy of particles in
the external field or the particle-to-particle interac-
tion if it is rather small. However, the choice of the
ideal-gas model as the zeroth-order approximation de-
mands that the particle-to-particle interaction should
be weak, which does not allow the perturbation the-
ory to be used to study the systems with broken sym-
metries, e.g., the transitions into the crystalline state,
when the translational symmetry of the system be-
comes broken. Since the phenomena associated with
the symmetry breaking result from the interaction be-
tween particles, it is important that this interaction
should be somewhat taken into account already in
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the main approximation. Such a natural approxima-
tion that preserves a relative simplicity of description
and simultaneously makes allowance for the particle-
to-particle interaction is the model of self-consistent
field, which is widely applied to study the phase tran-
sitions, in particular, between various modifications
of simple crystals (see works [2, 3] and the references
therein). Earlier [4], A.A. Vlasov paid attention to
the importance of the account for self-consistent field
effects, while describing the phenomenon of crystal-
lization in a system of neutral classical particles. The
application of the self-consistent field model turns out
also important in the liquid-state theory [5, 6], where
the energy of interaction between particles cannot
be considered as a small correction to the kinetic
energy. The self-consistent description is of special
importance, while studying the inhomogeneous fluid
states, in particular, the surface phenomena [7].

A version of thermodynamic perturbation theory,
which is proposed in this work for many-particle sys-
tems described in the framework of classical mechan-
ics, makes it possible to find corrections to the re-
sults obtained in the self-consistent field approxima-
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tion. Moreover, as was shown with the use of the
model of anharmonic quantum oscillator as an ex-
ample [8, 9], the perturbation theory remains also
relevant in the case where the interaction between
particles is not weak. The proposed formulation is
close to the approach used in the construction of
a quantum-field perturbation theory for Fermi [10]
and Bose [11] systems. In this work, a model of self-
consistent field is formulated, and a nonlinear equa-
tion for the one-particle distribution function is ob-
tained. The second-order corrections to the config-
uration integral and the free energy are found. The
obtained general relations are used to consider a spa-
tially homogeneous system and a system in external
fields that either increase or decrease, as the distance
from the surface increases. The developed approach
can be used to describe dense gases and fluids, sur-
face phenomena, and phase transitions.

2. Self-Consistent Field
Model as the Main Approximation

Let us formulate the thermodynamic perturbation
theory for classical systems that are characterized by
the Hamiltonian

𝐻(𝑝, 𝑞) = 𝑇 (𝑝) + 𝑈(𝑞), (1)

where 𝑝 ≡ {p1,p2, ...,p𝑁} are the momenta; 𝑞 ≡
≡ {r1, r2, ..., r𝑁} the coordinates, 𝑁 the total number
of particles,

𝑇 (𝑝) =

𝑁∑︁
𝑖=1

p2
𝑖

2𝑚
(2)

is the kinetic energy, and 𝑚 particle’s mass. The po-
tential energy 𝑈(𝑞) involves the interaction of parti-
cles with the external field 𝑈0(r) and the pair inter-
action between the particles,

𝑈(𝑞) =

𝑁∑︁
𝑖=1

𝑈0(r𝑖) +
1

2

𝑁∑︁
𝑖 ̸=𝑗=1

𝑈(r𝑖, r𝑗), (3)

where 𝑈(r𝑖, r𝑗) = 𝑈(r𝑗 , r𝑖).
The partition function equals 𝑍 =

∫︀
𝑒−𝛽𝐻(𝑝,𝑞)𝑑Γ,

where 𝑑Γ = 𝑑𝑝 𝑑𝑞/(𝑁 !ℎ3𝑁 ), ℎ is Planck’s constant,
and 𝛽 = 𝑇−1 is the inverse temperature. After the
integration over the momenta, the partition function
reads

𝑍 =

(︂
2𝜋𝑚𝑇

ℎ2

)︂3𝑁/2
𝑍𝑄

𝑁 !
,

where
𝑍𝑄 =

∫︁
𝑒−𝛽𝑈(𝑞)𝑑𝑞 (4)

is the configuration integral. The density of proba-
bility to find the system in a state with the set of
coordinates {𝑞} equals

𝑤(𝑞) =
exp [−𝛽𝑈(𝑞)]

𝑍𝑄
. (5)

In most cases, it is the particle-to-particle inter-
action that is considered as a perturbation. This ap-
proach is justified for rarefied systems with weak in-
teraction. For dense systems with strong interaction,
this approximation is invalid. In this case, it is con-
venient to reformulate the perturbation theory by
extracting the self-consistent field and excluding it
from the perturbation, as was done for quantum-
mechanical Fermi and Bose many-particle systems in
works [10,11]. Therefore, the interaction between par-
ticles is approximately taken into account already in
the main approximation.

Before constructing the perturbation theory, let us
introduce a self-consistent field into the theory by pre-
senting interaction (3) in the form

𝑈(𝑞) = 𝑉 (𝑞) +𝑊 (𝑞), (6)

where

𝑉 (𝑞) ≡
𝑁∑︁
𝑖=1

𝑈0(r𝑖) + �̃�(𝑞) + 𝐸0,

𝑊 (𝑞) ≡ 𝑈2(𝑞)− �̃�(𝑞)− 𝐸0.

(7)

Here, 𝑈2(𝑞) ≡ 1
2

∑︀𝑁
𝑖 ̸=𝑗=1 𝑈(r𝑖, r𝑗) is the potential en-

ergy of pair interaction, and �̃�(𝑞) =
∑︀𝑁

𝑖=1 �̃�(r𝑖) is the
potential energy of particles in a self-consistent field;
the specific form for the latter will be found later. The
energy 𝑉 (𝑞) is regarded as the main approximation,
and 𝑊 (𝑞) as a perturbation. Since,

𝑉 (𝑞) ≡
𝑁∑︁
𝑖=1

𝑉 (r𝑖) + 𝐸0,

where
𝑉 (r𝑖) ≡ 𝑈0(r𝑖) + �̃�(r𝑖),

the configuration integral (4) in the main approxima-
tion looks like

𝑍
(0)
𝑄 = 𝑒−𝛽𝐸0𝑧𝑁 , (8)
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where 𝑧 ≡
∫︀
𝑒−𝛽𝑉 (r)𝑑r. In this approximation, the

probability to find the system in a configuration with
the coordinates {𝑞} can be presented as a product
of one-particle distribution functions 𝑓(r) = 𝑒−𝛽𝑉 (r),
i.e.

𝑤(0)(𝑞) =

𝑁∏︁
𝑖=1

𝑓(r𝑖). (9)

The distribution function is normalized by the condi-
tion

∫︀
𝑓(r)𝑑r = 1.

3. Equation for Distribution Function

Let us define a self-consistent field from the require-
ment that the approximating potential energy 𝑉 (𝑞)
should be close to the exact one as much as possi-
ble. With that end in view, let us introduce the func-
tional

𝐼 ≡⟨𝑈(𝑞)− 𝑉 (𝑞)⟩ = ⟨𝑊 (𝑞)⟩ (10)

and vary it with respect to the one-particle distribu-
tion function, demanding that 𝛿𝐼 = 0. Hereafter, the
angular brackets mean the averaging with the proba-
bility density (9). As a result, we obtain the following
expression for the potential energy of a particle in the
self-consistent field:

�̃�(r) = (𝑁 − 1)

∫︁
𝑈(r, r′)𝑓(r′) 𝑑r′. (11)

Note that the same expression for the potential en-
ergy can also be obtained from the requirement of
the minimum for the free energy calculated in the
framework of the self-consistent field model. Relation
(11) together with the definition of one-particle dis-
tribution function, 𝑓(r) = 𝑒−𝛽𝑉 (r)/𝑧, brings about
the equation

𝑓(r) = 𝑧−1 exp

{︂
−𝛽

[︂
𝑈0(r)+

+ (𝑁 − 1)

∫︁
𝑈(r, r′)𝑓(r′) 𝑑r′

]︂}︂
, (12)

where 𝑧 ≡
∫︀
exp{−𝛽[𝑈0(r) + �̃�(r)]}𝑑r. The obtained

nonlinear integral equation allows us to find the dis-
tribution function and, hence, the potential energy of
a particle in the self-consistent field (11). This equa-
tion can also have solutions dependent on the coor-
dinates in the case where the external field is absent
and, therefore, can describe phase transitions with a

violation of the translational symmetry; for instance,
transitions into the crystalline state. Note that an
equation of type (12) was proposed in [4]. Later on,
it was used for the description of the crystalline state
and polymorphic transformations [2, 3]. The applica-
tion of the Bogolyubov variational principle makes it
possible to develop the variational method of solution
of the self-consistent field equation (12) [2, 3].

4. Second-Order Correction to Free Energy

To an accuracy of the second-order terms, the config-
uration integral (4) can be written in the form

𝑍𝑄 = 𝑧𝑁𝑒−𝛽𝐸0

[︂
1− 𝛽 ⟨𝑊 (𝑞)⟩+ 𝛽2

2!

⟨︀
𝑊 (𝑞)2

⟩︀]︂
. (13)

The undetermined quantity 𝐸0 is selected accord-
ing to the requirement that the first-order correc-
tion should be equal to zero,

⟨︀
𝑊 (𝑞)

⟩︀
= 0. Therefore,

𝐸0 ≡
⟨︀
𝑈2(𝑞)

⟩︀
−

⟨︀
�̃�(𝑞)

⟩︀
or

𝐸0 = −𝑁(𝑁 − 1)

2

∫︁
𝑈(r, r′)𝑓(r)𝑓(r′) 𝑑r 𝑑r′. (14)

As a result, perturbation (7) looks like

𝑊 (𝑞) ≡ [𝑈2(𝑞)−⟨𝑈2(𝑞)⟩]−
[︁
�̃�(𝑞)−

⟨
�̃�(𝑞)

⟩]︁
, (15)

so that⟨︀
𝑊 2(𝑞)

⟩︀
=

=
[︁⟨︀
𝑈2
2 (𝑞)

⟩︀
−
⟨︀
𝑈2(𝑞)

⟩︀2]︁
+
[︁⟨︀
�̃�2(𝑞)

⟩︀
−

⟨︀
�̃�(𝑞)

⟩︀2]︁−
− 2

[︁⟨︀
𝑈2(𝑞) �̃�(𝑞)

⟩︀
−

⟨︀
𝑈2(𝑞)

⟩︀⟨︀
�̃�(𝑞)

⟩︀]︁
, (16)

where the averaging, as was done earlier, is carried
out with the probability density (9). Hence, a cor-
rection to the main approximation emerges only in
the second order. To calculate it, we must determine
mean-square fluctuations of the self-consistent and
pair potential energies. Note that those quantities are
proportional to the number of particles.

Let us introduce the notations for the averaged
potential energy of two-particle interaction and its
square:⟨︀
𝑈(1, 2)

⟩︀
≡

∫︁
𝑈(r, r′)𝑓(r)𝑓(r′) 𝑑r 𝑑r′,⟨︀

𝑈2(1, 2)
⟩︀
≡

∫︁
𝑈2(r, r′)𝑓(r)𝑓(r′) 𝑑r 𝑑r′,⟨︀

𝑈(1, 2)𝑈(1, 3)
⟩︀
≡

≡
∫︁

𝑈(r, r′)𝑈(r, r′′)𝑓(r)𝑓(r′)𝑓(r′′) 𝑑r 𝑑r′ 𝑑r′′.

(17)
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In view of Eq. (17), the average self-consistent and
pair potential energies are given by the formulas⟨︀
�̃�(𝑞)

⟩︀
= 2

⟨︀
𝑈2(𝑞)

⟩︀
= 𝑁(𝑁 − 1)

⟨︀
𝑈(1, 2)

⟩︀
, (18)

and the averages of the squares and the products of
those potential energies look like⟨︀
�̃�2(𝑞)

⟩︀
= 𝑁(𝑁 − 1)2

⟨︀
𝑈(1, 2)𝑈(1, 3)

⟩︀
+

+𝑁(𝑁 − 1)3
⟨︀
𝑈(1, 2)

⟩︀2
, (19)

⟨︀
𝑈2
2 (𝑞)

⟩︀
=

1

2
𝑁(𝑁 − 1)

⟨︀
𝑈2(1, 2)

⟩︀
+

+𝑁(𝑁 − 1)(𝑁 − 2)
⟨︀
𝑈(1, 2)𝑈(1, 3)

⟩︀
+

+
1

4
𝑁(𝑁 − 1)(𝑁 − 2)(𝑁 − 3)

⟨︀
𝑈(1, 2)

⟩︀2
, (20)⟨︀

�̃�(𝑞)𝑈2(𝑞)
⟩︀
= 𝑁(𝑁 − 1)2

⟨︀
𝑈(1, 2)𝑈(1, 3)

⟩︀
+

+
1

2
𝑁(𝑁 − 1)2(𝑁 − 2)

⟨︀
𝑈(1, 2)

⟩︀2
. (21)

As a result, we obtain

⟨︀
𝑊 2(𝑞)

⟩︀
=

𝑁(𝑁 − 1)

2
×

×
[︁⟨︀
𝑈2(1, 2)

⟩︀
− 2

⟨︀
𝑈(1, 2)𝑈(1, 3)

⟩︀
+
⟨︀
𝑈(1, 2)

⟩︀2]︁
. (22)

Note that, while calculating the averaged quantities,
the cumulant expansion method [12] can be applied.

To the second-order accuracy, the free energy 𝐹 =
= −𝑇 ln𝑍 is determined by the formula

𝐹 = 𝐸0 −𝑁𝑇

[︃
1 + ln

𝑧

𝑁

(︂
2𝜋𝑚𝑇

ℎ2

)︂3/2]︃
− 1

2𝑇

⟨︀
𝑊 2(𝑞)

⟩︀
.

(23)

The first two terms in Eq. (23) correspond to the
free energy 𝐹0 in the self-consistent field approxima-
tion. With regard for Eq. (14), this quantity looks
like

𝐹0 = −𝑁(𝑁 − 1)

2

∫︁
𝑈(r, r′)𝑓(r)𝑓(r′) 𝑑r 𝑑r′ −

−𝑁𝑇

[︃
1 + ln

𝑧

𝑁

(︂
2𝜋𝑚𝑇

ℎ2

)︂3/2]︃
. (24)

5. Spatially Homogeneous System

As was mentioned above, the formulation proposed
for the perturbation theory is most efficient for the
theoretical researches of spatially inhomogeneous sys-
tems in external fields or in states with a broken
translational symmetry. However, let us first con-
sider the most simple case of a spatially homoge-
neous system, by supposing that 𝑈0(r) = 0 and
𝑈(r, r′) = 𝑈(|r − r′|). In this case, the distribution
function and the self-consistent field do not depend
on coordinates, so that

𝑓 =
1

𝑉
, 𝑧 = 𝑉 𝑒−𝛽�̃� ,

�̃� =
𝑁 − 1

𝑉
𝑈I, 𝐸0 = −𝑁(𝑁 − 1)

2𝑉
𝑈I,

(25)

and⟨︀
𝑈(1, 2)

⟩︀
=

𝑈I

𝑉
,

⟨︀
𝑈2(1, 2)

⟩︀
=

𝑈II

𝑉
,⟨︀

𝑈(1, 2)𝑈(1, 3)
⟩︀
=

𝑈2
I

𝑉 2
,

(26)

where 𝑉 is the volume of the system, and

𝑈I = 4𝜋

∞∫︁
0

𝑈(𝑟)𝑟2𝑑𝑟, 𝑈II = 4𝜋

∞∫︁
0

𝑈2(𝑟)𝑟2𝑑𝑟. (27)

At short distances, particles strongly repulse one an-
other. Therefore, integrals (27) diverge for model
potentials growing at short distances, such as the
Lennard-Jones potential [5,6]. The role of short-range
forces for classical many-particle systems was consid-
ered in work [12].

Note that the application of model potentials in-
finitely growing at short distances, for which the
Fourier image is absent, gives rise to considerable
difficulties. In particular, such potentials do not al-
low one to calculate the scattering length, in terms
of which the scattering cross-section at low energies
is expressed. A requirement of atomic hardness at
arbitrary high pressures is too strict, because there
must exist a pressure, at which the atom would be
“destroyed”, i.e. it would cease to exist as a separate
structural unit. Therefore, in our opinion, it is natu-
ral and physically substantiated to use potentials that
are finite at short distances. It should also be noted
that the quantum-chemical calculations give poten-
tials, to which this property is inherent [13, 14].
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In the simplest case, the following potential can be
used:
𝑈(𝑟) =

{︁
𝑈𝑚, 𝑟 < 𝑟0,
0, 𝑟 > 𝑟0,

(28)

(the “semitransparent” sphere model), for which

𝑈I =
4𝜋

3
𝑈𝑚𝑟30, 𝑈II =

4𝜋

3
𝑈2
𝑚𝑟30. (29)

Note that the quantity 𝑈I is directly coupled with the
observable scattering length 𝑎0 = 𝑚𝑈I/(4𝜋~2). In our
case (the self-consistent field model), the free energy
in the thermodynamic limit 𝑁 → ∞, 𝑉 → ∞, and
𝑛 = 𝑁/𝑉 = const looks like

𝐹0 = 𝑁

{︃
𝑛𝑈I

2
− 𝑇

[︃
1 + ln

1

𝑛

(︂
2𝜋𝑚𝑇

ℎ2

)︂3/2]︃}︃
. (30)

The first term in Eq. (30) corresponds to the con-
tribution given to the free energy by the particle-to-
particle interaction. Taking into account that⟨︀
𝑊 2(𝑞)

⟩︀
= 𝑁

𝑛𝑈II

2
, (31)

the second-order correction to the free energy is ob-
tained as follows:

𝐹2 = −𝑁
𝑛𝑈II

4𝑇
. (32)

The perturbation theory is applicable, if 𝐹2 ≪ 𝐹0.
Here, there are two possibilities. If 𝑛𝑈I ≫ 𝑇 , the fol-
lowing two conditions should be satisfied simultane-
ously:

𝑇

𝑈𝑚
≪ (𝑟0/𝑙)

3,
𝑇

𝑈𝑚
≫ 1, (33)

where 𝑙 = 𝑛−1/3 is the average distance between par-
ticles, Λ ≡

√︀
2𝜋~2/(𝑚𝑇 ) is the thermal wavelength

of the particle, and 𝑟0 is a characteristic radius of
the interparticle potential. For the classical descrip-
tion to be applicable, the inequality Λ ≪ 𝑙 has to be
satisfied. In view of the definition of scattering length,
conditions (33) can be rewritten in the form

𝑟30
𝑎0Λ2

≫ 1,
𝑙3

𝑎0Λ2
≪ 1. (34)

Theoretically, they can be obeyed, in principle, at
very high densities, when 𝑟0 ≫ 𝑙, but this can hardly
be realized in practice.

In the other limiting case, 𝑛𝑈I ≪ 𝑇 , which is equiv-
alent to 𝑙3 ≫ 𝑎0Λ

2, it is necessary that

𝑛𝑈II ≪ 𝑇 2, 𝑙3 ≫ 𝑎20Λ
4

𝑟30
. (35)

These requirements are satisfied at low densities. One
should pay attention that the particle-to-particle in-
teraction itself, which is characterized by the scat-
tering length, is not assumed to be small, because
the conditions for the perturbation theory to be ap-
plicable are determined by the relations between the
characteristic lengths 𝑎0, 𝑟0, 𝑙, and Λ.

With regard for the second-order correction, the
pressure is described by the formula

𝑝 = 𝑛𝑇 +
𝑛2

2

(︂
𝑈I −

𝑈II

2𝑇

)︂
= 𝑛𝑇

[︀
1 +𝐵(𝑇 )𝑛

]︀
. (36)

From whence, the following expression for the virial
coefficient is obtained:

𝐵(𝑇 ) =
1

2𝑇

(︂
𝑈I −

𝑈II

2𝑇

)︂
. (37)

As was marked above (see Eq. (33)), if 𝑛𝑈I ≫ 𝑇 , there
must be 𝑈II/𝑇 ≪ 𝑈I, so the sign of virial coefficient in
this case is determined by the sign of 𝑈I (Eq. (27)) or
the scattering length. At 𝑇 ≫ 𝑛𝑈I, the contributions
to 𝐵(𝑇 ) from 𝑈I and 𝑈II can be of the same order. In
this case, Eq. (37) can be used to determine the Boyle
temperature 𝑇B, at which 𝐵(𝑇B) = 0:

𝑇B =
𝑈II

2𝑈I
=

𝑈𝑚

2
. (38)

If 𝑏𝑛 ≪ 1, where 𝑏 = 16𝜋𝑟30/3, Eq. (36) can be rewrit-
ten in the form of the van der Waals equation,(︀
𝑝+ 𝑎𝑛2

)︀(︀
1− 𝑏𝑛

)︀
= 𝑛𝑇, (39)

where 𝑎 = (2𝜋/3)𝑟30𝑈𝑚[8𝑇/𝑈𝑚 + 𝑈𝑚/2𝑇 − 1]. In the
van der Waals theory, the parameter 𝑎 is positive
and independent of the temperature. In our case, the
sign of 𝑎 is determined by the sign of the particle-
to-particle interaction. At the repulsion, 𝑈𝑚 > 0, so
that 𝑎 > 0 as well. In addition, in the used approxi-
mation, 𝑎 depends on the temperature. However, for
potential (28), its sign is not changed, as the temper-
ature varies.

The expression for the entropy 𝑆 = − (𝜕𝐹/𝜕𝑇 )𝑉
that takes the second-order correction into account
looks like

𝑆 = 𝑁

[︃
5

2
+ ln

1

𝑛

(︂
2𝜋𝑚𝑇

ℎ2

)︂3/2]︃
−𝑁

𝑛𝑈II

4𝑇 2
. (40)
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Here, the second term gives a correction to the Sa-
ckur–Tetrode formula due to the interaction [15]. The
contribution inserted by this correction decreases, as
the temperature grows. Note that the results pre-
sented above for the trivial spatially homogeneous
case can also be obtained with the help of the stan-
dard thermodynamic perturbation theory [1]. In the
latter case, the account for the first-order correc-
tion turns out equivalent to the self-consistent field
approximation. The difference of this approach from
the standard one consists in that the contribution
of self-consistent field effects is not assumed to be
small in comparison with the results obtained in the
framework of the ideal gas model. In this special case,
the second-order corrections in both approaches co-
incide. The application of the developed approach is
not reduced to the standard perturbation theory and
plays a considerable role in the description of spatially
inhomogeneous states and phase transitions with a vi-
olation of the translational symmetry.

6. System in Homogeneous External Field

Let us apply our approach to the consideration of a
system in an external field. The self-consistent equa-
tion (12) can be presented in the form

𝑓(r) = 𝑓(r) exp
[︀
𝛽(𝜇− 𝜇0)

]︀
×

× exp

[︂
−𝛽(𝑁 − 1)

∫︁
𝑈(r, r′)𝑓(r′)𝑑r′

]︂
, (41)

where the chemical potential 𝜇 is defined by the for-
mula 𝑧 = 𝑒−𝛽𝜇. Here, we introduced the distribu-
tion function of particles in an external field in the
absence of the interaction between particles, 𝑓(r) =
= exp {−𝛽[𝑈0(r)− 𝜇0]}, and 𝑒−𝛽𝜇0 =

∫︀
𝑒−𝛽𝑈0(r)𝑑r.

Let a many-particle system with the interparticle
potential 𝑈(r, r′) = 𝑈(|r− r′|), being embedded into
the field 𝑈0(𝑥), occupy the half-space 𝑥 > 0. Here,
two possibilities must be distinguished. In the first
case, the potential 𝑈0(𝑥) increases with the coordi-
nate 𝑥. The homogeneous field 𝑈0(𝑥) = 𝑔𝑥 is an ex-
ample. In this field, the distribution function tends to
zero at infinity. Hence, all particles are mainly con-
centrated near the surface, and the particle concen-
tration falls down, as the distance grows. In the sec-
ond case, the absolute value of the field diminishes, as
the distance grows, and tends to zero at infinity. The
potential of the van der Waals forces 𝑈0(𝑥) = −𝛼/𝑥3

[16] is an example. Here, the particle concentration

far from the surface tends to an average concentra-
tion that would be in the spatially homogeneous sys-
tem. The account for those forces is of importance,
while studying the influence of boundaries on the
fluid properties, in particular, while researching the
superfluid helium films and boundary phenomena in
them [17].

First, let us consider the case where 𝑈0(𝑥) is a
growing function, and 𝑓(𝑥) → 0 at 𝑥 → ∞. In this
case, it is convenient to change to a new distribution
function 𝑓1(𝑥) = 𝑆𝑓(𝑥) normalized by the condition∫︀∞
0

𝑓1(𝑥)𝑑𝑥 = 1, where 𝑆 is the area of the surface
𝑥 = 0. Then, the self-consistent potential (11) is de-
termined by the relation

�̃�(𝑥) =
(𝑁 − 1)

𝑆

∞∫︁
0

U(|𝑥− 𝑥′|)𝑓1(𝑥′) 𝑑𝑥′, (42)

where

U(|𝑥− 𝑥′|) ≡
∞∫︁

−∞

∞∫︁
−∞

𝑈
(︁√︀

(𝑥− 𝑥′)2 + 𝑦′2 + 𝑧′2
)︁
𝑑𝑦′𝑑𝑧′.

(43)
The self-consistent Eq. (41) looks like

𝑓1(𝑥)

𝑓1(𝑥)
= exp

{︂
−𝛽

[︂
𝜇0 − 𝜇+

+(𝑁 − 1)𝑆−1

∞∫︁
0

U(|𝑥− 𝑥′|)𝑓1(𝑥′)𝑑𝑥′
]︂}︂
. (44)

In the thermodynamic limit–𝑁 → ∞ and 𝑆 → ∞,
provided that 𝑁/𝑆 = const–and in the self-consistent
field approximation (see Eq. 24), the free energy per
unit area equals

𝐹0

𝑆
= −𝑛2

𝑠

2

∫︁
U(|𝑥− 𝑥′|)𝑓1(𝑥)𝑓1(𝑥′) 𝑑𝑥𝑑𝑥′ −

−𝑇𝑛𝑠

[︃
1 + ln

𝑧1
𝑛𝑠

(︂
2𝜋𝑚𝑇

ℎ2

)︂3/2]︃
, (45)

where 𝑛𝑠 = 𝑁/𝑆 is the surface concentration of parti-
cles, and 𝑧1 =

∫︀∞
0

exp
{︁
−𝛽

[︁
𝑈0(𝑥) + �̃�(𝑥)

]︁}︁
𝑑𝑥. The

second-order correction to the free energy is

𝐹2

𝑆
= − 𝑛2

𝑠

4𝑇

∞∫︁
0

∞∫︁
0

𝑈*(|𝑥− 𝑥′|)𝑓1(𝑥)𝑓1(𝑥′) 𝑑𝑥𝑑𝑥′, (46)

where

𝑈*(|𝑥−𝑥′|)≡
∞∫︁

−∞

∞∫︁
−∞

𝑈2
(︁√︀

(𝑥−𝑥′)2+𝑦′2+𝑧′2
)︁
𝑑𝑦′𝑑𝑧′. (47)
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If the potential is short-range, and if the distribution
function changes little at distances of the order of the
potential radius, the obtained relations can be written
in a simpler form. By approximating potentials (43)
and (47) by delta-functions, 𝑈(|𝑥−𝑥′|) = 𝜐0𝛿(𝑥−𝑥′)
and 𝑈*(|𝑥−𝑥′|) = 𝜐*𝛿(𝑥−𝑥′), we obtain the following
formulas for the self-consistent potential (42) and the
correction to the free energy (46):

�̃�(𝑥) = 𝜐0
(𝑁 − 1)

𝑆
𝑓1(𝑥),

𝐹2

𝑆
= −𝜐*

𝑛2
𝑠

4𝑇

∞∫︁
0

𝑓2
1 (𝑥)𝑑𝑥.

(48)

7. System in the van der Waals Force Field

Let us also consider the case of a potential that falls
down, as the distance 𝑥 → ∞. Now, the influence of
the potential disappears at large distances. Therefore,
it is convenient to write down the distribution func-
tion in the form

𝑓1(𝑥) = 𝑓1∞ + 𝜒(𝑥), (49)

where we extracted the value of distribution function
at large distances, 𝑓1∞, so that 𝜒(𝑥) → 0 at 𝑥 → ∞.
The self-consistent potential is presented similarly, so
that the distribution function and the self-consistent
potential are determined at infinity by the relations

𝑓1∞ = 𝑧−1
1 exp

(︀
−𝛽�̃�∞

)︀
, �̃�∞ =

(𝑁 − 1)𝜐0
𝑆

𝑓1∞, (50)

where 𝜐0 = 2
∫︀∞
0

𝑈(|𝑥|)𝑑𝑥. The contributions to the
distribution function and the potential that vanish at
infinity satisfy the equations

𝜒(𝑥) = 𝑓1∞

{︁
𝑒−𝛽[𝑈0(𝑥)+�̃�𝜒(𝑥)] − 1

}︁
, (51)

�̃�𝜒(𝑥) = −𝑓1∞
(𝑁 − 1)

𝑆

∞∫︁
𝑥

U(|𝑥′|)𝑑𝑥′ +

+
(𝑁 − 1)

𝑆

∞∫︁
−𝑥

U(|𝑥′|)𝜒(𝑥′ + 𝑥) 𝑑𝑥′. (52)

Taking into account that

𝑧1 = 𝑒−𝛽�̃�∞

[︂
𝑉

𝑆
+

1

𝑓1∞

∞∫︁
0

𝜒(𝑥)𝑑𝑥

]︂
, (53)

we obtain

𝑓1∞ =
𝑆

𝑉

[︂
1−

∞∫︁
0

𝜒(𝑥)𝑑𝑥

]︂
. (54)

Note that

𝑛𝑠 =
𝑁

𝑆

∞∫︁
0

𝜒(𝑥)𝑑𝑥 (55)

is the surface concentration of particles in the area,
where the potential 𝑈0(𝑥) acts, and the quantity∫︀∞
0

𝜒(𝑥)𝑑𝑥 = 𝑆𝑛𝑠/𝑁 ≡ 𝑁𝑠/𝑁 is the ratio between
the number of “near-surface” particles and the total
number of particles in the system. In terms of those
notations, we have

𝑓1∞ =
𝑆

𝑉

(︂
1− 𝑁𝑠

𝑁

)︂
,

𝑧1 =
𝑉

𝑆
𝑒−𝛽�̃�∞

(︂
1− 𝑁𝑠

𝑁

)︂−1

.

(56)

The presentation of the distribution function in the
form (49) allows the free energy to be divided into the
bulk and surface components: 𝐹0 = 𝐹0𝑉 +𝐹0𝑆 , where

𝐹0𝑉

𝑁
= −

{︃
𝑛𝑤0

2𝑉
+ 𝑇

[︃
1 + ln

1

𝑛

(︂
2𝜋𝑚𝑇

ℎ2

)︂3/2]︃}︃
+ 𝑛𝜐0,

(57)

𝐹0𝑆

𝑁
= 𝑇 ln

(︂
1− 𝑁𝑠

𝑁

)︂
− 𝑛

(︂
𝑤1 + 𝜐0

𝑁𝑠

𝑁
− 𝑤0

𝑉

𝑁𝑠

𝑁

)︂
−

− 𝑛

2

(︂
𝑤2 −

2𝑤1

𝑉

𝑁𝑠

𝑁
+

𝑤0

𝑉 2

𝑁2
𝑠

𝑁2

)︂
, (58)

𝑛 = 𝑁/𝑉 , and

𝑤0 =

∫︁
𝑈(|r− r′|) 𝑑r𝑑r′,

𝑤1 = 𝑆−1

∫︁
𝑈(|r− r′|)𝜒(𝑥′) 𝑑r𝑑r′,

𝑤2 = 𝑆−2

∫︁
𝑈(|r− r′|)𝜒(𝑥)𝜒(𝑥′) 𝑑r𝑑r′.

(59)

The evaluation of those quantities gives

𝑤0 ∼ 𝑈𝜂𝑉, 𝑤1 ∼ 𝑈𝜂(𝑁𝑠/𝑁), 𝑤2 ∼ (𝑈𝜂/𝑉 )(𝑁𝑠/𝑁)2,

where 𝑈𝜂 ∼
∫︀
𝑈(|r− r′|)𝑑r′.
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The second-order correction to the free energy also
consists of the bulk and surface contributions, 𝐹2 =
= 𝐹2𝑉 + 𝐹2𝑆 , where

𝐹2𝑉

𝑁
= − 𝑛

4𝑇

𝑤0*

𝑉
,

𝐹2𝑆

𝑁
= − 𝑛

4𝑇

[︂
2

(︂
𝑤1* −

𝑤0*

𝑉

𝑁𝑠

𝑁

)︂
+

+

(︂
𝑤2*𝑉 − 2𝑤1*

𝑁𝑠

𝑁
+

𝑤0*

𝑉

𝑁2
𝑠

𝑁2

)︂]︂
,

(60)

and the quantities 𝑤0*, 𝑤1*, and 𝑤2* can be deter-
mined using formulas (59), in which 𝑈(|r−r′|) in the
integrands is replaced by 𝑈2(|r − r′|). The obtained
relations can be used to study the behavior of dense
gases and fluids near their boundaries with solids, as
well as the surface phenomena [7].

8. Conclusions

In this work, the thermodynamic perturbation the-
ory based on a self-consistent field model as the
main approximation is formulated for classical sys-
tems. The model of ideal gas, which is usually used
as the main approximation, is not suitable for the
description of systems with a high density and a
not weak particle-to-particle interaction, e.g., dense
gases and fluids. In dense systems, every particle
permanently interacts with a large number of other
particles. Therefore, such concepts as the mean free
path and two-particle collisions, which are used in
the kinetic theory of gases, cannot be applied, e.g.,
to fluids. On the contrary, the idea of self-consis-
tent field corresponds well to the physical situation
in dense systems. In addition, the approximate ac-
count for the interaction between particles makes
it possible, in principle, to describe phase transi-
tions already in the main approximation. The pro-
posed approach can be efficient, while describing
systems with a large number of particles under in-
homogeneous conditions, for instance, near a sur-
face or a boundary with a solid. In dense systems,
besides pair interactions, a substantial contribution
can be made by ternary and higher-order interac-
tions [3, 18]. Although the perturbation theory was
developed here, by taking only the pair interaction
into account, the equations obtained can be gen-
eralized in a natural way to the case of ternary
forces.
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Ю.М.Полуектов

ТЕРМОДИНАМIЧНА ТЕОРIЯ ЗБУРЕНЬ
ДЛЯ КЛАСИЧНИХ СИСТЕМ В НАБЛИЖЕННI
САМОУЗГОДЖЕНОГО ПОЛЯ

Р е з ю м е

Запропоновано формулювання термодинамiчної теорiї збу-
рень для багаточастинкової системи класичних частинок,
що засноване на виборi у ролi головного наближення мо-
делi самоузгодженого поля. Як приклад використання за-
пропонованого пiдходу, розглянуто систему частинок у
просторово-однорiдному станi i в зовнiшнiх полях, що зро-
стають i спадають з вiдстанню вiд поверхнi. Пiдкреслено,
що використання моделi самоузгодженого поля як основ-
ного наближення дає можливiсть опису багаточастинкових
систем з не малою густиною i не слабкою мiжчастинковою
взаємодiєю, а також фазових переходiв в них.
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