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The aim of the paper is to explain, on the basis of the strict equations of quantum geometro-
dynamics for a cosmological model with the Robertson–Walker metric, the possible change of
a regime of the expansion of the universe, from acceleration to deceleration or vice versa. We
show that the change of the rate of expansion can point to the existence of a particular type
of forces acting in the universe. It is indicated that these forces have the quantum nature. The
cause of the expansion and a change of its regimes is a special form of the effective potential
well, in which the universe is moving as a whole.
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1. Introduction

According to the standard cosmological model, the
very early universe went through a period of acceler-
ated exponential expansion, which followed by a pe-
riod of deceleration. The expansion of the present-
day universe is accelerating again [1, 2]. It is as-
sumed that the overwhelming majority of matter in
the universe (∼95%) is in the form of substances of
the unknown origin called the dark energy and the
dark matter. Concerning the physical properties of
these substances, it is known that the dark matter
is gravitating, while the dark energy is antigravitat-
ing. The competition between these two components
of the dark sector of matter-energy in the universe
determines the dynamics of the expansion which can
change in the course of time from deceleration, when
the dark matter dominates, to acceleration, when the
repulsive action of the dark energy is predominant.

Since the physical nature of the dark matter and
the dark energy remains unknown till now, numerous
different models were proposed (see, e.g., Refs. [3–
5]). These models are intended to reconcile the clas-
sical theory of gravity, based on general relativity,
with current astrophysical data.
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It is conceivable that the transition from the decel-
erating expansion to the accelerating expansion oc-
curred at a redshift of ≈ 0.6, as well as the transition
from the inflation to the radiation-domination, could
be a reflection of the internal property of the universe.
This demonstrates that the universe is a more compli-
cated system than it is supposed in general relativity.
For example, the universe could be a quantum object.

The aim of the present paper is to explain, on the
basis of the strict equations of quantum geometro-
dynamics within a specific, rather simple, exactly
solvable cosmological model, the possible change of
a regime of the expansion of the universe. We show
that the change of the rate of expansion can point to
the existence of a particular type of forces acting in
the universe. It is indicated that these forces have the
quantum nature.

In Sect. 2, we shortly review the Hamiltonian for-
malism for the minisuperspace model based on the Di-
rac–Arnowitt–Deser–Misner approach to general rel-
ativity [6, 7], expounded in Refs. [8, 9]. The canoni-
cal quantization of matter and gravitational fields is
given here. We demonstrate that, finally, the problem
of the dynamics of the universe can be reduced to the
problem of one-dimensional motion of an analog par-
ticle with arbitrary mass and zero total energy in the
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force field of the potential formed by the curvature
of space, matter, and quantum additions to the en-
ergy density and the pressure of matter, which are
calculated precisely. In Sect. 3, the specific quantum
model of the universe with matter in the form of a
dust is studied. The results obtained in the paper are
summarized in Sect. 4.

Throughout the paper, the Planck system of units
is used. As a result, all quantities in the equations be-
come dimensionless. The length 𝑙P =

√︀
2𝐺~/(3𝜋𝑐3)

is taken as a unit of length, and the 𝜌P = 3𝑐4/(8𝜋𝐺𝑙2P)
is used as a unit of energy density and pressure. The
proper time 𝜏 is measured in units of length. An arc
time (conformal time) 𝑇 is expressed in radians. The
scalar field is taken in 𝜑P =

√︀
3𝑐4/(8𝜋𝐺), and so on.

Here, 𝐺 is Newton’s gravitational constant.

2. Theory

2.1. Hamiltonian Formalism

In the present paper, we confine ourselves to a study
of the isotropic cosmological model. The space-time
is described by the Robertson–Walker metric

𝑑𝑠2 = 𝑎2[𝑑𝑇 2 − 𝑑Ω2
3], (1)

where 𝑎 is the cosmic scale factor, which is a function
of time, 𝑇 is the time variable connected with the
proper time 𝜏 by the differential equation 𝑑𝜏 = 𝑎𝑑𝑇 ,
𝑇 is the “arc-parameter measure of time”: during
the interval 𝑑𝜏 , a photon moving on a hypersphere
of radius 𝑎(𝜏) covers an arc 𝑑𝑇 measured in radi-
ans [10]. The quantity 𝑑Ω2

3 is a line element on a unit
three-sphere. Following the ADM formalism [6,7], one
can extract the so-called lapse function 𝑁 , which
specifies the time reference scale, from the total dif-
ferential 𝑑𝑇 : 𝑑𝑇 = 𝑁𝑑𝜂, where 𝜂 is the “arc time” co-
inciding with 𝑇 for 𝑁 = 1 (cf. Refs. [10, 11]). In the
general case, the function 𝑁 plays the role of a La-
grange multiplier in the Hamiltonian formalism, and
it should be taken into account in an appropriate way.

To be specific, we consider the cosmological system
(universe) described by the Hamiltonian [8, 9]

𝐻 =
𝑁

2

{︀
−𝜋2

𝑎 − 𝑎2 + 𝑎4[𝜌𝜑 + 𝜌𝛾 ]
}︀
+

+𝜆1

{︂
𝜋Θ − 1

2
𝑎3𝜌0𝑠

}︂
+ 𝜆2

{︂
𝜋�̃� +

1

2
𝑎3𝜌0

}︂
, (2)

where 𝜋𝑎, 𝜋Θ, 𝜋�̃� are the momenta canonically conju-
gate with the variables 𝑎, Θ, and �̃�, 𝜌𝜑 is the energy

density of matter (the field 𝜑), 𝜌𝛾 is the energy den-
sity of a perfect fluid, which defines a material refer-
ence frame [8, 12], and it is a function of the density
of the rest mass 𝜌0 and the specific entropy 𝑠 [13],
Θ is the thermasy, �̃� is the potential for the specific
free energy taken with an inverse sign (for details, see
Ref. [8]), and 𝑁 , 𝜆1, and 𝜆2 are the Lagrange multi-
pliers.

Hamiltonian (2) is a linear combination of con-
straints and thus weakly vanishes, 𝐻 ≈ 0. The varia-
tions of the Hamiltonian with respect to 𝑁 , 𝜆1, and
𝜆2 give three constraint equations,

−𝜋2
𝑎 − 𝑎2 + 𝑎4[𝜌𝜑 + 𝜌𝛾 ] ≈ 0,

𝜋Θ − 1

2
𝑎3𝜌0𝑠 ≈ 0, 𝜋�̃� +

1

2
𝑎3𝜌0 ≈ 0.

(3)

From the conservation of these constraints in time, it
follows that the number of particles of a perfect fluid
in the proper volume 1 1

2𝑎
3 and the specific entropy

conserve: 𝐸0 ≡ 1
2𝑎

3𝜌0 = const, 𝑠 = const. With re-
gard for these conservation laws and the vanishing of
the momenta conjugate with the variables 𝜌0 and 𝑠,
one can discard the degrees of freedom corresponding
to these variables and convert the second-class con-
straints into first-class constraints in accordance with
Dirac’s proposal [8, 14].

It is convenient to choose the perfect fluid with
the density 𝜌𝛾 in the form of relativistic matter (ra-
diation). Then one can put 𝑎4𝜌𝛾 ≡ 𝐸 = const in
Eq. (3). The matter field with the energy density 𝜌𝜑
and the pressure 𝑝𝜑 can be taken for definiteness in
the form of a uniform scalar field 𝜑,

𝜌𝜑 =
2

𝑎6
𝜋2
𝜑 + 𝑉 (𝜑), 𝑝𝜑 =

2

𝑎6
𝜋2
𝜑 − 𝑉 (𝜑), (4)

where 𝑉 (𝜑) is the potential of this field, and 𝜋𝜑 is
the momentum conjugate with 𝜑. After the averag-
ing with respect to appropriate quantum states, the
scalar field turns into the effective matter fluid (see
Ref. [9], and below).

The equation of motion for the classical dynamical
variable 𝒪 = 𝒪(𝑎, 𝜑, 𝜋𝑎, 𝜋𝜑, ...) has the form

𝑑𝒪
𝑑𝑇

≈ {𝒪, 1
𝑁
𝐻}, (5)

where 𝐻 is Hamiltonian (2), {., .} are the Poisson
brackets.

1 This volume is equal to 2𝜋2𝑎3, where 𝑎 is taken in units of
length.

ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 7 665



V.E. Kuzmichev, V.V. Kuzmichev

2.2. Quantization

In quantum theory, the first-class constraint equa-
tions (3) become constraints on the state vector
Ψ [14] and, in this way, define the space of phys-
ical states, which can be turned into a Hilbert
space (cf. Ref. [15]). Passing from classical variables
in Eqs. (2)–(4) to the corresponding operators, us-
ing the conservation laws, and introducing the non-
coordinate co-frame

ℎ𝑑𝜏 = 𝑠𝑑Θ− 𝑑�̃�, ℎ𝑑𝑦 = 𝑠𝑑Θ+ 𝑑�̃�, (6)

where ℎ =
𝜌𝛾+𝑝𝛾

𝜌0
is the specific enthalpy, 𝑝𝛾 is the

pressure of radiation, and 𝑦 is a supplementary vari-
able, we obtain [8, 9](︁
−𝜕2𝑎 + 𝑎2 − 2𝑎�̂�𝜑 − 𝐸

)︁
|Ψ⟩ = 0, 𝜕𝑦|Ψ⟩ = 0,(︂

−𝑖𝜕𝑇 − 2

3
𝐸

)︂
|Ψ⟩ = 0,

(7)

where

�̂�𝜑 =
1

2
𝑎3𝜌𝜑 (8)

is the Hamiltonian operator of the scalar field 𝜑, the
operator 𝜌𝜑 is described by Eq. (4) with 𝜋𝜑 = −𝑖𝜕𝜑.
From Eq. (7), it follows that the evolution of the state
vector Ψ in time is described by the exponential mul-
tiplier as follows:

Ψ(𝑇 ) = e 𝑖 2
3 𝐸(𝑇−𝑇0)Ψ(𝑇0), (9)

so that the arc-parameter 𝑇 appears to be the
most natural time variable in quantum theory as
well. Here, 𝑇0 is an arbitrary constant taken as a time
reference point. The vector Ψ(𝑇0) ≡ |𝜓⟩ is defined
in the space of two variables 𝑎 and 𝜑. According to
Eqs. (7), it is annihilated by the constraint equation(︁
−𝜕2𝑎 + 𝑎2 − 2𝑎�̂�𝜑 − 𝐸

)︁
|𝜓⟩ = 0. (10)

By substituting the Poisson brackets with the com-
mutators of operators �̂� = {𝑎,−𝑖𝜕𝑎} and 1

𝑁 �̂�, we ob-
tain the quantum analog of Eq. (5) for the operator
of momentum 𝜋𝑎 = −𝑖𝜕𝑎 and its time derivative

⟨𝜓| − 𝑖𝜕𝑎|𝜓⟩ = ⟨𝜓| − 𝑑𝑎

𝑑𝑇
|𝜓⟩, (11)

⟨𝜓| − 𝑖
𝑑

𝑑𝑇
𝜕𝑎|𝜓⟩ = ⟨𝜓|𝑎− �̂�𝜑 + 3�̂�𝜑|𝜓⟩, (12)

where

�̂�𝜑 =
1

2
𝑎3𝑝𝜑 (13)

is the Lagrangian operator of the scalar field, and 𝑝𝜑
is given by Eq. (4) with 𝜋𝜑 = −𝑖𝜕𝜑.

The operator on the left-hand side of Eq. (10) is not
the Hamiltonian of the system (it has the dimensions
of [energy]× [length] in physical units). Whether this
operator is self-adjoint depends on the behavior of
the vector |𝜓⟩ and its first derivatives with respect
to the scale factor and field variables on the bound-
aries of the ranges of their values. In this connection,
we consider the Hamiltonian �̂�𝜑, which can be diag-
onalized by means of some state vectors ⟨𝑥|𝑢𝑘⟩ of a
quantum scalar field in the representation of the gen-
eralized variable 𝑥 = 𝑥( 12𝑎

3, 𝜑). The explicit form of 𝑥
is determined by the form of the potential 𝑉 (𝜑) taken
as a real function [9]. Assuming that the vectors |𝑢𝑘⟩
satisfy the completeness condition,

∑︀
𝑘 |𝑢𝑘⟩⟨𝑢𝑘| = 1,

and that they are orthonormalized, ⟨𝑢𝑘|𝑢𝑘′⟩ = 𝛿𝑘𝑘′ ,
we guarantee the self-adjointness of the operator �̂�𝜑

and the reality of the function 𝑀𝑘(𝑎) in the equation

⟨𝑢𝑘|�̂�𝜑|𝑢𝑘′⟩ =𝑀𝑘(𝑎)𝛿𝑘𝑘′ , (14)

where the index of the state 𝑘 can take both dis-
crete and continuous values (in the latter case, the
condition of orthogonality of the state vectors |𝑢𝑘⟩ is
written by means of the Dirac delta function), and
𝑀𝑘(𝑎) =

1
2𝑎

3𝜌𝑚 is the proper energy of matter in the
volume 1

2𝑎
3. The energy density and the pressure of

matter 2,

𝜌𝑚 = ⟨𝑢𝑘|𝜌𝜑|𝑢𝑘⟩, 𝑝𝑚 = ⟨𝑢𝑘|𝑝𝜑|𝑢𝑘⟩ (15)

have the form

𝜌𝑚 =
2𝑀𝑘(𝑎)

𝑎3
, 𝑝𝑚 = 𝑤𝑚𝜌𝑚, (16)

where

𝑤𝑚 = −1

3

𝑑 ln𝑀𝑘(𝑎)

𝑑 ln 𝑎
(17)

is the equation of state parameter. In the model
𝑉 (𝜑) = 𝜆𝛼𝜑

𝛼, where 𝜆𝛼 is the coupling constant and
𝛼 ≥ 0, matter reduces to a barotropic fluid with the
parameter 𝑤𝑚 = 𝛼−2

𝛼+2 . For 𝛼 = 0, the barotropic fluid

2 The index 𝑘 is omitted.
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takes the form of the vacuum of the scalar field in
the 𝑘-th state. The value 𝛼 = 1 corresponds to the
strings. Matter in the form of a dust is reproduced
by 𝛼 = 2, whereas 𝛼 = 4 leads to the relativistic
matter and so on. The so-called stiff Zel’dovich mat-
ter is obtained in the limiting case 𝛼 = ∞.

In the general case, the proper energy 𝑀𝑘(𝑎) de-
pends on 𝑎. It describes a classical source (as a mass-
energy) of the gravitational field in 𝑘-th state. In prin-
ciple, it may contain the contribution from both lu-
minous and dark matters.

Using Eq. (14), one can integrate Eqs. (10)–(12)
with respect to the matter field variable. Let us ex-
press the vector |𝜓⟩ in the form of the expansion in
the complete set of states |𝑢𝑘⟩,

|𝜓⟩ =
∑︁
𝑘

|𝑢𝑘⟩⟨𝑢𝑘|𝜓⟩. (18)

Then Eq. (10) yields the equation for the function
⟨𝑎|𝑓𝑘⟩ ≡ ⟨𝑢𝑘|𝜓⟩,(︀
−𝜕2𝑎 + 𝑎2 − 2𝑎𝑀𝑘(𝑎)

)︀
|𝑓𝑘⟩ = 𝐸|𝑓𝑘⟩. (19)

This equation can be considered as an eigenvalue
equation. Its solution |𝑓𝑘⟩ is an eigenfunction corre-
sponding to the eigenvalue 𝐸. The function |𝑓𝑘⟩ de-
scribes the geometrical properties of the quantum
universe filled with matter, whose mass-energy is
𝑀𝑘(𝑎).

In order to turn to the classical observables (such
as the Hubble expansion rate and the deceleration
parameter), we extract the amplitude and the phase
𝑆𝑘(𝑎) in the function |𝑓𝑘⟩,

⟨𝑎|𝑓𝑘⟩ =
𝐶𝑘√︀
𝜕𝑎𝑆𝑘(𝑎)

𝑒𝑖𝑆𝑘(𝑎), (20)

where 𝐶𝑘 is the constant determined by the boundary
condition on the function ⟨𝑎|𝑓𝑘⟩, e.g., on the asymp-
totics 𝑎 → ∞. If the function |𝑓𝑘⟩ is real, then it is
expressed through the Euclidean phase 𝑆𝐸 = −𝑖𝑆𝑘. If
the phase 𝑆𝑘 is a real function, then Eq. (20) will de-
scribe the outgoing or incoming wave propagating in
the space of the scale factor 𝑎. In this case, the gen-
eral solution of Eq. (19) will be a superposition of |𝑓𝑘⟩-
and ⟨𝑓𝑘|-states separately describing the expanding or
contracting quantum universe (cf. Ref. [16]).

Substituting expression (20) into Eq. (19) and tak-
ing into account that ⟨𝑎|𝑓𝑘⟩ is nontrivial, we obtain

the non-linear equation for the phase 𝑆𝑘(𝑎)

(𝜕𝑎𝑆𝑘)
2 + 𝑎2 − 2𝑎𝑀𝑘(𝑎)− 𝐸 =

=
3

4

(︂
𝜕2𝑎𝑆𝑘

𝜕𝑎𝑆𝑘

)︂2
− 1

2

𝜕3𝑎𝑆𝑘

𝜕𝑎𝑆𝑘
. (21)

Using expansion (18) and representation (20),
Eq. (11) can be rewritten in the form

⟨Ψ(𝑇0)|
(︂
𝜕𝑎𝑆𝑘 +

𝑖

2

𝜕2𝑎𝑆𝑘

𝜕𝑎𝑆𝑘
+
𝑑𝑎

𝑑𝑇

)︂
|Ψ(𝑇0)⟩ = 0. (22)

Since the instant of time 𝑇0 is arbitrary, one gets the
relation between the classical momentum 𝜋𝑎 = − 𝑑𝑎

𝑑𝑇
and the phase 𝑆𝑘(𝑎)

𝜕𝑎𝑆𝑘 +
𝑖

2

𝜕2𝑎𝑆𝑘

𝜕𝑎𝑆𝑘
= − 𝑑𝑎

𝑑𝑇
, (23)

where the second term on the left-hand side follows
from the amplitude of function (20) and has the
quantum nature (it is proportional to 𝑙2P in ordinary
units). In the classical limit, the right-hand side of
Eq. (21) vanishes and this equation turns into the
Hamilton–Jacobi equation for the action 𝑆𝑘(𝑎).

Using Eq. (23), one can reduce Eq. (21) to the form

1

2

(︂
𝑑𝑎

𝑑𝑇

)︂2
+ 𝑈(𝑎) = 0, (24)

where

𝑈(𝑎) =
1

2

[︀
𝑎2 − 2𝑎𝑀𝑘(𝑎)−𝑄𝑘(𝑎)− 𝐸

]︀
. (25)

The function

𝑄𝑘(𝑎) = 𝑖𝜕2𝑎𝑆𝑘 +
1

2

[︃(︂
𝜕2𝑎𝑆𝑘

𝜕𝑎𝑆𝑘

)︂2
− 𝜕3𝑎𝑆𝑘

𝜕𝑎𝑆𝑘

]︃
(26)

determines the quantum correction 𝜌𝑄 to the energy
density of matter in the form

𝜌𝑄 =
𝑄𝑘(𝑎)

𝑎4
≡ 2𝑀𝑄(𝑎)

𝑎3
, (27)

where 𝑀𝑄(𝑎) = 1
2𝑎

3𝜌𝑄 is the proper energy of the
quantum source of the gravitational field. The pres-
sure produced by the quantum source is

𝑃𝑄 = 𝑤𝑄𝜌𝑄, (28)
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where

𝑤𝑄 =
1

3

(︂
1− 𝑑 ln𝑄𝑘(𝑎)

𝑑 ln 𝑎

)︂
(29)

is the equation of state parameter, in which the first
term is a correction for relativity, while the second
term comes from the quantum dynamics of the sys-
tem.

According to Eqs. (25)–(29), all quantum correc-
tions to the energy density and the pressure of ordi-
nary matter in the universe are collected in the grav-
itational quantum source function 𝑄𝑘(𝑎).

Passing to dimensional physical units, we find [9]
that the first term in 𝑄𝑘 is proportional to 𝑙2P, while
the term with higher derivatives of the phase 𝑆𝑘

in the square brackets of Eq. (26) is proportional to
𝑙4P. Therefore, one can conclude that the quantum
corrections make contributions ∼~ and ∼~2 to the
dynamics of the expanding universe.

From Eq. (24) after the differentiation with respect
to 𝑇 , we obtain

𝑑2𝑎

𝑑𝑇 2
= −𝑑𝑈(𝑎)

𝑑𝑎
. (30)

The formulae (24) and (30) allow us to draw an
analogy with the equations of classical mechanics de-
scribing the conservation of energy of a particle mov-
ing in the potential well (25). These relations may be
interpreted as the equations that describe the motion
of a particle, an analog of the universe, with an arbi-
trary mass and the zero total energy under the action
of the force

𝐹 (𝑎) = −𝑑𝑈(𝑎)

𝑑𝑎
= −𝑎+𝑀𝑘(𝑎)+

+ 𝑎
𝑑𝑀𝑘(𝑎)

𝑑𝑎
+

1

2

𝑑𝑄𝑘(𝑎)

𝑑𝑎
. (31)

In addition to the space curvature effect and the mass
term, this force involves the gradients (pressures) of
classical and quantum gravitational sources.

It should be pointed out that relations (24) and
(30) only formally coincide with the equations of clas-
sical mechanics. They describe the universe, in which,
in addition to the classical source of a gravitational
field in the form of matter with the mass 𝑀𝑘(𝑎), there
is a relativistic quantum source with the mass 𝑀𝑄(𝑎),
which can have, under specific conditions, a serious
influence on the dynamics of the universe. These con-
ditions depend on the relation between the masses

𝑀𝑘(𝑎) and 𝑀𝑄(𝑎). The mass 𝑀𝑘(𝑎) is given by the
Hamiltonian �̂�𝜑 (8), i.e., in the end, by the poten-
tial 𝑉 (𝜑) chosen from model arguments. The mass
𝑀𝑄(𝑎) is defined by the quantum source function
𝑄𝑘(𝑎), whose form (26) is totally determined by the
solution of the quantum problem (21).

Passing to the proper time 𝜏 , one reduces Eqs. (24)
and (30) to(︂
�̇�

𝑎

)︂2
= 𝜌tot −

1

𝑎2
,

�̈�

𝑎
= −1

2
(𝜌tot + 3𝑝tot), (32)

where the dots denote the derivatives with respect to
𝜏 , and

𝜌tot = 𝜌𝑚 + 𝜌𝛾 + 𝜌𝑄, 𝑝tot = 𝑝𝑚 + 𝑝𝛾 + 𝑃𝑄. (33)

The deceleration parameter 𝑞 = −𝑎�̈�
�̇�2 in the model

under consideration is reduced to the expression

𝑞 = 1− 𝑎

2𝑈

𝑑𝑈

𝑑𝑎
. (34)

In the approximation 𝑄𝑘 = 0, relations (32) and
(33) reduce to the ordinary Einstein–Friedmann equa-
tions, which describe the closed universe filled with
matter with the density 𝜌𝑚 and radiation with the
density 𝜌𝛾 . The quantum correction to the pressure of
matter is stipulated by the fact that the state vector
|𝜓⟩ (18) is a superposition of all possible states of the
classical source of the gravitational field 𝑀𝑘(𝑎) [9].

Equations (24) and (30) are exact. From these
equations, it follows that, in general case, the force
(31) can perform both the positive work on the uni-
verse, which is similar to the work of the repulsive
forces of the dark energy, and the negative work anal-
ogous to the work of the attractive forces of the dark
matter. The kind of work, which is performed on the
universe, depends on the sign and behavior of the po-
tential well 𝑈(𝑎) in Eq. (24).

The influence of a gravitational quantum source on
the dynamics of the expanding universe depends on
the value and the sign of the energy density 𝜌𝑄 (27)
and the pressure 𝑃𝑄 (28).

If there exists the domain, where the function
𝑄𝑘(𝑎) > 0, and ln𝑄𝑘(𝑎) depends on ln 𝑎, so that
𝑤𝑄 can be parametrized in the form 𝑤𝑄 = − 1

3𝛿,
where 𝛿 is an arbitrary positive or negative constant,
then the quantum corrections can imitate, for ex-
ample, the contribution from the de Sitter vacuum
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(𝛿 = 3), domain walls (𝛿 = 2), strings (𝛿 = 1),
dust (𝛿 = 0), radiation (𝛿 = −1), or perfect gas
(𝛿 = −2). In such a model, the quantum source is
𝑄𝑘(𝑎) ∼ 𝑎𝛿+1. Identifying the energy density 𝜌𝑄 > 0
with the energy density of the dark energy, one finds
that the case 𝛿 = 3 reproduces the cosmological con-
stant [3], the values 1 < 𝛿 < 3 correspond to the
quintessence [17], whereas the phantom field [18] is
described by the values 𝛿 > 3.

However, it is possible that the quantum effects will
generate the quantum corrections, for which the func-
tion 𝑄𝑘(𝑎) < 0, and the corresponding energy density
is negative. This case is not extraordinary. According
to quantum field theory, for instance, the vacuum
fluctuations make a negative contribution to the field
energy per unit area (the Casimir effect). As was
shown in Ref. [19], the quantum correction 𝜌𝑄 takes
a negative value near the initial cosmological singu-
larity.

In order to find out the impact of the mass 𝑀𝑘(𝑎)
and the quantum source function 𝑄𝑘(𝑎) on the evo-
lution of the universe, we consider a specific exactly
solvable quantum problem.

3. An Exactly Solvable Model

Let matter be represented by a dust (𝑝𝑚 = 0). Such a
type of matter is reproduced by the scalar field model
with the potential 𝑉 (𝜑) = 𝜆𝜑2, where the field 𝜑
oscillates near the point of its true vacuum, and 𝜆 is
the coupling constant [9].

Really, if one introduces the variable 𝑥 =
(︁
𝜆𝑎6

2

)︁1/4
𝜑,

then the Hamiltonian �̂�𝜑 (8) takes the form

�̂�𝜑 =

(︂
𝜆

2

)︂1/2(︀
−𝜕2𝑥 + 𝑥2

)︀
. (35)

We introduce the state vectors ⟨𝑥|𝑢𝑘⟩, which satisfy
the equation(︀
−𝜕2𝑥 + 𝑥2 − 𝜖𝑘

)︀
|𝑢𝑘⟩ = 0, (36)

where 𝜖𝑘 is an eigenvalue. This equation describes the
quantum oscillator with 𝜖𝑘 = 2𝑘 + 1, 𝑘 = 0, 1, 2, ... .
From Eqs. (14), (35), and (36), it follows that

𝑀𝑘(𝑎) =
√
2𝜆

(︂
𝑘 +

1

2

)︂
≡𝑀. (37)

Here, 𝑀 is the total mass of 𝑘 non-interacting iden-
tical particles with the masses

√
2𝜆.

It is convenient to introduce a new variable 𝑧 =
𝑎−𝑀, which describes a deviation of 𝑎 from its “equi-
librium” value at the point, where 3 𝑎 = 𝑀 . Then
Eqs. (19) and (21) take the form (the index 𝑘 is
omitted)[︀
−𝜕2𝑧 + 𝑧2 − (2𝑛+ 1)

]︀
|𝑓⟩ = 0, (38)

(𝜕𝑧𝑆)
2 + 𝑧2 − (2𝑛+ 1) =

3

4

(︂
𝜕2𝑧𝑆

𝜕𝑧𝑆

)︂2
− 1

2

𝜕3𝑧𝑆

𝜕𝑧𝑆
, (39)

where 𝑛 = 0, 1, 2, ... is the quantum number, which
numerates the discrete states of the universe, 𝐸 +
𝑀2 = 2𝑛+ 1, in the potential well 𝑧2.

The potential well (25) in Eq. (24) reduces to

𝑈 =
1

2

[︀
𝑧2 − (2𝑛+ 1)−𝑄(𝑧)

]︀
. (40)

The quantities |𝑓⟩, 𝑆, and 𝑈 are the functions of 𝑧. In
addition, they depend on the free indices 𝑘 and 𝑛,
which are omitted here and below, when these indices
are inessential.

Both Eqs. (38) and (39) have two solutions

⟨𝑧|𝑓⟩1 = 𝐻𝑛(𝑧)𝑒
−𝑧2/2,

⟨𝑖𝑧|𝑓⟩2 = 𝐻−𝑛−1(𝑖𝑧)𝑒
𝑧2/2,

(41)

and

𝜕𝑧𝑆1(𝑧) = 𝑖
𝑒𝑧

2

𝐻−2
𝑛 (𝑧)

2
∫︀ 𝑧

0
𝑑𝑥 𝑒𝑥2𝐻−2

𝑛 (𝑥)
, (42)

𝜕𝑧𝑆2(𝑖𝑧) = −
𝑒−𝑧2

𝐻−2
−𝑛−1(𝑖𝑧)

2
∫︀ 𝑖𝑧

0
𝑑𝑥 𝑒𝑥2𝐻−2

−𝑛−1(𝑥)
, (43)

respectively, where 𝐻𝜈(𝑦) is the Hermitian polyno-
mial. According to (20) and (41), the function |𝑓⟩1
is real and expressed through the Euclidean phase
𝑆𝐸 = −𝑖 𝑆1. The second solution |𝑓⟩2 of Eq. (38) is
complex. The corresponding phase 𝑆2 appears to be
complex. Usually, the solution |𝑓⟩2 is discarded as un-
physical. However, in quantum cosmology, both solu-
tions should be considered. Indeed, only in such an
approach, one can obtain nontrivial results about the
topological properties of the universe as an essentially
quantum system and can clarify the nature of the
dark matter and the dark energy.

3 In dimensional units, we have 𝑎 = 2
3𝜋

𝐺
𝑐2

𝑀 (cf. Refs. [10,
11]).
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Fig. 1. Real (boldface curve) and imaginary (thin curve) parts
of the function |𝑓⟩2 from (41) versus the deviation 𝑧 for 𝑛 = 10

and 𝑛 = 3 (in the inset)

Let us consider the quantum universe described by
the wavefunction |𝑓⟩2. The solution |𝑓⟩2 from (41) as
a function of 𝑧 = 𝑎 −𝑀 , where 𝑎 is a real variable,
is shown in Fig. 1 for 𝑛 = 10 and 𝑛 = 3 (in the in-
set). The quantum 𝑛-th state |𝑓⟩2 is determined by
the mass 𝑀 of the universe in accordance with the
condition of quantization: 2𝑛 + 1 = 𝑀2 + 𝐸. For
example, the observed part of our universe is char-
acterized by the parameters 𝑀 ∼ 1061 (∼1080 GeV)
and 𝐸 ∼ 10118 (𝜌𝛾 ≈ 10−10 GeV/cm3) [10, 20]. From
the viewpoint of the model under consideration, it is
in the state with 𝑛 ∼ 10122 (up to ∼10−4). This es-
timate practically coincides with the estimate given
by Hartle and Hawking [16]. Considering 𝑛 = 10 as
a number large enough to put 𝐸 = 0, we obtain
𝑀 = 4.58. For the case 𝑛 = 3, we use the approx-
imation 𝐸 =𝑀2, so that 𝑀 = 1.87.

The real Re |𝑓⟩2 and imaginary Im |𝑓⟩2 parts oscil-
late in the interval |𝑧| < 𝑀 and are shifted in the
phase with respect to each other by 𝜋

2 . For 𝑛 = 10,
the function Re |𝑓⟩2 decreases exponentially outside
this interval, while Im |𝑓⟩2 diverges exponentially as
|𝑧| → +∞. For 𝑛 = 3, we have the inverse pic-
ture. In any case, in the interval bounded by the
values |𝑧| ≤ 𝑀 , the function |𝑓⟩2 can be normal-
ized. The normalization constant will depend on the
quantum number 𝑛.

Using Eq. (43), we obtain the expression for 𝑄 (26)
as a function of 𝑖𝑧,

𝑄(𝑖𝑧) = −(2𝑛+ 1)+

+2(𝑛+ 1)
𝐻−𝑛−2(𝑖𝑧)𝐻−𝑛(𝑖𝑧)

𝐻2
−𝑛−1(𝑖𝑧)

. (44)

The potential well (25) takes the form

𝑈(𝑧) =
1

2
𝑧2 − (𝑛+ 1)

𝐻−𝑛−2(𝑖𝑧)𝐻−𝑛(𝑖𝑧)

𝐻2
−𝑛−1(𝑖𝑧)

. (45)

It is a complex function of the form

𝑈(𝑧) = 𝑈𝑅(𝑧) + 𝑖𝑈𝐼(𝑧), (46)

where 𝑈𝑅(𝑧) and 𝑈𝐼(𝑧) are real functions.
The evolution of the universe with the complex po-

tential well (46) can be described in terms of the for-
malism with complex scale factor

𝑎 = 𝑎𝑅 + 𝑖 𝑎𝐼 , (47)

where 𝑎𝑅 and 𝑎𝐼 are real functions of time 𝑇 . The
possibility of the introduction of a complex metric
tensor and its relation to the real physical gravita-
tional field was studied, e.g., in Refs. [21,22] (see also
references therein). Taking the common point of view,
we assume that the physical gravitational field is de-
scribed by the real part of metric (1) (the real line
element). In our model, the necessity to pass to the
complex variable 𝑎 is related to the complexity of the
wavefunction |𝑓⟩2. Since the real and imaginary parts
of this function vanish at different points (see Fig. 1),
the real physical quantities, such as the kinetic energy,
potential well, and deceleration parameter appear to
be free of discontinuities, which are typical of the real
function |𝑓⟩1 in the region −𝑀 < 𝑧 < 𝑀 [23].

The energy conservation law (24) can be rewritten
in the form of two conditions

1

2

[︃(︂
𝑑𝑎𝑅
𝑑𝑇

)︂2
−

(︂
𝑑𝑎𝐼
𝑑𝑇

)︂2]︃
+ 𝑈𝑅 = 0,

𝑑𝑎𝑅
𝑑𝑇

𝑑𝑎𝐼
𝑑𝑇

+ 𝑈𝐼 = 0.

(48)

Hence, it follows that there are two solutions for the
parts of the kinetic energy related to a change of 𝑎𝑅
and 𝑎𝐼 with time 𝑇 ,(︂
𝑑𝑎𝑅
𝑑𝑇

)︂2
±
= −𝑈𝑅 ±

√︁
𝑈2
𝑅 + 𝑈2

𝐼 ,(︂
𝑑𝑎𝐼
𝑑𝑇

)︂2
±
= 𝑈𝑅 ±

√︁
𝑈2
𝑅 + 𝑈2

𝐼 .

(49)

The potential well (46) depends only on the real
part of the scale factor. Therefore instead of 𝑧 = 𝑎−

670 ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 7



The Expanding Universe: Change of Regime

−𝑀, one must take 𝑧 = 𝑎𝑅 −𝑀 in Eq. (45). From
Eqs. (48) and (49), it follows that the imaginary part
𝑎𝐼 must be expressed in terms of the real part 𝑎𝑅,

𝑎𝐼 =

𝑎𝑅∫︁
0

𝑑𝑥
𝑈𝐼(𝑥)

𝑈𝑅(𝑥)∓
√︀
𝑈2
𝑅(𝑥) + 𝑈2

𝐼 (𝑥)
, (50)

with the boundary condition 𝑎𝐼(𝑎𝑅 = 0) = 0. Thus,
in such a model, all elements of the complex spaceti-
me are expressed via one real parameter 𝑎𝑅 = 𝑎𝑅(𝑇 ).

The complexity of the spacetime metric leads to the

interference of the kinetic energies 𝐾±
𝑅,𝐼 ≡ 1

2

(︁
𝑑𝑎𝑅,𝐼

𝑑𝑇

)︁2
±

described by Eqs. (49). This interference smoothes
out behavior of these energies near the points |𝑧| = 𝑧0,
where 𝑈𝑅 = 0. In this case, the motion is always re-
alized in the real time 𝑇 , since the domain with the
Euclidean signature is found to be inaccessible.

The real and imaginary parts of the energy (45) as
functions of 𝑧 are plotted in Fig. 2 for the quantum
numbers 𝑛 = 10 and 𝑛 = 3. The general behavior
of 𝑈𝑅 and 𝑈𝐼 with respect to 𝑧 is not changed for
arbitrary values of the quantum number 𝑛, from 𝑛 ∼
∼ 1 up to 𝑛≫ 1. The same is true for other physical
parameters (see Figs. 3 and 4).

The points, where 𝑈𝑅 and 𝑈𝐼 have extrema or van-
ish, are determined by 𝑛 and 𝑀 . So, we can conclude
that, in the interval |𝑧| < 𝑀 , the energy 𝑈𝑅(𝑧) is well
approximated by the expression: 𝑈𝑅 = 1

2𝑧
2−

(︀
𝑛+ 1

2

)︀
.

It vanishes at the points 𝑧0 ≈ ±
√︀

2(𝑛+ 1). The imag-
inary part 𝑈𝐼 has extrema at these points. It vanishes
at the points 𝑧 = 0 and |𝑧| = +∞. The real part of
the potential energy is negative, 𝑈𝑅 < 0, in the re-
gion |𝑧| < 𝑧0 and positive, 𝑈𝑅 > 0, for |𝑧| > 𝑧0. We
have 𝑈𝑅 → +∞ as |𝑧| → +∞. The imaginary part
of the potential energy is positive, 𝑈𝐼 > 0, at 𝑧 < 0
and negative, 𝑈𝐼 < 0, on the semiaxis 𝑧 > 0. The
inequality |𝑈𝑅| ≫ |𝑈𝐼 | holds in the whole range of 𝑧,
except the points near |𝑧| = 𝑧0.

In Fig. 3, the real 𝐾+
𝑅 and imaginary 𝐾+

𝐼 parts
of the kinetic energy (49) of type (+) for 𝑛 = 10
and 𝑛 = 3 are shown. In the whole range of the de-
viation 𝑧 = 𝑎𝑅 − 𝑀 , both these energies are posi-
tive and describe the motion in the real time. At the
points |𝑧| = 𝑧0, they equal each other in accordance
with Eqs. (48). At the point 𝑧 = 0, the energy 𝐾+

𝑅

has a maximum equal to
(︀
𝑛+ 1

2

)︀
, while the energy

𝐾+
𝐼 vanishes. In the interval |𝑧| < 𝑧0, the condition

𝐾+
𝑅 ≫ 𝐾+

𝐼 is satisfied. In the domain |𝑧| > 𝑧0, where
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Fig. 2. Real (boldface curve) and imaginary (thin curve) parts
of the potential well 𝑈(𝑧) (45) versus the deviation 𝑧 = 𝑎𝑅−𝑀

for 𝑛 = 10 and 𝑛 = 3
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Fig. 3. Real 𝐾+
𝑅 (boldface curve) and imaginary 𝐾+

𝐼 (thin
curve) parts of the kinetic energy (49) versus the deviation
𝑧 = 𝑎𝑅 −𝑀 for 𝑛 = 10 and 𝑛 = 3
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Fig. 4. Real 𝑞𝑅 (boldface curve) and imaginary 𝑞𝐼 (thin curve)
parts of the deceleration parameter (34) versus the deviation
𝑧 = 𝑎𝑅 − 𝑀 for the potential energy (45) with 𝑛 = 10 and
𝑛 = 3
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𝑈𝑅 > 0, the energy 𝐾+
𝑅 → 0 as |𝑧| → +∞, while the

energy 𝐾+
𝐼 → 𝑈𝑅.

The kinetic energy 𝐾+
𝑅 increases in the interval

−∞ < 𝑧 < 0. This means that the internal forces
perform the positive work on the universe accelerat-
ing the expansion. This work is analogous to the work
of the forces of the dark energy. On the contrary, the
kinetic energy 𝐾+

𝐼 decreases in this interval, the neg-
ative work is done on the universe. As a result, the
expansion decelerates. This is equivalent to the work
of the attractive forces of the dark matter.

The energy 𝐾+
𝑅 decreases in the interval 0 < 𝑧 <

< +∞, demonstrating that the work performed on
the universe is negative. In this way, the presence
of an additional source of gravitational attraction is
imitated. Inversely, the energy 𝐾+

𝐼 increases in this
interval, the performed work is positive, as under the
action of the forces of the dark energy.

So, the kinetic energies 𝐾+
𝑅 and 𝐾+

𝐼 show the work
the universe should do in order to overcome the ac-
tion of the internal forces of repulsion and attrac-
tion, which exist simultaneously and compete with
each other at all stages of the evolution of the uni-
verse. Whether the expansion of the universe is ac-
celerating or decelerating depends on the relation be-
tween the forces performing the work, causing the
acceleration or the deceleration.

The plots of the real 𝐾−
𝑅 and imaginary 𝐾−

𝐼 parts
of the kinetic energy (49) of type (−) would be the
mirror images of the plots in Fig. 3 with regard to the
substitutions 𝐾+

𝑅 → −𝐾−
𝐼 and 𝐾+

𝐼 → −𝐾−
𝑅 . Both

energies are negative in the whole range of the devia-
tion 𝑧 and the motion can be described in the imag-
inary time 𝜉 = −𝑖𝑇 . The analysis of the solution of
type (+) given above remains valid for the solution
of type (−) after the formal substitution 𝑇 → 𝜉. This
means that the gravitational and antigravitational
forces, which perform work on the universe analo-
gous to the dark matter and the dark energy, can
exist in the spacetime with the Euclidean-signature
metric as well.

Thus, the presence of the imaginary part 𝑈𝐼 in the
potential well (46) and in Eqs. (48) indicates that
the processes of absorption and release of the energy
pumping over between the states with an effective at-
traction and repulsion of matter are running in the
system.

In Fig. 4, the real 𝑞𝑅 and imaginary 𝑞𝐼 parts of
the deceleration parameter (34) are shown as func-

tions of the deviation 𝑧 for the potential well (45)
with 𝑛 = 10 and 𝑛 = 3. In the region |𝑧| ≤𝑀 , where
|𝑞𝑅| ≫ |𝑞𝐼 | (i.e. |𝑞𝐼/𝑞𝑅|𝑧=0 ≈ 0.02), the contribution
from 𝑞𝐼 can be neglected. In this stage, the universe
expands with deceleration, since the antigravitational
action of the forces performing the positive work is
not enough to overcome the attraction of the ordi-
nary and dark matters. The value 𝑞𝑅(𝑧 = 0) = 1
reproduces the results of general relativity [24]. At
the point 𝑧 = 0, we have 𝑎𝑅 = 𝑀 . In the region
𝑎𝑅 ≈ 2𝑀 , the redistribution of the energy takes
place in the universe, as demonstrated by the peaks
on the curves 𝑞𝑅 and 𝑞𝐼 in Fig. 4. The forces of at-
traction and repulsion compete with each other at
𝑎𝑅 < 2𝑀 , where 𝑞𝑅 > 0 and 𝑞𝐼 < 0. At reach-
ing the region 𝑧 > 𝑀 , where 𝑎𝑅 > 2𝑀 , both parts
of the deceleration parameter become negative, by
demonstrating that the expansion of the universe
is accelerating. Starting from the point 𝑧 ≃ 1.5𝑀
(𝑧 = 6 for 𝑛 = 10), the parameter 𝑞𝐼 vanishes and
the rate of expansion is described only by the real
part 𝑞𝑅 < 0. In the limit 𝑧 → +∞, the forces of at-
traction and repulsion will exactly compensate each
other.

Again, as in the case of the complex metric ten-
sor, one can accept that only the real part of the
deceleration parameter 𝑞𝑅 is a physically measurable
quantity. The imaginary part 𝑞𝐼 plays a role of a reg-
ularizing factor, which allows one to exclude the dis-
continuities caused by the vanishing of the real part
of the function |𝑓⟩2 at isolated points.

Let us compare the predictions of the quantum
model under consideration with the observations in
our universe. In the modern era, the scale factor (ra-
dius of the universe) 𝑎𝑅 ∼ 1028 cm and the mass
𝑀 ∼ 1080 GeV of matter in the observed part of
our universe are estimated up to a coefficient less
than 𝑂(10). Such a radius 𝑎𝑅 roughly coincides with
the Hubble radius, while the mass 𝑀 is estimated
by the quantity of matter with the critical density
𝜌𝑐 ≈ 10−5 GeV/cm3 contained in the Hubble volume
≈2𝜋2𝑎3𝑅. In dimensionless units, which are used in
this paper, these parameters prove to be of the same
order of magnitude, 𝑎𝑅 ∼ 1061 and 𝑀 ∼ 1061. Accor-
ding to observations and theoretical estimations, the
transition from the matter-dominated phase to the
dark-energy-dominated universe takes place at a red-
shift of ≈0.6. This does not contradict the obtained
condition 2 < 𝑎𝑅/𝑀 < 10 (see Fig. 4), which deter-
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mines the stage of transition to the phase of acceler-
ating expansion of the universe.

4. Conclusion

In this paper, the evolution of the universe is stud-
ied in the exactly solvable dynamical quantum model
with the Robertson–Walker metric. It is shown that
the equation of motion, which describes the expansion
or contraction of the universe, can be represented in
the form of the zero total energy conservation law (24)
for a particle being an analog of the universe. The
analog particle has an arbitrary mass and moves in
the potential well (25) under the action of the inter-
nal force (31), which involves the curvature of space,
mass term, and gradients (pressures) of classical and
quantum gravitational sources. The quantum source
(26) emerges as a result of the evolution of the phase
𝑆𝑘(𝑎) of the state vector (20), which describes the
geometrical properties of the quantum universe, in
the space of the scale factor. Equation (21) for the
phase 𝑆𝑘(𝑎) is non-linear, and contains the informa-
tion about the curvature of space and quantum states
of matter in the universe.

In a particular case of matter in the form of dust,
this non-linear equation has the analytical solutions
of two types: (i) real solution for the Euclidean phase
𝑆𝐸 = −𝑖𝑆1 (42) which corresponds to the real state
vector |𝑓⟩1 from (41); (ii) complex solution 𝑆2 (43)
for the state vector |𝑓⟩2 from (41) in the space of
complex scale factor.

The motion of the analogue particle as a mathe-
matical equivalent of the evolving universe, described
by the state vector |𝑓⟩2, is characterized by two types
of possible solutions for the real and imaginary parts
of the kinetic energy (49) of types (+) and (−). The
solution of type (+) describes the motion of the ana-
logue particle in real time 𝑇 , while the solution of type
(−) corresponds to imaginary time 𝜉 = −𝑖 𝑇 . The
changes of the real and imaginary parts of the kinetic
energy of one type during the evolution of the uni-
verse demonstrate that the internal forces simultane-
ously perform both the positive work on the universe
(e.g., the energy 𝐾+

𝑅 increases as in Fig. 3), which is
analogous to the work of the forces of dark energy, and
the negative work (the energy𝐾+

𝐼 decreases), which is
similar to the work of the attractive forces of the dark
matter. The general character of the expansion of the
universe at a definite instant of time (parametrized

by the deviation 𝑧 = 𝑎𝑅 −𝑀 in Fig. 4) depends on
which of the works dominates. The expansion of the
universe becomes accelerating after reaching the re-
gion 𝑎𝑅 > 2𝑀 . This result does not contradict the
data on the expansion of our universe in the mod-
ern era and predicts that the forces of attraction and
repulsion will exactly compensate each other in the
infinite future (𝑎→ +∞).

In the approach under consideration, the change of
the regimes of the expansion of the universe reflects
a quantum nature of the universe. The equations of
quantum theory (24) and (30) are transformed into
the Einstein–Friedmann equations of general relativ-
ity (32) without dark energy in the limit 𝑄𝑘(𝑎) → 0.

Thus, it appears that the quantum universe is such
that, during its expansion, it decelerates, then accel-
erates, or vice versa, spontaneously. The cause of the
expansion and the change of its regimes is a special
form of the potential well (25), in which the universe
is moving as a whole.

From Fig. 4, it follows that the main properties of
the behavior of the deceleration parameter are invari-
able with the change of the quantum number 𝑛. This
demonstrates that the model under consideration can
explain the accelerating expansion (inflation) in the
early universe (the domain of comparatively small
values of quantum numbers) and the later transition
from the decelerating expansion to the accelerating
expansion of the universe (the domain of the very
large values of quantum numbers) within a single ap-
proach. In both cases, a period of decelerating ex-
pansion is succeeded by a period of accelerating ex-
pansion. This change of the regime is caused by the
behavior of the quantum correction 𝑃𝑄 to the total
pressure (33) in the universe. The change of the pres-
sure 𝑃𝑄 gives rise to additional fluctuations of the
energy density 𝜌tot, which influence the formation of
the large-scale structure in the universe.
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ВСЕСВIТ, ЩО РОЗШИРЮЄТЬСЯ:
ЗМIНА РЕЖИМУ

Р е з ю м е

Метою роботи є пояснення, на основi точних рiвнянь кван-
тової геометродинамiки для космологiчної моделi з метри-
кою Робертсона–Вокера, можливої змiни режиму розшире-
ння всесвiту, з прискореного на уповiльнений та навпаки.
Показано, що змiна темпу розширення всесвiту може свiд-
чити про наявнiсть сил певного виду, що дiють у всесвiтi.
Звертається увага на те, що природа цих сил є квантовою.
Причиною розширення всесвiту та змiни його режиму слу-
гує особлива форма ефективної потенцiальної ями, в якiй
всесвiт рухається як цiле.
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