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The hybrid nanosystem composed of a spherical metal nanoparticle (NP) and a spherical semi-
conductor quantum dot (QD) of a direct-band semiconductor with a cubic lattice structure and
a fourfold degenerate valence band Γ8 has been studied. The excitonic emission of the system
is considered as a sum of contributions from point dipoles located at the QD lattice sites. The
description of the QD + NP nanosystem, nonspherical as a whole, is based on using three
spherical coordinate systems and finding the relations between the coefficients of multipole ex-
pansions of electromagnetic (EM) fields in those systems. The origins of two of them are fixed
at the centers of NP and QD, and their polar axes are directed along the line connecting the
centers. The orientation of the third coordinate system with the origin in the QD is determined
by the orientation of the QD crystal lattice. It is shown that, unlike the electric scalar potential,
which is induced by the exciton state in the QD and looks like a point-dipole potential, the EM
field of the QD excitonic emission cannot be represented as that of a point dipole emission,
because it contains only dipole, quadrupole, and octupole components. The multiple scattering,
between the NP and the QD, of the EM field emitted by the QD is taken into account. The
dependences of the excitonic emission efficiency on the separation distance between the QD
and the NP surfaces are calculated in a particular case of the CdTe QD and a silver or gold
NP for various QD and NP sizes and temperatures.
K e yw o r d s: quantum dot, metal nanoparticle, hybrid nanosystem, electromagnetic field,
emission quantum yield.

1. Introduction

In the last years, the hybrid metal-semiconductor
nanostructures (see, e.g., reviews [1, 2]), in which the
exciton-plasmon interaction plays a substantial role,
have attracted the increasing interest owing to their
unique properties and a considerable progress in the
technologies of their manufacture. However, in many
cases, the theoretical models used for the description
of those structures are imperfect. This concerns even
such simple, at first sight, case as a semiconductor
quantum dot (QD) in a vicinity of a metal nanopar-
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ticle (NP). In this case, the QD, by analogy with
fluorescent molecules, is considered to be a point-
like dipole (in such an approach, the nonspherical
nanosystem transforms into the spherically symmet-
ric one), and all well-known results obtained for the
case of point dipole are automatically duplicated for
the case with the QD.

In this work, which is a continuation of our previous
work [3], a more rigorous approach is developed. In
its framework, the whole QD is not considered as a
point dipole; instead, this role is played by every ele-
mentary cell in the QD crystal. This approach makes
it possible to account for the valence band structure
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Fig. 1. Schematic diagram of the nanosystem QD + NP

in the crystal and calculate all electromagnetic (EM)
fields and the emission quantum yield in the hybrid
nanosystem QD + NP in the case of nonresonance
excitation, when only the QD is excited directly (in
the case of resonance excitation, the NP is excited di-
rectly as well). In work [3], the expressions for all EM
fields in the system “emitting point dipole in a semi-
conductor QD + metal NP” were obtained. It was
shown that, in order to calculate the EM fields in the
case of QD excitonic emission in general, it is neces-
sary to integrate the contributions made by all point
dipoles in the QD to the EM fields (i.e. the contri-
butions of all elementary cells that compose the QD
crystal). It was also shown that the corresponding
contributions are determined by the envelope exciton
wave function in the QD.

Hence, for the further consideration, we must spec-
ify a QD model and write down the envelope exci-
ton size-quantized wave functions. Such specification
demands that, in addition to two spherical coordi-
nate systems shifted with respect to each other by a
distance 𝐷 between the QD and NP centers (at the
previous stage, the relations between multipole com-
ponents of the EM fields expressed in those two co-
ordinate systems were established, which enabled the
spherical symmetry of QD and NP to be used sepa-
rately, despite that the whole system QD + NP is not
spherical), a third coordinate system {𝑋cr, 𝑌cr, 𝑍cr}
should be introduced, whose axes are defined by
the orientation of the crystal lattice in the QD (see
Fig. 1). The initial exciton size-quantized wave func-
tions in the QD have a standard form just in this
crystal coordinate system. However, the final exciton

wave functions, which are required for the calculation
of the contribution made by the whole QD volume
to EM fields, should be expressed in the coordinate
system {�̃�, 𝑌 , 𝑍} with the axis 𝑍 directed along the
line connecting the NP and QD centers rather than
the own (crystal) coordinate system with the axes
{𝑋cr, 𝑌cr, 𝑍cr}. The next sections contain a descrip-
tion of all required transformations making it possible
to calculate the powers of the EM radiation emission
and absorption, as well as the emission quantum yield
of the hybrid nanosystem QD + NP.

2. Size-Quantized Exciton
States and Exciton Wave Functions in QD

As a material of the QD, a semiconductor with the
cubic lattice structure and the fourfold degenerate va-
lence band Γ8 is considered; in particular, it can be
CdTe. In the QD made up of such semiconductor, the
ground exciton size-quantized state (the state of the
so-called dark excitons, which is split off by the spin-
spin electron-hole exchange interaction to the inter-
val of lower energies) is characterized by the quantum
number 𝐹 = 2 of the total exciton angular momen-
tum. This state is fivefold degenerate with respect to
the quantum numbers 𝐹𝑧 = ±2,±1, 0 of the total
momentum projections on the axis 𝑍cr. The higher-
energy triple degenerate state of bright excitons is
characterized by the quantum number 𝐹 = 1 of the
total exciton angular momentum and the quantum
numbers 𝐹𝑧 = ±1, 0 of its projections on the axis
𝑍cr [4].

In the electron-hole representation, according to
the standard momentum sum rule (see, e.g., work [5]),
the wave functions of exciton size-quantized states
Ψel−h

ex (𝐹, 𝐹𝑧; r
cr
𝑒 , rcrℎ ) look like
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where
↑=

(︁
1
0

)︁
and ↓=

(︁
0
1

)︁
(6)

are the electron spin functions (spinors) correspond-
ing to the electron spin projections +1/2 and −1/2
on the 𝑍cr-axis, Ψ0

𝑒(r
cr
𝑒 ) = 𝜌𝑒0(𝑟𝑒)𝑌0,0(𝛺

cr
𝑒 )𝑆 is the

full spatial wave function of an electron in the size-
quantized ground state, 𝜌𝑒0(𝑟𝑒) the radial part of the
electron envelope wave function, 𝑆 the on-site elec-
tron wave function (the localized Wannier function
[6]) of the spherically symmetric 𝑠-type, rcr𝑒 the spa-
tial electron variable in the intrinsic crystal coordi-
nate system, the electron coordinates in the coordi-
nate system {�̃�, 𝑌 , 𝑍} with the origin at the point O2

are expressed by the radius vector r̃𝑒 (𝑟cr𝑒 ≡ 𝑟𝑒), 𝛺cr
𝑒

are the angular variables of the electron, Ψ𝑀,𝑀𝑧

ℎ (rcrℎ )
is the wave function of the hole with the quantum
number 𝑀 of the total angular momentum and the
quantum number 𝑀𝑧 of the momentum projection
on the axis 𝑍cr, rcrℎ the spatial variable of the hole,
𝑌𝑙,𝑚(𝛺) the normalized scalar spherical harmonics
describing the angular part of the corresponding hole
envelope size-quantized wave function, 𝑙 the quantum
number characterizing the hole orbital momentum,
and 𝑚 the quantum number for its projection on the
corresponding axis (this is 𝑍cr in the crystal coordi-
nate system or 𝑍 in the {�̃�, 𝑌 , 𝑍} one).

Analogously, according to the same standard sum
rule for momenta, the hole size-quantized wave func-
tions Ψ𝑀,𝑀𝑧

ℎ (rcrℎ ) are as follows:
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In expressions (7)–(10), 𝜌ℎ0 (𝑟ℎ) and 𝜌ℎ2 (𝑟ℎ) are the
hole envelope size-quantized radial functions of the
spherical and nonspherical, respectively, parts of the
full hole wave function, the hole coordinates in the
coordinate system {�̃�, 𝑌 , 𝑍} are expressed using the
radius vector r̃ℎ, 𝑟crℎ ≡ 𝑟ℎ, |𝐽, 𝐽𝑧⟩ are the on-site hole
space-spin wave functions with the quantum number
𝐽 = 3/2 of the total angular momentum (the effective
spin) of the hole and the quantum number 𝐽𝑧 of its
projection on the axis 𝑍cr.

According to the standard sum rule for momenta,
the functions |𝐽, 𝐽𝑧⟩ can be expressed as

|3/2, 3/2⟩ = (𝑋cr + 𝑖𝑌 cr)/
√
2 ↑, (11)

|3/2,−3/2⟩ = 𝑖 (𝑋cr − 𝑖𝑌 cr)/
√
2 ↓, (12)

|3/2, 1/2⟩ = 𝑖
[︀
(𝑋cr + 𝑖𝑌 cr) ↓ −2𝑍cr ↑

]︀
/
√
6, (13)

|3/2,−1/2⟩ =
[︀
(𝑋cr − 𝑖𝑌 cr) ↑ +2𝑍cr ↓

]︀
/
√
6, (14)

where ↑ and ↓ are the hole spinors corresponding to
the hole spin projections on the axis 𝑍cr equal to
±1/2; and 𝑋cr, 𝑌 cr, and 𝑍cr are the on-site hole
spatial wave functions of the 𝑝-type in the crystal
coordinate system {𝑋cr, 𝑌cr, 𝑍cr}.

In the case of the higher-energy triple degenerate
states of bright excitons with 𝐹 = 1 and 𝐹𝑧 = ±1, 0,
which are split off owing to the spin-spin electron-hole
exchange interaction, the corresponding exciton size-
quantized wave functions Ψel−h

ex (𝐹, 𝐹𝑧; r
cr
𝑒 , rcrℎ ) are as

follows:
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It should be noted that, in the seminal work by Efros
et al. [4], the expressions for the exciton wave func-
tions of dark excitons with 𝐹 = 2 and 𝐹𝑧 = ±1 con-
tain an error. In the case of a spherical QD made up of
a semiconductor of the cubic modification, those ex-
pressions should transform into expressions (3) and
(4). However, this is not the case because, in work
[4], the coefficients in front of the components in
the corresponding wave functions are transposed. As
a consequence, the wave functions of dark excitons
with 𝐹𝑧 = ±1 presented in work [4] are not orthog-
onal to the wave functions of bright excitons with
𝐹𝑧 = ±1. Accordingly, the matrix elements of opti-
cal dark exciton transitions into/from those states,
which were calculated in work [4] in the dipole ap-
proximation, differ from zero, unlike the zero matrix
elements of the transition into/from the dark exci-
ton states with 𝐹𝑧 = ±2 and 𝐹𝑧 = 0. Actually, they
must be equal to zero in the dipole approximation as
well. According to the results of our model, the radia-
tion from all dark exciton states is emitted only in the
form of spherical waves with the dipole and octupole
components of the electric type and the quadrupole
components of the magnetic type, and this emission
is related only to the nonspherical part of the hole
envelope wave function.

3. Transformation of Exciton Wave
Functions at a Coordinate System Rotation

For further calculations of the QD + LF nanosystem,
the exciton wave functions has to be written in the
coordinate system {�̃�, 𝑌 , 𝑍} with the origin O2 lo-
cated in the QD (Fig. 1). The orientation of the coor-
dinate system {𝑋cr, 𝑌cr, 𝑍cr} with respect to the sys-
tem {�̃�, 𝑌 , 𝑍} can be described conventionally, with
the help of Euler angles {𝛹𝑒, 𝜃𝑒, 𝜙𝑒}. In this work, all
Euler angles are reckoned counterclockwise.

Note first that, in accordance with work [3], while
finding the EM field emitted by the QD, we have to
change from the electron-hole representation of exci-
ton functions, Ψel−h

ex (𝐹, 𝐹𝑧; r
cr
𝑒 , rcrℎ ), to the electron-

electron one, Ψel−el
ex (𝐹, 𝐹𝑧; r

cr
𝑒 , rcrℎ ), as was done in

work [4]. This operation means a simple substitution
of the spatial parts in the hole components of those

exciton functions by the complex conjugate ones and
a substitution of the hole spinors ↑ and ↓ by the trans-
posed electron spinors ↑𝑇 and ↓𝑇 , respectively. As a
result, in the initial crystal coordinate system, the ex-
citon wave functions Ψel−el

ex (𝐹, 𝐹𝑧; r
cr
𝑒 , rcrℎ ) will include

the spinor products ↑↑𝑇 and ↓↓𝑇 , which are scalars
and equal 1, and spinor products ↑↓𝑇 and ↓↑𝑇 equal
to zero. Therefore, first, only those components will
survive in the expressions for EM fields, which corre-
spond to nonzero spinor products. Second, the prod-
ucts ↑↑𝑇 and ↓↓𝑇 equal 1 in the coordinate system
{�̃�, 𝑌 , 𝑍} as well.

As for the angular envelope functions 𝑌2,𝜇(𝛺
cr) in

Eqs. (7)–(10), according to work [7], they can be ex-
panded in a series of the spherical harmonics 𝑌2,𝑚(�̃�)

in the coordinate system {�̃�, 𝑌 , 𝑍} as follows:

𝑌2,𝜇(𝜃cr, 𝜙cr) =

2∑︁
𝑚=−2

𝐶𝜇,𝑚𝑌2,𝑚(𝜃, 𝜙). (18)

The expansion coefficients 𝐶𝜇,𝑚 can be found with
the use of the following expressions for the spherical
harmonics 𝑌2,𝜇(𝛺

cr):

𝑌2,±2(𝛺
cr) =

√︀
15/(32𝜋)(𝑥cr ± 𝑖𝑦cr)

2,

𝑌2,±1(𝛺
cr) = ∓

√︀
15/(8𝜋)(𝑥cr ± 𝑖𝑦cr)𝑧cr,

𝑌2,0(𝛺
cr) =

√︀
5/(16𝜋)(2𝑧2cr − 𝑥2

cr − 𝑦2cr),

where 𝑥cr, 𝑦cr, and 𝑧cr are the coordinates of the
unit vector oriented in the direction given by the
angles 𝜃cr and 𝜙cr in the crystal coordinate sys-
tem, i.e. 𝑥cr = sin 𝜃cr cos𝜙cr, 𝑦cr = sin 𝜃cr sin𝜙cr,
and 𝑧cr = cos 𝜃cr. Expressing the coordinates 𝑥cr, 𝑦cr
and, 𝑧cr of the unit vector in terms of Euler angles
and the coordinates of this vector in the coordinate
system {�̃�, 𝑌 , 𝑍}, i.e. in terms of �̃� = sin 𝜃 cos𝜙,
𝑦 = sin 𝜃 sin𝜙, and 𝑧 = cos 𝜃, multiplying formula
(18) by 𝑌 *

2,𝑚(𝜃, 𝜙), and integrating the result over the
angular variables 𝜃 and 𝜙, we obtain expressions for
the coefficients 𝐶𝜇,𝑚 as functions of the Euler an-
gles. They are quoted in Appendix 1.

At last, while calculating the contribution of point
(on-site) emitting dipoles to the total electromagnetic
field of a QD, the matrix elements of on-site dipole
moments are expressed in the form ⟨𝑆|𝑒r𝑖|𝑋cr⟩ =
= 𝑝n1, ⟨𝑆|𝑒r𝑖|𝑌 cr⟩ = 𝑝n2, and ⟨𝑆|𝑒r𝑖|𝑍cr⟩ = 𝑝n3,
where r𝑖 is the electron coordinate in the elementary
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cell corresponding to that or another crystal site, 𝑝
the magnitude of on-site dipole moment (owing to the
cubic crystal symmetry, it is identical for all three
directions), n1, n2, and n3 are the unit vectors of
the crystal coordinate system. In the coordinate sys-
tem {�̃�, 𝑌 , 𝑍}, those unit vectors at the site with
the coordinate r̃𝑑 (see Fig. 1) can be expressed in the
form [5]

n𝛼(r̃𝑑) =
√︀
2𝜋/3×

×
{︁
𝑛𝑥
𝛼 ∇r̃𝑑

[︀
𝑟𝑑
{︀
𝑌1,−1(�̃�𝑑)− 𝑌1,1(�̃�𝑑)

}︀]︀
+

+ 𝑖𝑛𝑦
𝛼 ∇r̃𝑑

[︀
𝑟𝑑
{︀
𝑌1,−1(�̃�𝑑) + 𝑌1,1(�̃�𝑑)

}︀]︀
+

+
√
2𝑛𝑧

𝛼 ∇r̃𝑑

[︀
𝑟𝑑𝑌1,0(�̃�𝑑)

]︀}︁
, (19)

where 𝑛𝑥
𝛼, 𝑛𝑦

𝛼, and 𝑛𝑧
𝛼 are the components of the vec-

tor n𝛼 in the coordinate system {�̃�, 𝑌 , 𝑍}. According
to the on-site hole wave functions (11)–(14), the fol-
lowing combinations of those components are relevant
to our calculations:

𝑛𝑥
1 ± 𝑖𝑛𝑥

2 = exp(∓𝑖𝜙𝑒)
[︀
cos𝛹𝑒 ∓ 𝑖 cos 𝜃𝑒 sin𝛹𝑒

]︀
, (20)

𝑛𝑦
1 ± 𝑖𝑛𝑦

2 = exp(∓𝑖𝜙𝑒)
[︀
sin𝛹𝑒 ± 𝑖 cos 𝜃𝑒 cos𝛹𝑒

]︀
, (21)

𝑛𝑧
1 ± 𝑖𝑛𝑧

2 = ±𝑖 exp(∓𝑖𝜙𝑒) sin 𝜃𝑒, (22)

𝑛𝑥
3 = sin 𝜃𝑒 sin𝛹𝑒, 𝑛𝑦

3 = − sin 𝜃𝑒 cos𝛹𝑒, (23)

𝑛𝑧
3 = cos 𝜃𝑒. (24)

4. Electromagnetic Fields
of QD Excitonic Emission

While calculating the EM field emitted by the fivefold
degenerate state of dark excitons in a QD character-
ized by the quantum number 𝐹 = 2 of the total exci-
ton angular momentum, the following effective wave
function has to be used:

Ψex,2(r̃𝑒, r̃ℎ) =
1√
5

[︀
𝑎𝐿Ψ

el−el
ex (2, 0; r̃𝑒, r̃ℎ)+

+ 𝑏𝐿Ψ
el−el
ex (2, 1; r̃𝑒, r̃ℎ) + 𝑐𝐿Ψ

el−el
ex (2,−1; r̃𝑒, r̃ℎ)+

+ 𝑑𝐿Ψ
el−el
ex (2, 2; r̃𝑒, r̃ℎ)+𝑓𝐿Ψ

el−el
ex (2,−2; r̃𝑒, r̃ℎ)

]︀
, (25)

where 𝑎𝐿, 𝑏𝐿, 𝑐𝐿, 𝑑𝐿, and 𝑓𝐿 are arbitrary phase fac-
tors. Such a form for the effective wave function is as-
sociated with an identical population probability for

each of five degenerate states of dark excitons in the
case of an external excitation. The very presence of
arbitrary phase factors stems from the noncoherent
exciton behavior in those states. Accordingly, while
calculating the EM field emitted by the triple degen-
erate state of bright excitons in a QD characterized
by the quantum number 𝐹 = 1 of the total exciton
angular momentum, the effective wave function looks
like

Ψex,1(r̃𝑒, r̃ℎ) =
1√
3

[︀
𝑎𝑈Ψ

el−el
ex (1, 0; r̃𝑒, r̃ℎ)+

+ 𝑏𝑈Ψ
el−el
ex (1, 1; r̃𝑒, r̃ℎ)+ 𝑐𝑈Ψ

el−el
ex (1,−1; r̃𝑒, r̃ℎ)

]︀
, (26)

where 𝑎𝑈 , 𝑏𝑈 , and 𝑐𝐿 are also arbitrary phase factors.
According to work [3], the electric field, which is

generated by the emission of all on-site dipoles in the
QD and is associated with the exciton state charac-
terized by the quantum number 𝐹 of the total angular
momentum, at the internal QD surface must have the
form

E𝑖
𝑄𝐷,2(r̃;𝐹 ) =

∑︁
𝑙,𝑚

{︁ 𝑖

𝑘0𝜀2
�̃�𝑖,𝐹2,𝐸(𝑙,𝑚)×

×
[︀
∇r̃ × ℎ𝑙(𝑘2𝑟)X𝑙,𝑚(�̃�)

]︀
+

+ �̃�𝑖,𝐹2,𝑀 (𝑙,𝑚)ℎ𝑙(𝑘2𝑟)X𝑙,𝑚(�̃�)
}︁
, (27)

where 𝑟 = 𝑅2, subscript 2 in E𝑖
QD,2 means that this is

the field at the internal side of the QD interface (see
Fig. 1), 𝑘0 = 𝜔/𝑐, 𝑐 is the light velocity, 𝑘2 =

√
𝜀2 𝑘0,

�̃�𝑖,𝐹2,𝐸(𝑙,𝑚) and �̃�𝑖,𝐹2,𝑀 (𝑙,𝑚) are coefficients in the mul-
tipole expansions of the electric field (of the electric
and magnetic types, respectively) emitted by the ex-
citon state with the quantum number 𝐹 of the total
angular momentum, 𝜀2 is the background dielectric
constant of a semiconductor in the radiation emis-
sion frequency interval (in the case of CdTe, 𝜀2 ≈ 13
in the interval ~𝜔 = 1.5÷3.0 eV [8]), X𝑙,𝑚(�̃�) are the
normalized vector spherical harmonics [9], and ℎ𝑙(𝑥)
is the spherical Hankel function of the first kind.

The dipole moment of the site with the coordinate
r̃𝑑 can be written as the expansion

⟨0|𝑒r̃𝑖|Ψex,𝐹 (r̃𝑒, r̃ℎ)⟩r̃𝑑 = 𝑝
[︀
n1Ψ

(1)
ex,𝐹 (r̃𝑑, r̃𝑑)+

+n2Ψ
(2)
ex,𝐹 (r̃𝑑, r̃𝑑) + n3Ψ

(3)
ex,𝐹 (r̃𝑑, r̃𝑑)

]︀
, (28)

where |0⟩ = 𝛿(r̃𝑒−r̃ℎ), and the functions Ψ(𝑗)
ex,𝐹 (r̃𝑑, r̃𝑑)

are coefficients at the on-site functions 𝑋cr (𝑗 = 1),
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𝑌 cr (𝑗 = 2), and 𝑍cr (𝑗 = 3) in the full wave function
Ψex,𝐹 (r̃𝑑, r̃𝑑). Hence, this dipole moment is composed
of the dipole moments of three point dipoles located
at the site r̃𝑑 and oriented along the unit vectors
of the intrinsic (crystal) coordinate system n1, n2,
and n3.

The contribution to the electric field (27) given by
a point dipole with moment 𝑝 located in a QD at the
point r̃𝑑 and oriented along n𝛼 is expressed by the
formula [3]

E𝑖
𝑑,2(r̃, r̃𝑑;n𝛼) =

∞∑︁
𝑙=1

𝑙∑︁
𝑚=−𝑙

{︁ 𝑖

𝑘0𝜀2
�̃�>𝑑,𝐸(𝑙,𝑚)×

×
[︀
∇r̃ × ℎ𝑙(𝑘2𝑟)X𝑙,𝑚(�̃�)

]︀
+

+ �̃�>𝑑,𝑀 (𝑙,𝑚)ℎ𝑙(𝑘2𝑟)X𝑙,𝑚(�̃�)
}︁
, (29)

where

�̃�>𝑑,𝑀 (𝑙,𝑚) = 4𝜋𝑖𝑝𝑘2𝑘
2
0 𝑗𝑙(𝑘2𝑟𝑑)n𝛼 ·X*

𝑙,𝑚(�̃�𝑑),

�̃�>𝑑,𝐸(𝑙,𝑚) = 4𝜋𝑝𝑘2𝑘0 n𝛼 ·
[︀
∇r̃𝑑 × 𝑗𝑙(𝑘2𝑟𝑑)X

*
𝑙,𝑚(�̃�𝑑)

]︀
,

and 𝑗𝑙(𝑥) is the spherical Bessel function.
The total electric field (27) emitted by the QD and

the corresponding multipole coefficients �̃�𝑖,𝐹2,𝐸(𝑙,𝑚)

and �̃�𝑖,𝐹2,𝑀 (𝑙,𝑚) can be obtained by integrating con-
tributions (29) of all point (on-site) dipoles over the
QD volume on the basis of the effective wave func-
tions (25) and (26):

E𝑖
𝑄𝐷,2(r̃;𝐹 ) =

∑︁
𝛼=1,2,3

∫︁
QD

Ψ
(𝛼)
ex,𝐹 (r̃𝑑, r̃𝑑)×

×E𝑖
𝑑,2(r̃, r̃𝑑;n𝛼) 𝑑

3𝑟𝑑. (30)

Taking into account that (see, e.g., work [10])

1∫︁
−1

(1− 𝑥2)𝜆−1 𝑃𝑚
𝑙 (𝑥) 𝑑𝑥 = 𝜋 2𝑚 ×

×
Γ
(︀
𝜆+ 𝑚

2

)︀
Γ
(︀
𝜆− 𝑚

2

)︀
Γ
(︀
𝜆+ 𝑙+1

2

)︀
Γ
(︀
𝜆− 𝑙

2

)︀
Γ
(︀
1 + 𝑙−𝑚

2

)︀
Γ
(︀
1−𝑙−𝑚

2

)︀ , (31)

1∫︁
0

𝑥𝜎(1− 𝑥2)𝑚/2 𝑃𝑚
𝑙 (𝑥) 𝑑𝑥 =

(−1)𝑚

2𝑚+1
×

×
Γ
(︀
1+𝜎
2

)︀
Γ
(︀
1 + 𝜎

2

)︀
Γ(1 +𝑚+ 𝑙)

Γ
(︀
1 + 𝜎+𝑚−𝑙

2

)︀
Γ
(︀
3+𝜎+𝑚+𝑙

2

)︀
Γ(1−𝑚+ 𝑙)

, (32)

where 𝑃𝑚
𝑙 (𝑥) are the associated Legendre polynomi-

als, we obtain that only the multipoles of the mag-
netic type with 𝑙 = 2 and the multipoles of the elec-
tric type with 𝑙 = 1 and 3 survive after the inte-
gration from an infinite number of multipoles (29) in
the integrand of expression (30). Hence, it is possible
to determine all multipole coefficients �̃�𝑖,𝐹2,𝐸(𝑙,𝑚) and
�̃�𝑖,𝐹2,𝑀 (𝑙,𝑚) in expansion (27) of the electric field of the
QD excitonic emission at the internal QD boundary
as functions of the Euler angles. All other fields, in-
cluding ones reflected from the metal NP and the field
in the NP, can be determined, by using the formulas
presented in work [3].

5. Energies of Exciton
Transitions and Radial Wave
Functions of an Electron and a Hole

To calculate the emission characteristics of the
nanosystem QD + NP, it is necessary to determine
the exciton transition energy 𝐸𝑥 in the QD (i.e. the
radiation frequency 𝜔 = 𝐸𝑥/~ in formula (27)) as a
function of the QD size. Unlike works [4], [11], and
others, where the approximation of infinitely high
barriers for electrons and holes was used (the cor-
responding values of size-quantized energies turn out
substantially overestimated), the calculations in this
work are carried out for a more realistic case of bar-
riers with finite heights, namely, for the case where
a CdTe QD and a metal NP are located in the SiO2

matrix. Generally speaking, this choice is related to
the fact that all SiO2 parameters required for calcu-
lations, as well as the discontinuities of the valence
and conduction bands across the CdTe/SiO2 inter-
face, are known or could be calculated. In addition,
SiO2 is used in real structures as an intermediate layer
and a coating of CdTe QDs and metal NPs (see, e.g.,
works [12–15]).

The envelope wave functions and the energies of
exciton states in a separate QD are determined from
the Schrödinger equation[︀
�̂�𝑒 + �̂�ℎ + �̂�ex𝑐ℎ + 𝑈𝑒(𝑟

cr
𝑒 ) + 𝑈ℎ(𝑟

cr
ℎ )+

+𝑈𝑠(𝑟
cr
𝑒 ) + 𝑈𝑠(𝑟

cr
ℎ ) + 𝑈𝑒ℎ(r

cr
𝑒 , rcrℎ )

]︀
×

×Ψex,𝐹 (r
cr
𝑒 , rcrℎ ) = (𝐸𝑥,𝐹 − 𝐸𝑔)Ψex,𝐹 (r

cr
𝑒 , rcrℎ ), (33)

where 𝐸𝑔 is the energy gap width in the QD bulk
material (in the case of CdTe, 𝐸𝑔 = 1.475 eV at 𝑇 =

638 ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 7



Excitonic Emission of Hybrid Nanosystem

= 300 K [8]), �̂�𝑒 and �̂�ℎ are the electron and hole,
respectively, kinetic energy operators in the Luttin-
ger–Kohn multiband model,

�̂�exch = −(~𝜔ST/12) 𝑎
3
ex𝛿(r

cr
𝑒 − rcrℎ ) (𝜎 · J)

is the operator of electron-hole exchange interaction
[4], ~𝜔ST the singlet-triplet splitting in the bulk semi-
conductor (for CdTe, ~𝜔ST = 0.04 meV), 𝑎ex the
exciton Bohr radius (for CdTe, 𝑎ex ≈ 6.5 nm), 𝜎
are the electron Pauli matrices for particles with spin
1/2, and J the hole matrices for particles with spin
3/2. The potential energies 𝑈𝑠(𝑟

cr
𝑒 ) and 𝑈𝑠(𝑟

cr
ℎ ) de-

scribe the self-action of an electron and a hole, re-
spectively, in the field of image charge forces that
emerge owing to the polarization of the heterointer-
face in the QD. The potential energies 𝑈𝑒(𝑟

cr
𝑒 ) and

𝑈ℎ(𝑟
cr
ℎ ) describe the energy wells for electrons and

holes, respectively, which are formed as a result of
discontinuities of the conduction and valence bands
at the heterointerface; 𝑈𝑒(ℎ)(𝑟) = 0 if 𝑟 < 𝑅2, and
𝑈𝑒(ℎ)(𝑟) = 𝑈𝑐(𝑣) if 𝑟 > 𝑅2, where 𝑅2 is the QD radius;
the valence band discontinuity at the heterointerface
CdTe/SiO2 amounts to 𝑈𝑣 = 4.7 eV [16], and that of
the conduction band to 𝑈𝑐 = 2.92 eV (taking into ac-
count that the energy gap width in SiO2 amounts to
9.1 eV). The potential energy 𝑈𝑒ℎ(r

cr
𝑒 , rcrℎ ) describes

the electron-hole Coulomb interaction (both direct
and indirect, i.e. through the corresponding polariza-
tion of the heterointerface). It can be determined by
solving the Poisson equation

∇r ·
[︀
𝜀(𝑟)∇r𝑈(r, r′)

]︀
= 4𝜋𝑒2𝛿(r− r′),

where 𝜀(𝑟) = 𝜀02 if 𝑟 < 𝑅2 and 𝜀(𝑟) = 𝜀03 if 𝑟 > 𝑅2,
𝜀02 is the low-frequency (static) dielectric constant of
a QD material (for CdTe, 𝜀02 = 10.4 [8]), 𝜀03 the
low-frequency dielectric constant of the matrix ma-
terial (for SiO2, 𝜀03 = 3.9 [8]), and 𝑒 the electron
charge. The expressions for the potential self-action,
𝑈𝑠(𝑟), and interaction, 𝑈𝑒ℎ(r, r

′), energies can be
found, e.g., in work [17] in a form convenient for
quantum-mechanical calculations.

The radial electron wave function 𝜌𝑒0(𝑟𝑒) of the
ground electron state in a QD (𝑟𝑒 ≡ 𝑟cr𝑒 ), which is
the eigenfunction of the kinetic energy operator �̂�𝑒,
has the following form in the finite-barrier case:

𝜌𝑒0(𝑟𝑒) = 𝐶𝑒

{︀
𝜃(𝑅2 − 𝑟𝑒)𝑗0(𝑘𝑒𝑟𝑒) + 𝜃(𝑟𝑒 −𝑅2)×

× 𝑘0(𝜆𝑒𝑟𝑒)
[︀
𝑗0(𝑘𝑒𝑅2)/𝑘0(𝜆𝑒𝑅2)

]︀}︀
, (34)

where 𝑗0(𝑥) is the spherical Bessel function of the
zeroth order, 𝑘0(𝑥) = exp(𝑥)/𝑥 is the modified
spherical Hankel function of the zeroth order, 𝑘𝑒 =
=

√︀
2𝑚𝑒,2𝐸𝑒 /~, 𝜆𝑒 =

√︀
2𝑚𝑒,3(𝑈𝑐 − 𝐸𝑒) /~, 𝑚𝑒,2 is

the effective electron mass in the QD (for CdTe,
𝑚𝑒,2 = 0.095𝑚0 [8]), and 𝑚𝑒,3 the effective elec-
tron mass in the surrounding matrix (for SiO2,
𝑚𝑒,3 = 0.5𝑚0 [18]). The size-quantized electron en-
ergy 𝐸𝑒 is determined from the condition of a non-
trivial solution for boundary conditions in the form
of the continuity of the wave function and its flux
across the QD/matrix interface, and the normaliza-
tion constant 𝐶𝑒 from the normalization condition∫︀∞
0

[𝜌𝑒0(𝑟𝑒)]
2 𝑟2𝑒 𝑑𝑟𝑒 = 1.

The radial hole wave functions 𝜌ℎ0 (𝑟ℎ) and 𝜌ℎ2 (𝑟ℎ)
of the ground hole state in a QD (𝑟ℎ ≡ 𝑟crℎ ) have the
following form in the case of finite barrier:

𝜌ℎ0 (𝑟ℎ) = 𝜃(𝑅2 − 𝑟ℎ)
[︀
𝐴𝑗0(𝑘ℎℎ𝑟ℎ) +𝐵𝑗0(𝑘𝑙ℎ𝑟ℎ)

]︀
+

+ 𝜃(𝑟ℎ −𝑅2)
[︀
𝐶𝑘0(𝜆ℎℎ𝑟ℎ) +𝐷𝑘0(𝜆𝑙ℎ𝑟ℎ)

]︀
, (35)

𝜌ℎ2 (𝑟ℎ) = 𝜃(𝑅2 − 𝑟ℎ)
[︀
𝐴𝑗2(𝑘ℎℎ𝑟ℎ)−𝐵𝑗2(𝑘𝑙ℎ𝑟ℎ)

]︀
+

+ 𝜃(𝑟ℎ −𝑅2)
[︀
𝐶𝑘2(𝜆ℎℎ𝑟ℎ)−𝐷𝑘2(𝜆𝑙ℎ𝑟ℎ)

]︀
, (36)

where 𝑗2(𝑥) is the spherical Bessel function of
the second order, 𝑘2(𝑥) = exp(−𝑥)(1/𝑥 + 3/𝑥2+
+3/𝑥3) is the modified spherical Hankel function
of the second order, 𝑘ℎℎ =

√︀
2𝑚ℎℎ,2𝐸ℎ/~, 𝑘𝑙ℎ =

=
√︀
2𝑚𝑙ℎ,2𝐸ℎ/~, 𝜆ℎℎ =

√︀
2𝑚ℎℎ,3(𝑈𝑣 − 𝐸ℎ)/~, 𝜆𝑙ℎ =

=
√︀

2𝑚𝑙ℎ,3(𝑈𝑣 − 𝐸ℎ)/~, 𝑚ℎℎ,2 and 𝑚𝑙ℎ,2 are the ef-
fective masses of heavy and light, respectively, holes
in the QD (for CdTe, 𝑚ℎℎ,2 = 0.81𝑚0 and 𝑚𝑙ℎ,2 =
= 0.12𝑚0 [8]), and 𝑚ℎℎ,3 and 𝑚𝑙ℎ,3 the effec-
tive masses of heavy and light holes in the matrix
(for SiO2, 𝑚ℎℎ,3 = 𝑚𝑙ℎ,3 = 0.6𝑚0 [19]). The size-
quantized hole energy is also determined from the
condition of a nontrivial solution for boundary condi-
tions in the form of the continuity of the wave func-
tion and its flux across the QD/matrix interface, the
constants 𝐴, 𝐵, 𝐶, and 𝐷 are determined from those
boundary conditions and the normalization one
∞∫︁
0

{︀
[𝜌ℎ0 (𝑟ℎ)]

2 + [𝜌ℎ2 (𝑟ℎ)]
2
}︀
𝑟2ℎ 𝑑𝑟ℎ = 1.

In Fig. 2, the dependences of the exciton transition
energy 𝐸𝑥 in the CdTe QD on the QD radius 𝑅2 are
depicted. They have been obtained neglecting the ex-
change interaction operator �̂�exch in the Schrödinger
equation (33).
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Fig. 2. Dependences of the main exciton transition energy
𝐸𝑥 on the QD radius for the CdTe QD. Curves 1 and 1 ′ cor-
respond to a finite CdTe/SiO2 barrier, and 2 and 2 ′ to an
infinitely high one. Curves 1 and 2 were calculated taking the
mixing of heavy and light hole states into account, and curves
1 ′ and 2 ′ with only heavy hole state account. Curve 3 is the
empirical dependence of the energy of the first absorption peak
on the CdTe QD radius [20]

Fig. 3. Dependences of the energies 𝐸𝑥,𝐹 − 𝐸𝑥 on the
CdTe QD radius. Curve 1 corresponds to the states of dark
excitons with the quantum number 𝐹 = 2 of the total an-
gular momentum, curve 2 to states of bright excitons with
𝐹 = 1. Curve 3 illustrates the dependence of the total split-
ting Δ = 𝐸𝑥,1 −𝐸𝑥,2. The dashed curve 3 ′ is the dependence
of the total splitting in the case of infinitely high barriers for
electrons and holes. The symbol × marks the value of total
splitting in the CdTe QD with 𝑅2 = 2 nm obtained in accor-
dance with the calculations by Efros et al. [4]; and the symbol
�, in accordance with the calculations by Blokland et al. [11]

Figure 3 illustrates the calculated dependences of
the energies of dark and bright excitons (reckoned
from the exciton transition energies 𝐸𝑥 shown in
Fig. 2) on the CdTe QD radius.

6. Energies of Plasmons in a Metal NP

The interaction of the QD excitonic emission with
plasma oscillations in the NP and the excitonic emis-
sion enhancement owing to this interaction become
maximal under conditions close to the resonance be-
tween the excitonic emission energy and the energy of
plasma oscillations. Specific calculations were carried
out for gold and silver NPs, whose dielectric func-
tions in the optical spectral range can be written in
the form [21, 22]

𝜀
𝑇 (𝐿)
1 (𝜔, 𝑘) = 1 + 𝜀𝑖𝑏(𝜔) + 𝜀

𝑇 (𝐿)
𝑝𝑙 (𝜔, 𝑘), (37)

where the second term on the right-hand side is as-
sociated with interband electron transitions (i.e. with
bound electrons) and the third one,

𝜀
𝑇 (𝐿)
𝑝𝑙 (𝜔, 𝑘) = −

𝜔2
𝑝𝑙

𝜔
[︀
𝜔+𝑖(𝛤+𝐴𝑣𝐹 /𝑅1)

]︀
−𝛽2

𝑇 (𝐿)𝑘
2
, (38)

with electron transitions in the conduction band
(i.e. with free electrons). The indices 𝑇 and 𝐿 denote
the transverse and longitudinal, respectively, compo-
nents of the dielectric constant. In gold or silver, the
Fermi velocity 𝑣F ≈ 1.4 × 108 cm/s, 𝛽𝐿 =

√︀
3/5𝑣F,

𝛽𝑇 = 0, the damping constant in the bulk material
𝛤 = 𝑣F/𝑙𝑓 , 𝑙𝑓 is the mean free path of electrons,
the constant 𝐴 falls within the interval of 0.1–0.7
depending on the mechanism of electron scattering
by NP walls and other factors [21] (in this work, we
put 𝐴 = 0.5), 𝜔𝑝𝑙 =

√︀
4𝜋 𝑛𝑒2/𝑚* is the plasma

frequency of the corresponding material (for gold,
~𝜔𝑝𝑙 = 8.56 eV and ~𝛤 = 73 meV [23]; for silver,
~𝜔𝑝𝑙 = 9.1 eV and ~𝛤 = 18 meV [24]). In the case
of gold, the interband transitions are taken into ac-
count on the basis of a model presented in work [23]
with interband transition energies ~𝜔1 = 2.65 eV and
~𝜔2 = 3.75 eV. In the case of silver, the generalized
Drude model is used with the background dielectric
constant 𝜀∞ = 1 + 𝜀𝑖𝑏 = 3.71 [24]. The frequency
dependences of the real and imaginary parts of the
dielectric constants calculated for massive gold and
silver on the basis of models [23] and [24] agree well
with experimental data [25] in the relevant frequency
interval.

The energy of interface plasmon oscillations in
metal NPs can be determined in the framework of
the scattering problem as poles of the reflection coef-
ficients 𝑉 NP

𝐸,33 for the electromagnetic radiation inci-
dent on a NP calculated in our previous work [3]. In
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Figs. 4 and 5, the dependences of the energies of in-
terface plasmons of various orders on the radius of a
gold or silver, respectively, NP in the SiO2 matrix
characterized by the high-frequency dielectric con-
stant 𝜀3 ≈ 2.37÷2.45 in the energy interval 1.6–3 eV
[26] are shown.

7. Calculation of Excitonic Emission
Power in the Nanosystem “Semiconductor
QD + Metal NP”

In Section 4, we have calculated the EMFs gener-
ated on the internal side of the QD surface due to
the excitonic emission. All other fields in a QD + NP
nanosystem can be found using formulae of our pre-
vious work [3]. Now, we can calculate the emission
power for both an isolated QD and a nanosystem
QD + NP in whole. According to work [9], the power
emitted by an isolated semiconductor QD and aver-
aged over the period 𝑇 = 2𝜋/𝜔 looks like

𝑃
(𝐹 )

QD =
𝜔

8𝜋𝑘33

∑︁
𝑙,𝑚

[︀⃒⃒
�̃�𝑡,𝐹3,𝐸(𝑙,𝑚)

⃒⃒2
+ 𝜀3

⃒⃒
�̃�𝑡,𝐹3,𝑀 (𝑙,𝑚)

⃒⃒2]︀
,

(39)

where the coefficients �̃�𝑡,𝐹3,𝐸(𝑙,𝑚) and �̃�𝑡,𝐹3,𝑀 (𝑙,𝑚) of
the multipole expansion of the EM field outside the
QD are connected with the calculated coefficients
�̃�𝑖,𝐹2,𝐸(𝑙,𝑚) and �̃�𝑖,𝐹2,𝑀 (𝑙,𝑚) of EM fields at the internal
QD boundary by means of the EM field transmission
coefficients 𝑉 QD

𝐸,23(𝑙) and 𝑉 QD
𝑀,23(𝑙), respectively [3].

As a result, in the case of emission from the higher
bright exciton levels with 𝐹 = 1, the following ex-
pression is obtained:

𝑃
(1)

QD =
𝜔|𝑝|2𝑘30
108

(︂
𝜀2
𝜀3

)︂3/2[︂√
𝜀2
⃒⃒
𝑉 QD
𝐸,23(1)

⃒⃒2
𝐼20 ×

×
(︂
24− 8

𝐼2
𝐼0

+
13

2

𝐼22
𝐼20

)︂
+

192

7

√
𝜀2
⃒⃒
𝑉 QD
𝐸,23(3)

⃒⃒2
𝐼22 +

+
3234

125

𝜀3√
𝜀2

⃒⃒
𝑉 QD
𝑀,23(2)

⃒⃒2
𝐼22

]︂
, (40)

where

𝐼0 =

𝑅2∫︁
0

𝜌𝑒0(𝑟)𝜌
ℎ
0 (𝑟)𝑗0(𝑘2𝑟) 𝑟

2𝑑𝑟,

Fig. 4. Dependences of the energy of interface plasmons in a
gold NP on the NP radius for various orbital numbers 𝑙

Fig. 5. The same as in Fig. 4, but for silver NPs

𝐼2 =

𝑅2∫︁
0

𝜌𝑒0(𝑟)𝜌
ℎ
2 (𝑟)𝑗2(𝑘2𝑟) 𝑟

2𝑑𝑟.

In the case of emission from the lower levels of dark
excitons with 𝐹 = 2,

𝑃
(2)

QD =
𝜔|𝑝|2𝑘30
450

(︂
𝜀2
𝜀3

)︂3/2
𝐼22

[︂
6
√
𝜀2
⃒⃒
𝑉 QD
𝐸,23(1)

⃒⃒2
+

+
128

7

√
𝜀2
⃒⃒
𝑉 QD
𝐸,23(3)

⃒⃒2
+

392

5

𝜀3√
𝜀2

⃒⃒
𝑉 QD
𝑀,23(2)

⃒⃒2]︂
. (41)

From formulas (40) and (41), one can see that the
power emitted by an isolated semiconductor QD does
not depend on the Euler angles, which is evident from
the physical reason. This fact confirms the correct-
ness of the results obtained for the electric fields.

In the presence of a metal NP in a vicinity of the
semiconductor QD, the field in the wave zone is a
sum of the EM field emitted by the QD itself and the
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fields formed as a result of the multiple field scatter-
ing between the QD and the NP. The field emitted
by the QD contains only the multipole components
with 𝑙 = 1, 2, and 3. However, in the course of scat-
tering of this field between the QD and the NP, the
other multipole components of higher orders 𝑙′ emerge
[3]. The components with larger 𝑙′-values correspond
to the less contributions to the total field. Therefore,
we may confine the consideration to a finite number of
multipoles. In the further consideration, for the sake
of brevity, we use the notation of work [3], including
that for the coefficients of reflection and transmission
of the EM field at the heterointerfaces matrix/NP and
matrix/QD.

Let the number 𝑘 denote the maximum order of
multipoles that are taken into account in the scat-
tering. The matrix N(𝑚) is formed as a sum of the
powers of matrices for a single scattering of the EM
field by the QD [3]:

N(𝑚) = I+ 𝜉𝑚 + 𝜉2𝑚 + ... =
(︀
I− 𝜉𝑚

)︀−1
. (42)

This is a 2𝑘 × 2𝑘-matrix describing the multiple EM
field scattering by the QD. Let us also define the
2𝑘 × 2𝑘-matrix M(𝑚) = Z𝑚 N(𝑚) with regard for the
multiple scattering of an EM field by the metal NP
(the 2𝑘×2𝑘-matrix Z𝑚 is defined in work [3]). Let us
also introduce the following quantities, in which the
elements of matrices M(𝑚) and N(𝑚) are used:

𝐵
(𝑚)
𝑙,𝑛 =

⃒⃒
𝑉 NP
𝐸,33(𝑙)𝑀

(𝑚)
𝑘+𝑙,𝑛 +𝑁

(𝑚)
𝑘+𝑙,𝑛

⃒⃒2
+

+ 𝜀3
⃒⃒
𝑉 NP
𝑀,33(𝑙)𝑀

(𝑚)
𝑙,𝑛 +𝑁

(𝑚)
𝑙,𝑛

⃒⃒2
, (43)

𝐶
(𝑚)
𝑙,𝑛,𝑗 =

[︀
𝑉 NP
𝐸,33(𝑙)𝑀

(𝑚)
𝑘+𝑙,𝑛 +𝑁

(𝑚)
𝑘+𝑙,𝑛

]︀
×

×
[︀
𝑉 NP
𝐸,33(𝑙)𝑀

(𝑚)
𝑘+𝑙,𝑗 +𝑁

(𝑚)
𝑘+𝑙,𝑗

]︀*
+

+ 𝜀3
[︀
𝑉 NP
𝑀,33(𝑙)𝑀

(𝑚)
𝑙,𝑛 +𝑁

(𝑚)
𝑙,𝑛

]︀
×

×
[︀
𝑉 NP
𝑀,33(𝑙)𝑀

(𝑚)
𝑙,𝑗 +𝑁

(𝑚)
𝑙,𝑗

]︀*
. (44)

The expressions obtained with the use of those coeffi-
cients for the powers ⟨𝑃 (𝐹 )

QD+NP⟩𝛹𝑒,𝜃𝑒,𝜙𝑒
emitted by the

system QD + NP and averaged both over the period
𝑇 = 2𝜋/𝜔 and the Euler angles (over the orientation
of the crystal lattice in the QD or, equivalently, over
the QD arrangements near the NP) are given in Ap-
pendix 2 (for bright exciton states with the quantum
number 𝐹 = 1 of the total angular momentum) and
in Appendix 3 (for dark exciton states with 𝐹 = 2).

8. Calculation of the Intensity of EM
Field Energy Absorption by a Metal NP

Electrons in the NP absorb the EM field energy. For
the EM field emitted by a QD exciton state with the
quantum number 𝐹 of the total angular momentum,
the intensity 𝑄

(𝐹 )

NP of its absorption by the metal NP
(the energy absorbed by the NP per unit time), which
is averaged over the period 𝑇 = 2𝜋/𝜔, can be calcu-
lated using the formula

𝑄
(𝐹 )

NP =

∫︁
NP

[j(r, 𝑡;𝐹 )]Re · [ENP
1 (r, 𝑡;𝐹 )]Re𝑑

3𝑟 =

=
𝜔

8𝜋

∫︁
NP

{︁
Im

(︀
𝜀𝑇1 (𝜔, 0)

)︀⃒⃒
ENP

1,𝑇 (r;𝐹 )
⃒⃒2
+ Re

(︀
𝜀𝑇1 (𝜔, 0)

)︀
×

× Im
[︁
ENP

1,𝑇 (r;𝐹 ) ·
(︀
ENP

1,𝐿(r;𝐹 )
)︀*]︁

+ Im
(︀
𝜀𝑇1 (𝜔, 0)

)︀
×

×Re
[︁
ENP

1,𝑇 (r;𝐹 ) ·
(︀
ENP

1,𝐿(r;𝐹 )
)︀*]︁}︁

𝑑3𝑟, (45)

where
[A(r, 𝑡)]Re = [A(r) exp(−𝑖𝜔𝑡) +A*(r) exp(𝑖𝜔𝑡)]/2,

j(r, 𝑡;𝐹 ) is the current density of electrons,
ENP

1,𝑇 (r, 𝑡;𝐹 ) and ENP
1,𝐿(r, 𝑡;𝐹 ) are the transverse and

longitudinal, respectively, electric fields in the NP
(the corresponding expressions for these fields in the
form of their multipole expansions can be found
in work [3]), the wave number 𝑘𝐿(𝜔) of longitu-
dinal oscillations is determined from the condition
𝜀𝐿1 (𝜔, 𝑘𝐿) = 0, and the wave number 𝑘𝑇 (𝜔) of trans-
verse oscillations is defined by the dispersion equation
𝑘2𝑇 = 𝜀𝑇1 (𝜔, 0)𝜔

2/𝑐2. For the record of the further for-
mulas to be compact, the following notation will be
useful:
𝑡𝐸𝑙 =

⃒⃒
𝑉 NP
𝐸,31(𝑙)

⃒⃒2 Im
[︀
𝜀𝑇𝑝𝑙(𝜔, 0)

]︀⃒⃒
𝜀𝑇1 (𝜔, 0)

⃒⃒2
(𝑘0𝑅1)2

×

×
1∫︁

0

{︁
𝑙(𝑙 + 1)

⃒⃒
𝑗𝑙(𝑘𝑇𝑅1𝑥)

⃒⃒2
+

⃒⃒⃒[︀
𝑦𝑗𝑙(𝑦)

]︀′
𝑦=𝑘𝑇𝑅1𝑥

⃒⃒⃒2}︁
𝑑𝑥,

(46)
𝛼𝑙 =

1∫︁
0

{︁
𝑗𝑙(𝑘𝑇𝑅1𝑥)

[︀
𝑦𝑗′𝑙(𝑦)

]︀*
𝑦=𝑘𝐿𝑅1𝑥

+

+
[︀
𝑦𝑗𝑙(𝑦)

]︀′
𝑦=𝑘𝑇𝑅1𝑥

𝑗*𝑙 (𝑘𝐿𝑅1𝑥)
}︁
𝑑𝑥, (47)

𝛽𝑙 =
𝑉 NP
𝐸,31(𝑙)

(︀
𝑉 NP
𝐿,31(𝑙)

)︀*
𝜀𝑇1 (𝜔, 0) 𝑘

*
𝐿𝑅1

, (48)

𝑡𝐸,𝐿
𝑙 = 𝑡𝐸𝑙 −

√︀
𝑙(𝑙 + 1)

𝑘0𝑅1

{︁
Re

[︀
𝜀𝑇1 (𝜔, 0)

]︀ [︀
𝛽′
𝑙𝛼

′′
𝑙 + 𝛽′′

𝑙 𝛼
′
𝑙

]︀
+
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+ Im
[︀
𝜀𝑇𝑝𝑙(𝜔, 0) + 𝜀𝐿𝑝𝑙(𝜔, 𝑘𝐿)

]︀
[𝛽′

𝑙𝛼
′
𝑙 − 𝛽′′

𝑙 𝛼
′′
𝑙 ]
}︁
, (49)

𝑡𝑀𝑙 =
⃒⃒
𝑉 NP
𝑀,31(𝑙)

⃒⃒2 Im
[︀
𝜀𝑇𝑝𝑙(𝜔, 0)

]︀ 1∫︁
0

⃒⃒
𝑗𝑙(𝑘𝑇𝑅1𝑥)

⃒⃒2
𝑥2𝑑𝑥.

(50)

In expressions (46)–(47), the primed quantities mean
the derivative with respect to the argument, the sing-
le- and double-primed 𝛼𝑙, and 𝛽𝑙 in expression (49)
mean the real and imaginary, respectively, parts of
those quantities, and 𝑉 NP

𝐸,31(𝑙), 𝑉
NP
𝑀,31(𝑙), and 𝑉 NP

𝐿,31(𝑙)
are the coupling amplitudes between the coefficients
in the multipole expansions of the EM field outside
and inside the NP [3]. Introducing the quantities

𝑋
(𝑚)
𝑙,𝑛 = 𝑡𝐸,𝐿

𝑙

⃒⃒
𝑀

(𝑚)
𝑘+𝑙,𝑛

⃒⃒2
+ 𝑡𝑀𝑙

⃒⃒
𝑀

(𝑚)
𝑙,𝑛

⃒⃒2
, (51)

𝑊
(𝑚)
𝑙,𝑛,𝑗 = 𝑡𝐸,𝐿

𝑙 𝑀
(𝑚)
𝑘+𝑙,𝑛

(︀
𝑀

(𝑚)
𝑘+𝑙,𝑗

)︀*
+ 𝑡𝑀𝑙 𝑀

(𝑚)
𝑙,𝑛

(︀
𝑀

(𝑚)
𝑙,𝑗

)︀*
,

(52)

the intensities ⟨𝑄(𝐹 )

NP ⟩𝛹𝑒,𝜃𝑒,𝜙𝑒 of the absorption of the
EM field energy by the metal NP averaged over the
period 𝑇 = 2𝜋/𝜔 and the Euler angles can be written
in the form⟨
𝑄

(1)

NP

⟩
𝛹𝑒,𝜃𝑒,𝜙𝑒

=
𝜔|𝑝|2𝑘30
108

𝜀
3/2
2 (𝑘0𝑅1)

3𝑆𝑄,1, (53)⟨
𝑄

(2)

NP

⟩
𝛹𝑒,𝜃𝑒,𝜙𝑒

=
𝜔|𝑝|2𝑘30
450

𝐼22 𝜀
3/2
2 (𝑘0𝑅1)

3𝑆𝑄,2, (54)

where 𝑆𝑄,1 and 𝑆𝑄,2 are the sums in formulas (A2.1)
and (A3.1), respectively, but with the coefficients
𝑋

(𝑚)
𝑙,𝑛 instead of 𝐵(𝑚)

𝑙,𝑛 , and 𝑊
(𝑚)
𝑙,𝑛 instead of 𝐶(𝑚)

𝑙,𝑛 .

9. Calculation of Excitonic Emission Rates,
Non-radiative Losses, and Emission Quantum
Yield in the Nanosystem QD + NP

While calculating the emission characteristics of the
hybrid nanosystems QD + NP, the quasiequilibrium
character of the dark and bright exciton level pop-
ulations at finite temperatures has to be taken into
account. The total averaged emission power ⟨𝑃QD⟩ of
a single semiconductor QD can be written as

⟨𝑃QD⟩ =
𝑃

(2)

QD + 𝑃
(1)

QD exp(−Δ/𝑘B𝑇 )

1 + exp(−Δ/𝑘B𝑇 )
, (55)

where Δ(𝑅2) is the splitting of dark and bright exci-
ton levels (see Section 5). The total averaged emission
power ⟨𝑃QD+NP⟩ of the nanosystems QD + NP is ex-
pressed analogously to formula (55), but with 𝑃

(1)

QD

substituted by ⟨𝑃 (1)

QD+NP⟩𝛹𝑒,𝜃𝑒,𝜙𝑒
(Eq. (A2.1)), and

𝑃
(2)

QD by ⟨𝑃 (2)

QD+NP⟩𝛹𝑒,𝜃𝑒,𝜙𝑒 (Eq. (A3.1)). Performing

the substitutions ⟨𝑃QD⟩ by ⟨𝑄NP⟩, 𝑃
(2)

QD by

⟨𝑄(2)

NP⟩𝛹𝑒,𝜃𝑒,𝜙𝑒
, and 𝑃

(1)

QD by ⟨𝑄(1)

NP⟩𝛹𝑒,𝜃𝑒,𝜙𝑒
in formula

(55), an analogous expression can also be obtained for
the total intensity of absorption of the QD-emitted
EM field energy by the metal NP.

Let the calculation parameters be the rate of non-
radiative losses 𝛾QD

nr (the rate of non-radiative recom-
bination) and the quantum yield of excitonic emission
by a single QD, 𝜂QD = 𝛾QD

𝑟 /(𝛾QD
𝑟 + 𝛾QD

nr ). Typical
values of the former in the case of a CdTe QD are
𝛾QD
nr ∼ (2÷7) × 107 s−1 [27, 28]. Thereby, we also

selected the rate of radiative exciton recombination
in the isolated QD, 𝛾QD

𝑟 = 𝛾QD
nr 𝜂QD/(1 − 𝜂QD). It is

clear that the power ⟨𝑃QD⟩ emitted by an isolated
semiconductor QD has to be proportional to the rate
of radiative recombination 𝛾QD

𝑟 : ⟨𝑃QD⟩/~𝜔 = 𝐴𝑟𝛾
QD
𝑟 .

Having determined the coefficient 𝐴𝑟 from this equal-
ity, we can determine the rate of excitonic emission
by the nanosystem QD + NP in whole, 𝛾QD+NP

𝑟 =
= ⟨𝑃QD+NP⟩/(𝐴𝑟~𝜔), and the rate of non-radiative
losses in this system, 𝛾QD+NP

nr,TOT = 𝛾QD+NP
nr +𝛾QD+NP

nr,FRET,
where 𝛾QD+NP

nr = 𝛾QD
nr +⟨𝑄NP⟩/(𝐴𝑟~𝜔), and 𝛾QD+NP

nr,FRET

is a contribution from the direct resonance transmis-
sion of the exciton energy to a plasmon excitation
in the NP without the participation of photons. This
contribution, which decreases, as the distance 𝐷 be-
tween the QD and the NP increases, as 𝐷−6 in the
dipole approximation, is calculated in the framework
of the model [29].

In Fig. 6, the calculated dependences of the ra-
diative recombination rate 𝛾QD+NP

𝑟 and the rates of
non-radiative losses 𝛾QD+NP

nr and 𝛾QD+NP
nr,FRET on the dis-

tance ℎ = 𝐷−𝑅1−𝑅2 between the surface of a CdTe
QD and the surface of a silver or gold NP (𝐷 is the
distance between the NP and QD centers) are de-
picted for QD diameters of 2.5 and 3.5 nm, an NP
diameter of 70 nm, the quantum yield of isolated QD
𝜂QD = 10%, and 𝑇 = 300 K. The relevant depen-
dence for the rate of non-radiative losses 𝛾QD+NP

nr,FRET in
the case of a silver NP is not shown because of its
small values 𝛾QD+NP

nr,FRET < 3× 106 s−1.
In Figs. 7 to 10, the dependences of the relative

emission quantum yield 𝜂rel = 𝜂QD+NP/𝜂QD on the
distance between the QD and NP surfaces are shown
for the cases of silver and gold NPs at temperatures of
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Fig. 6. Dependences of the radiative recombination rate
𝛾QD+NP
𝑟 (curves 1 and 2 ) and the rates of non-radiative losses

𝛾QD+NP
nr (curves 1 ′ and 2 ′) and 𝛾QD+NP

nr,FRET (curve 2 ′′) on the
distance between the surface of CdTe QD 3 (panel a) and
3.5 nm (panel b) in diameter and the surface of a silver (curves
1 and 1 ′) or gold (curves 2, 2 ′, and 2′′) NP 70 nm in diameter.
Calculation parameters: 𝛾QD

nr = 3 × 107 −1, 𝜂QD = 10%, and
𝑇 = 300 K

Fig. 7. Dependences of the relative emission quantum yield
of the nanosystem “semiconductor QD + metal NP” on the
distance between the QD and NP surfaces for QD 2 nm in
diameter: silver NP and 𝑇 = 4.2 (a) and 300 K (b); gold
NP and 𝑇 = 4.2 (c) and 300 K (d). The NP diameter (in
nanometers) is indicated near the corresponding curve

Fig. 8. The same as in Fig. 7, but for QD 3 nm in diameter

Fig. 9. The same as in Fig. 7, but for QD 3.5 nm in diameter

4.2 and 300 K for various QD and NP sizes, provided
the emission quantum yield for the isolated QD equal
𝜂QD = 10%. A substantial increase of the emission
quantum yield in the case of a gold NP and the QD
sizes 𝐷QD = 2𝑅2 & 3.5 nm is related to the fact
that, at such QD dimensions, the energies of exciton
transitions (see Fig. 2) fall within the energy interval
of interface plasmons in the gold NP (see Fig. 4),
which gives rise to the emergence of a resonance in
the exciton-plasmon interaction.
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Fig. 10. The same as in Fig. 7, but for QD 5 nm in diameter

Similar dependences of the relative emission quan-
tum yield on the distance between the NP and QD
surfaces in the case where the quantum yield for a
single QD is 𝜂QD = 50% demonstrate maximal val-
ues 𝜂max

rel in the range 1.3–1.5 at larger separation dis-
tances (∼16 nm in the case of silver NP and 20–25 nm
in the case of gold NP).

10. Conclusions

A model of excitonic emission by a non-spherical
nanosystem “emitting spherical semiconductor QD +
+ spherical metal NP” has been developed in the
case of a semiconductor with cubic modification and
a fourfold degenerate valence band Γ8. The multiple
scattering of the electromagnetic field, which is emit-
ted by dark and bright excitons in the QD, between
the QD and the NP is taken into account. The emit-
ted power and the rate of radiative recombination,
as well as the absorption intensity and the rate of
non-radiative energy losses in the system are calcu-
lated. This made it possible to determine the emission
quantum yield and its dependence on the distance
between the NP and the QD, the NP and QD sizes,
the temperature, and other parameters. It is shown
that, unlike the electromagnetic field emitted by a
point dipole in a vicinity of the metal NP, which con-
tains the infinite number of multipole components,
the electromagnetic field emitted by the QD contains
only the dipole and octupole components of the elec-

tric type and the quadrupole components of the mag-
netic type. As a result, the absorption of the EM
field energy by interface plasmons in the metal NP
in the QD + NP nanosystem is considerably lower
than in the case of a point dipole in a vicinity of the
NP, when the multipole components of higher orders
give the main contribution to the absorption at small
distances between the point dipole and the metal
NP [30–32]. As a consequence, the emission quantum
yield of a QD in a vicinity of the metallic NP is higher
than that of an imaginary point dipole located at the
same distance from the metallic NP surface as that
to the QD center, the emission parameters (including
the frequency) of the dipole being the same as those
of the appropriate QD.
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APPENDIX 1

𝐶2,0 = −
√︀

3/8 exp(−2𝑖𝜙𝑒) sin
2 𝜃𝑒, 𝐶−2,0 = 𝐶*

2,0, (A1.1)

𝐶2,±1 = ∓𝑖 exp(−2𝑖𝜙𝑒 ∓ 𝑖𝛹𝑒) sin 𝜃𝑒
1± cos 𝜃𝑒

2
,

𝐶−2,±1 = −𝐶*
2,∓1,

(A1.2)

𝐶2,±2 = exp(−2𝑖𝜙𝑒 ∓ 2𝑖𝛹𝑒)(1± cos 𝜃𝑒)
2/4,

𝐶−2,±2 = 𝐶*
2,∓2,

(A1.3)

𝐶1,0 = −𝑖
√︀

3/2 exp(−𝑖𝜙𝑒) sin 𝜃𝑒 cos 𝜃𝑒,
𝐶−1,0 = −𝐶*

1,0,
(A1.4)

𝐶1,±1 = exp(−𝑖𝜙𝑒 ∓ 𝑖𝛹𝑒)(1± cos 𝜃𝑒)×
× (± cos 𝜃𝑒 − 1/2), 𝐶−1,±1 = 𝐶*

1,∓1, (A1.5)

𝐶1,±2 = ∓𝑖 exp(−𝑖𝜙𝑒 ∓ 2𝑖𝛹𝑒) sin 𝜃𝑒 ×
× (1± cos 𝜃𝑒)/2, 𝐶−1,±2 = −𝐶*

1,∓2, (A1.6)

𝐶0,0 = (3 cos2 𝜃𝑒 − 1)/2, (A1.7)

𝐶0,±1 = −𝑖
√︀

3/2 exp(∓𝑖𝛹𝑒) sin 𝜃𝑒 cos 𝜃𝑒, (A1.8)

𝐶0,±2 = −
√︀

3/8 exp(∓2𝑖𝛹𝑒) sin
2 𝜃𝑒. (A1.9)
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QD+NP
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𝑖
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ЕКСИТОННЕ ВИПРОМIНЮВАННЯ
ГIБРИДНОЇ НАНОСИСТЕМИ “СФЕРИЧНА
НАПIВПРОВIДНИКОВА КВАНТОВА
ТОЧКА + СФЕРИЧНА МЕТАЛЕВА
НАНОЧАСТИНКА”

Р е з ю м е

Дослiджено випадок сферичної квантової точки (КТ) пря-
мозонного напiвпровiдника кубiчної модифiкацiї з чотири-
кратно виродженою валентною зоною Γ8 в околi сферичної
металевої наночастинки (НЧ). Екситонне випромiнювання
КТ розглянуто як таке, що формується сумою внескiв ви-

промiнюючих точкових (вузельних) диполiв всерединi КТ.
Опис несферичної в цiлому наноситеми базується на вико-
ристаннi трьох сферичних систем координат i встановленнi
зв’язку мiж коефiцiєнтами мультипольного розкладу еле-
ктромагнiтних (ЕМ) полiв у цих системах координат. По-
лярнi осi першої i другої систем з центрами в НЧ i КТ на-
правленi вздовж лiнiї, що з’єднує цi центри. Орiєнтацiя тре-
тьої системи координат з центром в КТ визначається орiєн-
тацiєю кристалiчної ґратки в КТ. Показано, що на вiдмiну
вiд скалярного потенцiалу електричного поля, який iндуку-
ється екситонним станом в КТ i має вигляд потенцiалу то-
чкового диполя, ЕМ поле екситонного випромiнювання КТ
не може бути представлене у виглядi ЕМ поля випромiню-
вання точкового диполя, оскiльки мiстить лише дипольнi,
квадрупольнi i октупольнi компоненти. Враховано багато-
кратне розсiювання мiж НЧ i КТ електромагнiтного поля,
що випромiнює КТ. Розрахованi залежностi квантового ви-
ходу екситонного випромiнювання вiд вiдстанi мiж поверх-
нями КТ i НЧ при рiзних розмiрах КТ i НЧ i температурах
4,2 i 300 K у випадку КТ CdTe i срiбних або золотих НЧ.

ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 7 647


