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A method has been proposed to calculate the influence of radiation on the structure of a two-
component fluid. A corresponding system of integro-differential equations for the pair corre-
lation function, which are similar to the second equations in the BBGKY chain but with
a different effective temperature, is obtained. The usual integro-differential equations for the
pair correlation functions with effective temperatures that are determined with the use of the
nonequilibrium distribution function for particle momenta are shown to be applicable to the
calculation of changes in the structural and thermodynamic properties of irradiated fluids.
K e yw o r d s: BBGKY chain, integro-differential equations, nonequilibrium steady state, pair
correlation function, effective temperature.

1. Introduction

Let us analyze theoretically the influence of external
factors on a fluid system in the thermodynamically
equilibrium state. Those factors are assumed to be
uniformly distributed in the space. For instance, it
may be an aqueous solution of the RaCl2 salt, in
which the salt ions are uniformly distributed over
the water volume. Simultaneously, radium ions are
sources of 𝛼-, 𝛽-, and 𝛾-radiation. Therefore, the sys-
tem is undergone a stationary uniform irradiation.
Another example of such a model is a chemical nu-
clear reaction in a homogeneous system with uni-
formly distributed radicals. In the cases given above,
the Maxwellian distribution of particles in the system
changes [1], i.e. the system transits into a nonequilib-
rium state and tends to return to the equilibrium one.
Examples illustrating the changes in the Maxwellian
distribution function are shown in Figs. 1 and 2.

c○ T.S. VLASENKO, V.M. SYSOEV, 2015

In the course of fluid irradiation, active particles
insert the negative entropy, which is compensated
by the entropy produced by the system itself [2–4].
Hence, it is of interest to examine the corresponding
changes in the structural properties of the fluid, in
particular, the pair distribution functions.

2. Theoretical Model

The Bogolyubov chain of equations for the space-
time-dependent distribution functions 𝐹𝑛(r,p, 𝑡)
looks like [5]
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where 𝐻(𝑛) is the Hamilton function for a closed sys-
tem with 𝑛 particles; 𝐹𝑛(r
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𝑛-th nonequilibrium distribution function depending
on the spatial coordinates r𝑖1, r𝑗2, and r𝑘3 , momenta
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3 , and time 𝑡; Φ(|r𝑖 − r𝑛+1|) is the in-
teraction potential between structural elements, and
𝜌 = 𝑁

𝑉 is the fluid density. It is evident that, in the
equilibrium case, Eq. (1) has to be reduced to the
well-known equation for an equilibrium pair distribu-
tion function 𝐹2(r,p, 𝑡), with the help of which the
thermodynamic properties of the system at equilib-
rium can be calculated.

In the stationary equilibrium case, the function
𝐹2(r,p, 𝑡) can be factorized as a product of the dis-
tribution functions over the coordinates, 𝐹2(r), and
momenta, 𝐹2(p) [6]. In the equilibrium case, the
distribution function over the momenta, 𝐹 (𝑝), is
the Maxwellian one, and the problem becomes triv-
ial. It is of interest to study the behavior of 𝐹2(r)
in the case where a modified Maxwellian distribu-
tion 𝐹 (𝑝) describes an open system that is in a
stationary nonequilibrium state under external ir-
radiation.

As a model system, let us consider a two-com-
ponent fluid [7]. This choice can easily be general-
ized to a multicomponent fluid system, with the one-
component system being only a special case [8].

In order to describe the structural characteristics
of fluid systems in the general case, it is enough to
know the time-independent pair distribution func-
tion 𝐹2(r1, r2), where r1 and r2 are the radius vec-
tor of the centers of molecules. With the help of
this distribution function, it is not only possible to
describe the structural properties of fluids (the co-
ordination number; the average distances between
atoms, molecules, and ions; the characteristic correla-
tion length), but also their thermal properties. Hence,
for a wide class of problems, the chain of equations
(1) can be truncated at the second equation. There
are a lot of various methods of determination of the
pair distribution function: experimental, theoretical,
and computer simulation ones [9, 10]. However, the
majority of known methods allow this function to
be calculated for a system in the equilibrium state
and are not suitable for the description of the sys-
tem in a stationary nonequilibrium state. This work
aims at finding 𝐹2(r1, r2) for a momentum distribu-
tion distorted by an external influence on the fluid
system.

Fig. 1. Variation of the 𝑥-component of the particle velocity
in a medium under irradiation: the particle velocity before (∙)
and after (∘) the irradiation

Fig. 2. The same as in Fig. 1, but for the 𝑦-component of the
particle velocity

The second equation of the Bogolyubov chain
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where 𝑚𝑖 is the mass of a structural element. Really,
in the stationary case, Eq. (2) transforms into a sum
of two equations. Provided that the factorization con-
dition 𝐹2(r,p) = 𝑔2(r)𝑓2(p) [6] is satisfied, each of
them is an equation of the Bogolyubov chain in the
case of nonequilibrium state:(︂
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where 𝑔2(r𝑖1) and 𝑔3(r𝑖1) are the pair and ternary, re-
spectively, radial distribution functions. Integrating
any of those equations, e.g., Eq. (3) over p𝑖

1
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where the quantity 𝑘𝑇 𝑖𝑗
eff is defined by the relation
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Relation (7) makes it possible to define the effective
temperature of the system in the general case.

It should be noted that, in the case of pair distri-
bution functions, Eq. (7) bring us to an uncertainty
of the 0

0 type. In order to avoid it, let us apply the
following procedure. In expression (7), we should cal-
culate the integral over p𝑗

2 taking advantage of the
possibility to factorize the momentum distribution
function: 𝑓2(p𝑖
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where 𝑓1(p𝑖
1) is the unary distribution function over

the momenta. Taking into account that 𝑓1(p𝑖
1) is an
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even function of p𝑖
1, i.e. 𝑓1(p1) = 𝜓(𝑝2) and, accord-

ingly, 𝜕𝑓1(p)
𝜕p = 2p𝜓8(𝑝2), after integrating over p𝑖
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we obtain the expression
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It is evident that the difference of expression (7)
from Eq. (9) consists in the absence of the uncer-
tainty mentioned above. Hence, Eq. (9) makes it pos-
sible to calculate the effective temperatures in a fluid
system in a stationary nonequilibrium case. One can
easily see that if the function 𝜓(p𝑖2

1 ) corresponds to
the Maxwellian distribution over the momenta, we
expectedly obtain 𝑘𝑇 𝑖

eff = 𝑘𝑇 𝑗
eff = 𝑘𝑇eff .

3. Experimental Verification

The main characteristic times used at the description
of a fluid structure are the average period of atomic
vibrations, 𝜏0, and the average dwell time of atoms
in the equilibrium state, 𝜏 (𝜏 > 𝜏0). Three types of
structures are distinguished on the basis of this hier-
archy [11]:

1) an instant structure of the nearest environment
of an atom, which is essential for fast processes with
characteristic times 𝑡 < 𝜏0;

2) the averaged structure of the nearest environ-
ment of an atom within the time interval 𝜏0 < 𝑡 < 𝜏 ;
and

3) the averaged structure of the nearest environ-
ment of an atom, which is essential at slow and equi-
librium processes with characteristic times 𝑡≫ 𝜏 .

Using the structural classification of fluids, the
thermodynamic and physical parameters of the sys-
tem can be divided into two groups: dependent on the
instant or the averaged structure of a fluid. The for-
mer includes the electric properties of fluids, whereas
the latter their viscosity, thermal conductivity, diffu-
sion, and surface tension.

In this work, the attention is concentrated on an
electric property of fluids, namely, on the electric
conductivity. Owing to a large difference between the
masses of free electrons and atoms, and the result-
ing difference between their velocities, it is possible
to consider the processes supposing the atoms to be
at rest. This is the so-called adiabatic approximation.
Therefore, the individual motions of separate elec-

Fig. 3. Dependence of the specific electric conductance in a
KCl solution with a concentration of 0.001 M on the 𝛾-radiation
exposure dose [12]

trons are governed by the instant structure and vice
versa.

Suppose that the stationary nonequilibrium state
can be regarded as an infinite sequence of similar
instant structures. From Fig. 3, one can see that
the specific electric conductance of a KCl solution
with a concentration of 0.001 M is equal to 𝐾0 =
= 0.015 Ω−1m−1 before the irradiation, which cor-
responds to the nonequilibrium system temperature
𝑇0 = 301 K, and to 𝐾 = 0.0215 Ω−1m−1 after the ir-
radiation, which corresponds to the temperature 𝑇 =
= 323 K (see Table 1). Hereafter, the specific electric
conductance was evaluated taking its linear concen-
tration dependence into account. Therefore, for the

Table 1. Temperature dependence
of the specific conductance of a KCl
solution with a concentration of 0.01 M [13]

𝑇, ∘C 𝐾, Ω−1m−1 𝑇, ∘C 𝐾, Ω−1m−1

28 0.1496 42 0.1899
30 0.1552 44 0.1957
32 0.1609 46 0.2015
34 0.1667 48 0.2073
36 0.1725 50 0.2131
38 0.1783 52 0.2189
40 0.1841 54 0.2247

Table 2. Specific conductance of a KCl
solution with a concentration of 1.2 M before
and after irradiation [12]

𝐾, Ω−1m−1 𝐾, Ω−1m−1 Specific conductance
before irradiation after irradiation decrease, %

10.784 10.542 2.24
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Table 3. Temperature dependence
of the specific conductance of the KCl solution
with a concentration of 1.0 M [13]

𝑇, ∘C 𝐾, Ω−1m−1

12 8.689
13 8.876
14 9.063
15 9.252
16 9.441

diluted KCl solution with a concentration of 0.001 M,
the effective temperature equals 𝑘𝑇eff ≈ 1.07 𝑘𝑇 .

Let us consider a concentrated KCl solution with
a concentration of 1.2 M. From Table 2, one can
see that its specific conductance is equal to 𝐾0 =
= 8.987 Ω−1m−1 before the irradiation, which cor-
responds to the temperature 𝑇 = 288 K, and to
𝐾0 = 8.785 Ω−1m−1 after the irradiation, which
corresponds to the temperature 𝑇 = 286.5 K (Ta-
ble 3). Hence, for the KCl solution with a concen-
tration of 1.2 M, the effective temperature equals
𝑘𝑇eff ≈ 1.005 𝑘𝑇 .

From the results obtained, one can see that, in the
case of diluted solutions, the effective temperature
of the system differs from the measured one more
substantially than in the case with the concentrated
one. Accordingly, in the framework of the proposed
approach, we may say that variations in the instant
structure are larger for the system with a lower con-
centration. Whence a conclusion can be drawn that
the distribution of particles over their momenta dif-
fers from the Maxwellian one more strongly just for
such systems.

This qualitative picture corresponds to physical
processes running in the system. For instance, pro-
vided identical radiation doses, the numbers of par-
ticles with changed velocities at different concentra-
tions will be close to one another. At the same time,
the total number of particles taken into considera-
tion in the velocity distribution will be larger. Ac-
cordingly, the influence of particles with changed ve-
locities on the general distribution will be lower for
systems with higher concentrations.

4. Conclusions

A method has been proposed for the calculation of
the pair distribution functions describing an open sys-

tem in a stationary nonequilibrium state. The devel-
oped method showed that the formalism of equilib-
rium thermodynamics allows the stationary nonequi-
librium systems to be described by introducing an
effective temperature.

The results obtained testify that the thermody-
namic properties of a fluid system under the ac-
tion of external factors vary as a result of a devia-
tion of the momentum distribution function from the
Maxwellian law, which, in turn, gives rise to varia-
tions in structural characteristics. As a result, there
arise a few effective temperatures in the fluid system,
which can be explained by the different actions of the
external field on the momentum distribution func-
tions of its subsystems. This situation corresponds
to the results of the statistical theory of relaxation
processes for systems consisting of weakly interacting
subsystems [14].

The analysis of calculation results demonstrates
that, in the case of diluted solutions, the effective
temperature of the system differs from the measured
one more substantially than in the case of concen-
trated solutions.
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ВПЛИВ ЗОВНIШНIХ ФАКТОРIВ
НА СТРУКТУРУ ДВОКОМПОНЕНТНИХ
РIДИН В СТАЦIОНАРНОМУ СТАНI

Р е з ю м е

Проведено теоретичне дослiдження зовнiшнiх факторiв,
вплив яких приводить двокомпонентну рiвноважну термо-
динамiчну систему до стацiонарного нерiвноважного стану

зi скалярними потоками. Отримана система iнтегродифе-
ренцiальних рiвнянь для парних кореляцiйних функцiй, що
збiгаються з другими рiвняннями ланцюжка ББГКI, але з
рiзними ефективними температурами. Таким чином, для
розрахунку структурних та термодинамiчних властивостей
такої системи можна користуватися звичайними iнтегроди-
ференцiальними рiвняннями для парної кореляцiйної фун-
кцiї з ефективними температурами, що записуються через
збурену (нерiвноважну) функцiю розподiлу Максвела за iм-
пульсами.
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