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APPLICATION OF THE METHOD
OF INTERACTING CONFIGURATIONS
IN THE COMPLEX NUMBER REPRESENTATION
TO CALCULATING THE SPECTROSCOPIC
CHARACTERISTICS OF THE AUTOIONIZING
STATES OF Ве, Мg, AND Ca ATOMSPACS 32.10 Hg, 32.80 Aa

The method of interacting configurations in the complex number representation, which was
earlier applied to describe helium quasistationary states, has been used for the calculation of
ionization processes in more complicated atomic systems. The spectroscopic characteristics of
the lowest quasistationary states of the Ве, Мg, and Са atoms in the problem of the electron
impact ionization of these atoms are investigated. The energies and the widths of the lowest
1𝑆, 1𝑃 , 1𝐷, and 1𝐹 autoionizing states of Be and Mg atoms, and the lowest 1𝑃 autoionizing
state of a Ca one are calculated.
K e yw o r d s: autoionizing states, quasistationary states, configuration superposition.

1. Introduction
Researches of autoionization phenomena in the
framework of the problems dealing with the ioniza-
tion and the electron scattering by atoms and ions
were separated in the last decades into an indepen-
dent branch of theoretical atomic physics. The sci-
entific interest to the description of the processes of
excitation and decay of quasistationary states is as-
sociated with a necessity to specify the parameters of
elementary processes, which are used in theoretical
estimations and calculations in plasma physics, laser
spectroscopy, solid state physics, and crystallography,
at the development of technological methods of iso-
tope separation at the atomic level, the designing of
coherent ultra-violet and x-ray radiation generators,
as well as in other physical domains.

The results of experimental researches concerning
the autoionizing states (AISs) located between the
first and second ionization thresholds for helium and
helium-like ions were qualitatively explained on the
basis of the theory of isolated Fano resonance and in
the diagonalization approximation. The appearance
of new experimental data on resonance structures in
partial cross-sections of helium photoionization above
the threshold of excited ion formation (more exactly,
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in the interval between the second and third thresh-
olds, to which the AIS energies converge in the atomic
ionization problem) brought about a number of theo-
retical issues dealing, first of all, with the description
of the interaction of a considerable number of overlap-
ping quasistationary states, which decay through sev-
eral open channels. Theoretical calculations and the
analysis of resonance structures decaying into several
states of a residual ion should be carried out, in the
general case, with regard for all interconfiguration in-
teractions.

One of the first theoretical methods that made it
possible to obtain results coinciding with experimen-
tal data was the method of configuration superposi-
tion or the method of interacting configurations. In
the terminology adopted in this work, this formalism
is called the method of interacting configurations in
the real number representation (see Section 3). An
important step of the theory became the method of
interacting configurations in the complex number rep-
resentation (ICCNR). The ICCNR method was de-
veloped in works [1–5] and successfully applied to
the description of the quasistationary states of he-
lium formed at its electron ionization in the energy
interval above the threshold of excited ion formation.

At the modern stage in the development of this
method, a principal advantage is its application to
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the calculation of ionization processes in more com-
plicated atomic structures [6–9]. As one can see in
the literature [10–26], beryllium, magnesium, and cal-
cium atoms turn out the most promising objects for
researches. In our work, the ICCNR method is ap-
plied to the calculation of spectroscopic characteris-
tics of AIS of Ве, Мg, and Са atoms in the problem
of the electron impact ionization of these atoms. In
particular, the energies and the widths of the lowest
(1𝑆, 1𝑃 , 1𝐷, and 1𝐹 ) AISs of Be and Mg atoms, and
the lowest (1𝑃 ) AIS of a Ca one were calculated.

2. General Characteristic of the Method

The ICCNR method is used to calculate the ener-
gies and the widths of quasistationary states in the
problem of electron impact ionization of Be, Mg, and
Ca atoms. In this section, the fundamentals and the
formalism of the method are briefly described.

The ICCNR method is an exact quantum-mechani-
cal method for the calculation of parameters of atomic
systems. This method is a development and a gener-
alization of the known method of interacting config-
urations in the real number representation. It has a
number of advantages in comparison with the stan-
dard method of interacting configurations in the real
number representation and other calculation methods
for the energies and widths of quasistationary atomic
states. First, this is a capability of finding not only
the energies, but also the widths of quasistationary
states. Second, there are new possibilities for the res-
onance identification. The ICCNR method makes it
possible, on the basis of the results of calculations,
to estimate the contribution of each resonance state
to the cross-section of the process and, if the res-
onance approximation is applicable, to introduce a
set of parameters that determine the energies and
the widths of quasistationary states, as well as the
contours of resonance lines in the ionization cross-
sections. This approach also enables the applicability
of approximate methods to the estimation of cross-
sections in specific problems to be studied and the
limits of their validity to be determined. Those ad-
vantages make it possible to successfully apply the
ICCNR method not only to scattering processes, but
also to much more complicated processes of atomic
ionization by electrons.

Our research was aimed at illustrating the ca-
pabilities of the ICCNR method in the determina-
tion of spectroscopic characteristics of complicated

atoms. Quasistationary states were studied in such
multielectron atomic systems as Be, Mg, and Ca
atoms [6–9]. The capabilities of the method were illus-
trated by the example of the atomic ionization by the
electron impact [6–9], which are challenging for re-
searches. The analysis of the loss spectrum of knocked
out electrons made it possible to indirectly compare
the obtained results with the results of studies of the
scattering problem. The results were reported at a
number of international scientific conferences [6–9].

3. Fundamentals of the Method
of Interacting Configurations in the Complex
Number Representation Applied
to the Calculation of Processes
of Electron-Impact Ionization of Atoms

Let us recall the fundamentals of the ICCNR method
for the study of the processes of atomic ionization by
the electron impact. Let the equation of the examined
reaction read

𝐴(𝑛0𝐿0𝑆0)+𝑒−(k0) → 𝐴+(𝑛𝑙1)+𝑒−(k1)+𝑒−(k), (1)

where k0, k1, and k are the momenta of the inci-
dent, knocked out, and scattered electrons, respec-
tively. Then the generalized oscillator strength of the
transition for the incident electron in the Born ap-
proximation looks like

𝑑𝑓𝑛𝑙1
𝑑𝐸

(𝑄) =
𝐸

𝑄2

∑︁
𝑙𝐿

|⟨𝑛𝐿1𝐸𝑙| ×

×
𝑛∑︁

𝑗=1

exp(𝑖Qr𝑖)|𝑛0𝐿0𝑆0⟩|2. (2)

In this formula, 𝐸 = 𝑘20 − 𝑘2 is the energy loss,
Q = k0 − k is the transmitted momentum, and
|𝑛𝑙1𝐸𝑙 :𝐿𝑆0⟩ is the wave function of an atom with
total momentum 𝐿 and spin 𝑆, provided that an elec-
tron with momentum 𝑙 and energy 𝐸 is in the field
of ion 𝐴+, whose electron has the quantum numbers
|𝑛𝑙1⟩. The function of the atomic ground state looks
like |𝑛0𝐿𝑆0⟩.

Note that process (1) is a much more complicated
physical phenomenon in comparison with the elec-
tron scattering by an atom. Exact theoretical calcula-
tions of such processes constitute a problem for mod-
ern theoretical physics. Therefore, the consideration
of this problem for multielectron atoms in the frame-
work of the ICCNR method is an important and chal-
lenging scientific step.
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The choice of the wave function for the ground state
is dictated by a desirable accuracy of the final results
of calculations. In the case of two-electron systems,
this is a multiparametric Hylleraas-type wave func-
tion, and, in the case of Be, Mg, and Ca atoms, this
is, as a rule, a Hartree–Fock wave function obtained in
the multiconfigurational approximation. The system
of equations in the ICCNR method has the following
form:

(𝐸𝑛 − 𝐸)𝑎𝐸𝑖
𝜆𝑛 +

∑︁
𝜆′

∞∫︁
0

𝑏𝐸𝑖
𝜆𝜆′(𝐸′)𝑉𝑛𝜆′(𝐸′)𝑑𝐸′,∑︁

𝑚

𝑎𝐸𝑖
𝜆𝑚𝑉 *

𝑚𝜆′(𝐸′) + (𝐸′ − 𝐸)𝑏𝐸𝑖
𝜆𝜆′(𝐸′) = 0.

(3)

The multipliers 𝑎𝐸𝑖
𝜆𝑚 and 𝑏𝐸𝑖

𝜆𝜆′(𝐸′) are the coefficients
of expansion of the wave function Ψ𝐸

𝜆 (r1, r2) in the
basis

Ψ𝐸
𝜆 (r1, r2) =

∑︁
𝑚

𝑎𝐸𝑖
𝜆𝑚|𝑚⟩+

+
∑︁
𝜆′

∞∫︁
0

𝑏𝐸𝑖
𝜆𝜆′(𝐸′)|𝜆′𝐸′⟩𝑑𝐸′. (4)

The basis wave functions satisfy the conditions

⟨𝑚| ̂︀𝐻|𝑛⟩ = 𝐸𝑛𝛿𝑛𝑚, ⟨𝜆′𝐸′| ̂︀𝐻|𝜆𝐸⟩ = 𝐸𝛿𝜆𝜆′𝛿(𝐸−𝐸′),

(5)
where ̂︀𝐻 is the total Hamiltonian of the system.

The formal solution for 𝑏𝐸𝑖
𝜆𝜆′(𝐸′) is selected in the

form

𝑏𝐸𝑖
𝜆𝜆′(𝐸′) = 𝑃

∑︀
𝑚 𝑎𝐸𝑖

𝜆𝑚𝑉𝑚𝜆(𝐸)

𝐸 − 𝐸′ + [𝐴𝜆𝜆′ ±

± 𝑖𝜋
∑︁
𝑚

𝑎𝐸𝑖
𝜆𝑚𝑉𝑚𝜆′(𝐸)]𝛿(𝐸 − 𝐸′), (6)

where 𝑉𝑚𝜆(𝐸) = ⟨𝑚| ̂︀𝐻|𝜆𝐸⟩. The matrix 𝐴𝜆𝜆′ de-
pends on the asymptotic properties of the basis func-
tions |𝜆𝐸⟩. Substituting Eq. (6) into Eq. (3) trans-
forms the system of equations obtained in the ICCNR
method into a system of linear algebraic equations for
the coefficients 𝑎𝐸𝑖

𝜆𝑚,

(𝐸𝑛 − 𝐸)𝑎𝐸𝑖
𝜆𝑛 +

∑︁
𝑚

[𝐹𝑛𝑚(𝐸)− 𝑖𝛾𝑛𝑚(𝐸)]𝑎𝐸𝑖
𝜆𝑚 =

= −
∑︁
𝜆′

𝐴𝜆𝜆′𝑉𝜆′𝑛(𝐸). (7)

The latter can be expressed in terms of eigenvectors
and eigenvalues of the complex matrix

𝑊𝑛𝑚(𝐸) = 𝐸𝑛𝛿𝑛𝑚 + 𝐹𝑛𝑚(𝐸)− 𝑖𝛾𝑛𝑚(𝐸), (8)

where
𝛾𝑛𝑚(𝐸) = 𝜋

∑︁
𝜆

𝑉𝑛𝜆(𝐸)𝑉𝜆𝑚(𝐸);

𝐹𝑛𝑚(𝐸) =
1

𝜋

∞∫︁
0

𝛾𝑛𝑚(𝐸)

𝐸 − 𝐸′ 𝑑𝐸
′.

(9)

The analysis of formulas (8) and (9) allows one to
compare various approximations, which can be done
in the ICCNR method. One can see that, in the
framework of this method, the following approxima-
tions are possible:

1) the method of interacting configurations in
the real number representation; this approximation
corresponds to the neglect of complex components
𝑖𝛾𝑛𝑚(𝐸) in matrix (8);

2) the diagonalization approximation in the real
number representation consists in that the sum of all
non-diagonal members 𝐹𝑛𝑚(𝐸)− 𝑖𝛾𝑛𝑚(𝐸) in the ma-
trix 𝑊𝑛𝑚(𝐸) is neglected;

3) the diagonalization approximation involving the
transitions outside the energy surface (or the diago-
nalization approximation in the complex number rep-
resentation) arises if the term 𝐹𝑛𝑚(𝐸) is neglected in
calculations.

The account for all members in matrix (8) is, in
essence, the ICCNR method, the advantages of which
over the indicated approximations are obvious.

After determining the eigenvectors and eigenvalues
of the matrix 𝑊𝑛𝑚(𝐸), we can calculate the ener-
gies and widths of quasistationary states that are lo-
cated above the threshold of excited ion formation
[1–5]. The partial amplitudes of the resonance ioniza-
tion can be determined as follows:

𝑇|0⟩→|𝜆𝐸⟩(𝐸) = 𝑡dir𝜆 (𝐸) +
∑︁
𝑚

𝐻𝑚𝜆(𝐸)

𝜀𝑚(𝐸) + 1
. (10)

The quantities in formula (10) are defined by the re-
lations

𝑡dir𝜆 (𝐸) =
√︀

𝐶(𝐸)⟨𝜆𝐸|𝑡|0⟩,

𝐻𝑚𝜆(𝐸) = 2̃︀𝑉𝑚𝜆(𝐸)[𝑡𝑚(𝐸)− 𝑖𝜏𝑚(𝐸)]Γ−1
𝑚 (𝐸),

(11)

where

𝑡𝑚(𝐸) =
√︀
𝐶(𝐸)⟨ ̃︀𝐹𝐸

𝑚 |𝑡|0⟩,

𝜏𝑚(𝐸) =
√︀

𝐶(𝐸)⟨𝜒𝐸
𝑚|𝑡|0⟩.

(12)
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Hence, the expressions for the cross-sections become
parametrized,

𝜎𝜆(𝐸) = 𝜎dir
𝜆 (𝐸)+

+
∑︁
𝑚

Γ𝑚(𝐸)𝑃𝑚𝜆(𝐸) + 𝜀𝑚(𝐸)𝑄𝑚𝜆(𝐸)

𝜀2𝑚(𝐸) + 1
. (13)

The real functions 𝑃𝑚𝜆(𝐸) and 𝑄𝑚𝜆(𝐸) of the total
energy 𝐸 are the doubled real and imaginary, respec-
tively, parts of the complex function 𝑁𝑚𝜆(𝐸), which
looks like
𝑁𝛼𝑚(𝐸) =

∑︁
𝜆𝜀𝛼

𝐻𝑚𝜆(𝐸)(𝑡dir𝜆 (𝐸)+

+
∑︁
𝑛

𝐻𝑚𝜆(𝐸)

𝜀𝑛(𝐸)− 𝜀𝑚(𝐸) + 2𝑖
)*. (14)

Hence, the resonance ionization cross-section is de-
termined by a collection of the following functions of
the total energy 𝐸: 𝜎𝑑𝑖𝑟

𝜆 (𝐸), 𝑁𝛼𝑚(𝐸), 𝜀𝑚(𝐸), and
Γ𝑚(𝐸) [5]. See more details about the formalism of
the method in work [5].

4. Electron Impact Ionization of a Be
Atom in the Interval of the Excitation
of Autoionizing States

In work [8], using the ICCNR method, the research of
the ionization of a Be atom by the electron impact in
the AIS excitation interval was started, and the spec-
tra of energy loss were analyzed. The photoionization
of this atom was studied as well. The autoionizing
states that arise at that can be compared with the
AISs that are formed in the problem of electron scat-
tering at the corresponding ion. In calculations, the
Coulomb wave functions were used as basis configu-
rations. For every term, up to 25 basis configurations
were taken into account.

Table 1 contains the results of our calculations for
the energies and the widths of the lowest AISs of a
Be atom (1𝑆, 1𝑃 , 1𝐷, and 1𝐹 ) obtained in the prob-
lem of the ionization of this atom by the electron
impact with the use of the ICCNR method [8]. The
results are compared with the energies and the widths
of AISs obtained in the problem of electron scattering
by a Be+ ion in work [13]. Therefore, this compari-
son is indirect. In addition, in Table 2, the energies
of 1𝑃 states, which are located between the first and
second ionization thresholds of a beryllium atom, are
compared with the results of calculations obtained by
other authors [10–15].

In the literature, there are no similar results ob-
tained on the basis of exact computational methods,
in particular, on the basis of the method of interact-
ing configurations and, the more so, on the basis of
the ICCNR one. The comparison with the results of
calculations of corresponding autoionizing state ener-

Table 1. Energies and widths of the lowest
AISs (1𝑆, 1𝑃 , 1𝐷, and 1𝐹 ) of a beryllium atom obtained
in the ICCNR approximation in the problem
of the electron impact ionization of an atom. In work
[13], the energies of autoionizing states were
calculated in the diagonalization approximation
in the framework of the problem of electron
scattering by a Be+ ion

1𝑆 𝐸, eV Γ, eV 𝐸, eV [13] Γ, eV [13]

3𝑠2 16.42 0.0803 16.40 0.0818
3𝑝2 18.65 0.0110 18.57 0.0116
3𝑠4𝑠 18.82 0.0351 18.74 0.0358
3𝑠5𝑠 19.48 0.0163 19.45 0.0167
3𝑠6𝑠 19.77 0.00869 19.75 0.00884
3𝑠7𝑠 19.96 0.00518 19.92 0.00527

1𝑃 𝐸, eV Γ, eV 𝐸, eV [13] Γ, eV [13]

3𝑠3𝑝 17.70 0.157 17.68 0.169
3𝑠4𝑝 18.85 0.0318 18.83 0.0321
3𝑠5𝑝 19.45 0.00601 19.41 0.0062
3𝑠6𝑝 19.73 0.0157 19.68 0.0161
3𝑝4𝑠 19.81 0.00328 19.77 0.0033
3𝑠7𝑝 19.89 0.0274 19.82 0.0282
3𝑠8𝑝 19.95 0.0140 19.93 0.0143

1𝐷 𝐸, eV Γ, eV 𝐸, eV [13] Γ, eV [13]

3𝑠3𝑑 17.62 0.0214 17.56 0.0220
3𝑝2 18.31 0.0224 18.67 0.0230
3𝑠4𝑑 19.09 0.0378 19.09 0.0389
3𝑠5𝑑 19.60 0.0121 19.56 0.0128
3𝑑2 19.67 0.00789 19.63 0.0796
3𝑠6𝑑 19.81 0.00331 19.79 0.0034

1𝐹 𝐸, eV Γ, eV 𝐸, eV [13] Γ, eV [13]

3𝑝3𝑑 18.96 0.0203 18.95 0.0214
3𝑠4𝑓 19.43 0.0149 19.43 0.0155
3𝑠5𝑓 19.72 0.0070 19.70 0.00717
3𝑠6𝑓 19.88 0.0023 19.85 0.00235
3𝑠7𝑓 19.95 0.00021 19.94 0.00023
3𝑠8𝑓 19.97 0.0019 – –
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gies in the problem of electron scattering by Be+ ions
performed in work [13] in the diagonalization approx-
imation (see Table 1) is indirect, because it deals with
a different object in a different problem. Nevertheless,
it really evidences the reliability of the results ob-
tained here.

5. Electron Impact Ionization of a Mg
Atom in the Interval of the Excitation
of Autoionizing States

The research of the ionization of Mg atoms (and Mg+
ions) by photons and electrons is a challenging prob-
lem, which is proved by both experimental and the-
oretical works of many authors (see, e.g., publica-
tions [13, 16–23]). In works [6, 7], we started to study
the electron impact ionization of a Mg atom in the
AIS excitation interval with the use of the ICCNR
method. In Table 3, the results of our calculations
for the energies and the widths of the lowest AISs
(1𝑆, 1𝑃 , 1𝐷, and 1𝐹 ) of a Mg atom obtained in the
electron impact ionization problem in the ICCNR ap-
proximation are presented.

First, our results are compared with analogous sta-
tes that are formed in the problem of electron scat-
tering by Mg+ ions [13] (see Table 3). Since a differ-
ent problem was considered in work [13] – namely,
the scattering one – such a comparison is indirect. In
work [13], the calculations were carried out in the
diagonalization approximation. Second, in the frame-
work of the problem of the electron impact ionization
of atoms, the energies of 1𝑃 -states must coincide with

Table 2. Comparison of the energies
obtained with the use of the ICCNR method
for the AISs of a Be atom, which are located
between the corresponding first and second
ionization thresholds, with the results
of other authors

1𝑃 𝐸, eV 𝐸, eV [10] 𝐸, eV [11] 𝐸, eV [12]

2𝑝3𝑠 10.71 10.71 10.93 10.77
2𝑝3𝑑 10.84 11.86 11.86 11.86
2𝑝4𝑠 12.03 11.97 12.10 12.07
2𝑝4𝑑 12.42 12.47 12.50 12.49

1𝑃 𝐸, eV 𝐸, eV [13] 𝐸, eV [14] 𝐸, eV [15]

2𝑝3𝑠 10.71 10.73 10.63 10.91
2𝑝3𝑑 10.84 11.85 12.03 11.83
2𝑝4𝑠 12.03 12.09 12.09 12.09
2𝑝4𝑑 12.42 12.49 12.61 12.44

those obtained in the problem of photoionization of
a Mg atom. Therefore, a direct comparison of our re-
sults with experimental ones [16] and with the results
of calculations on the basis of the 𝑅-matrix method
[17] can be made. In Table 4, the energy positions and
the widths calculated for the 1𝑃 autoionizing states

Table 3. Energies and widths of the lowest
AISs (1𝑆, 1𝑃 , 1𝐷, and 1𝐹 ) of a Mg atom obtained
in the ICCNR approximation in the problem
of electron impact ionization of an atom. In work
[13], the energies of autoionizing states were
calculated in the diagonalization approximation
in the framework of the problem of electron
scattering by a Mg+ ion

1𝑆 𝐸, eV Γ, eV 𝐸, eV [13] Γ, eV [13]

4𝑠2 13.08 0.0987 13.06 0.1010
3𝑑2 14.61 0.0480 14.66 0.0502
4𝑠5𝑠 14.92 0.0425 14.97 0.0473
4𝑠6𝑠 15.48 0.0196 15.53 0.0185
3𝑑4𝑑 15.59 0.0140 15.64 0.0129
4𝑠7𝑠 15.78 0.0115 15.80 0.0107
4𝑠8𝑠 15.80 0.0069 – –

1𝑃 𝐸, eV Γ, eV 𝐸, eV [13] Γ, eV [13]

4𝑠4𝑝 14.15 0.157 14.18 0.143
3𝑑4𝑝 15.01 0.172 14.95 0.162
4𝑠5𝑝 15.34 0.0324 15.29 0.0301
4𝑠6𝑝 15.68 0.0682 15.64 0.0667
3𝑑4𝑓 15.77 0.0481 15.74 0.0448
4𝑠7𝑝 15.85 0.0059 15.86 0.0048
3𝑠8𝑝 19.95 0.0140 19.93 0.0143

1𝐷 𝐸, eV Γ, eV 𝐸, eV [13] Γ, eV [13]

3𝑑4𝑠 13.62 0.262 13.66 0.272
3𝑑2 14.31 0.253 14.38 0.269
4𝑑4𝑠 14.89 0.0192 14.96 0.0189
3𝑑5𝑠 15.28 0.0869 15.30 0.0951
4𝑝2 15.47 0.0570 15.49 0.0578
3𝑑4𝑑 15.58 0.0865 15.55 0.0876
4𝑠5𝑑 15.69 0.0258 15.66 0.0248

1𝐹 𝐸, eV Γ, eV 𝐸, eV [13] Γ, eV [13]

3𝑑4𝑝 14.15 0.0225 14.66 0.0230
4𝑠4𝑓 15.01 0.0110 15.28 0.0113
3𝑑5𝑝 15.34 0.0540 15.53 0.0589
3𝑑4𝑓 15.53 0.0052 15.63 0.0053
4𝑠5𝑓 15.68 0.0201 15.71 0.0205
3𝑑6𝑝 15.77 0.0104 15.88 0.0109
4𝑠6𝑓 15.85 0.0125 15.90 0.0131
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of a magnesium atom with the use of the ICCNR
method are directly compared with the experimental
data of work [16] and the theoretical data obtained
with the help of the 𝑅-matrix formalism [17], as well
as with the problem of electron scattering by a Mg+
ion [13].

The original scientific results obtained with the
help of the ICCNR method [1–5] for the energies and
the widths of the lowest AISs (1𝑆, 1𝑃 , 1𝐷, and 1𝐹 ) of a
Mg atom in the problem of electron impact ionization
of this atom are presented (see Table 3). Their nov-
elty consists in the application of the exact calculation
method, namely, the method of interacting configu-
rations and, the more so, the ICCNR method. The
comparison with the calculations of corresponding en-
ergies and widths of AISs carried out in the diago-
nalization approximation in the problem of electron
scattering by Mg+ ions (Table 3) is indirect (a differ-

Table 4. Comparison of the energies
and the widths of the AISs of a magnesium atom
obtained with the use of the ICCNR method
with the experiment [16] and calculations
for 1𝑃 -states [17] (work [17]: the photoionization
problem and the photoionization threshold;
work [13]: the scattering problem)

1𝑃 𝐸, eV Γ, eV 𝐸, eV [13] Γ, eV [13]

4𝑠4𝑝 14.15 0.157 14.18 0.143
3𝑑4𝑝 15.01 0.172 14.95 0.162
4𝑠5𝑝 15.34 0.0324 15.29 0.0301
3𝑑5𝑝 15.53 0.0775 15.56 0.0758
4𝑠6𝑝 15.68 0.00682 15.64 0.00667
3𝑑4𝑓 15.77 0.0481 15.74 0.0448
4𝑠7𝑝 15.85 0.00592 15.86 0.00476
4𝑠8𝑝 15.90 0.0087 – –
3𝑑6𝑝 15.93 0.0295 – –
4𝑠9𝑝 15.95 0.0011 – –

1𝑃 𝐸, eV Γ, eV 𝐸, eV [17] Γ, eV [17] 𝐸, eV [16]

4𝑠4𝑝 14.15 0.157 14.2213 0.3921 14.18
3𝑑4𝑝 15.01 0.172 14.9048 0.6078 –
4𝑠5𝑝 15.34 0.0324 15.3133 0.0931 –
3𝑑5𝑝 15.53 0.0775 15.7264 0.0890 15.24
4𝑠6𝑝 15.68 0.00682 15.6653 0.0142 15.61
3𝑑4𝑓 15.77 0.0481 – – –
4𝑠7𝑝 15.85 0.00592 15.8675 0.0095 15.83
4𝑠8𝑝 15.90 0.0087 15.9802 0.0111 15.98
3𝑑6𝑝 15.93 0.0295 16.007 0.0417 –
4𝑠9𝑝 15.95 0.0011 16.065 0.0019 16.06

ent object in a different problem), but really testifies
to the reliability of the results obtained. Some of the
results obtained here, namely, the energy positions of
the 1𝑃 AISs of a Mg atom, can be directly compared
with the experiment and the 𝑅-matrix calculations
(see Table 4). The results of calculations carried out
with the use of the ICCNR method are in good agree-
ment with the corresponding calculations using the
𝑅-matrix method [17] and experimental results [16]
(see Table 4).

6. Electron Impact Ionization of a Ca
Atom in the Interval of the Exctation
of Autoionizing States

The application of ICCNR method to calculate the
lowest AISs of calcium atom was begun in work
[9]. The energies and the widths of the lowest 1𝑃 -

Table 5. Comparison of the energies
and the widths obtained with the use of the ICCNR
method for the AISs of a Be atom with the theoretical
results of other authors and the experiment [24]

1𝑃 𝐸, eV 𝐸, eV [24] 𝐸, eV [25] 𝐸, eV [26]

3𝑑5𝑝 6.601 6.59 6.604 6,633
3𝑑6𝑝 7.033 7.02 7.038 7.080
3𝑑7𝑝 7.397 7.39 7.342 7.415
3𝑑8𝑝 7.465 7.47 7.471 7.502
3𝑑9𝑝 7.551 – 7.556 7.575
3𝑑10𝑝 7.610 – 7.614 7.624
4𝑝5𝑠 7.159 7.13 7.166 7.300
3𝑑4𝑓 6.937 – 6.938 6.960
3𝑑5𝑓 7.240 7.25 7.248 7.260
3𝑑6𝑓 7.425 – 7.427 7.427
3𝑑7𝑓 7.523 – 7.529 7.527
3𝑑8𝑓 7.591 – 7.596 7.593

1𝑃 Γ, eV Γ, eV [24] Γ, eV [25] Γ, eV [26]

3𝑑5𝑝 0.0801 0.21 0.0702 0.0846
3𝑑6𝑝 0.0059 0.17 0.0056 0.0067
3𝑑7𝑝 0.0451 – 0.0509 0.0399
3𝑑8𝑝 0.0261 0.14 0.0232 0.0315
3𝑑9𝑝 0.0163 – 0.0141 0.0282
3𝑑10𝑝 0.0140 – 0.0101 0.0207
4𝑝5𝑠 0.0129 0.15 0.0139 0.0132
3𝑑4𝑓 0.00006 – 0.000004 0.00001
3𝑑5𝑓 0.0059 – 0.0028 0.00003
3𝑑6𝑓 0.0019 0.17 0.0014 0.0024
3𝑑7𝑓 0.0009 – 0.0011 0.00007
3𝑑8𝑓 0.00007 – 0.00008 0.00006
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states were calculated. The results were compared
with the data obtained by other authors. In Table 5,
besides the results of our calculations [9], experimen-
tal data [24] and the results of theoretical calcula-
tions [25, 26] are shown. Their analysis testifies that
the classification of AISs proposed in work [25] is pos-
sible. The results of our calculations agree well with
the theoretical data obtained by other authors.

7. Conclusions

The method of interacting configurations in the com-
plex number representation, which was applied ear-
lier to the description of quasistationary states of a
helium atom, was used to calculate the ionization pro-
cesses of more complicated atomic systems. The spec-
troscopic characteristics of the lowest AISs of the Ве,
Мg, and Са atoms were studied in the problem of the
electron impact ionization of these atoms. The ener-
gies and the widths of the lowest autoionizing states
(1𝑆, 1𝑃 , 1𝐷, and 1𝐹 ) of Be and Mg atoms and the
lowest (1𝑃 ) autoionizing states of a Ca atom were cal-
culated. The calculation results were compared with
known experimental data and calculations on the ba-
sis of other methods. Hence, we may draw conclu-
sion about a successful verification of the method
proposed for the calculation of autoionizing states of
multielectron atoms and the processes of electron ion-
ization and excitation of atoms.
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ЗАСТОСУВАННЯ МЕТОДУ ВЗАЄМОДIЮЧИХ
КОНФIГУРАЦIЙ У ЗОБРАЖЕННI КОМПЛЕКСНИХ
ЧИСЕЛ ДО РОЗРАХУНКIВ СПЕКТРОСКОПIЧНИХ
ХАРАКТЕРИСТИК АВТОIОНIЗАЦIЙНИХ
СТАНIВ АТОМIВ Ве, Мg, Ca

Р е з ю м е

Метод взаємодiючих конфiгурацiй у зображеннi компле-
ксних чисел, який ранiше застосовувався до опису квазiста-
цiонарних станiв атому гелiю, використовується для розра-
хунку процесiв iонiзацiї бiльш складних атомних структур.
Дослiджено спектроскопiчнi характеристики найнижчих
квазiстацiонарних станiв атомiв Ве, Мg, Са в задачi iонi-
зацiї цих атомiв електронним ударом. Виконано розрахун-
ки енергетичних положень та ширин найнижчих 1𝑆, 1𝑃 , 1𝐷,
1𝐹 автоiонiзацiйних станiв атомiв Be, Mg та найнижчих 1𝑃

автоiонiзацiйних станiв атома Ca.
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