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INFLUENCE OF THE HEISENBERG
EXCHANGE INTERACTION ANISOTROPY
ON THE MAGNETIZATION PROCESS
OF A FRUSTRATED DIAMOND CHAIN
IN A STRONG MAGNETIC FIELDPACS 75.10.Jm

A frustrated diamond spin chain in a 𝑧- or 𝑥-aligned external magnetic field has been considered
in the framework of the spin- 1

2
antiferromagnetic 𝑋𝑋𝑍 Heisenberg model. The magnetization

process of the frustrated diamond spin chain is analyzed, by using the effective models found
in the strong-coupling approximation in the case where the Heisenberg interaction anisotropy
parameter Δ > 1. The theory is applied to explain experimental data for natural mineral
azurite, Cu3(CO3)2(OH)2.

K e yw o r d s: quantum Heisenberg antiferromagnet, frustrated diamond chain, azurite.

1. Introduction

In recent years, a lot of attention has been paid to the
theoretical and experimental studies of the proper-
ties of frustrated quantum Heisenberg antiferromag-
nets [1]. Unlike ferromagnets, the interactions in an-
tiferromagnetic spin systems may compete with one
another; this is the so-called frustration. It can be
a competition of exchange interactions between two
neighbor spins or between a spin and another spin lo-
cated behind the neighbor one in simple lattices (e.g.,
the 𝐽1 − 𝐽2 model for the square lattice) or between
the nearest spins in a lattice with a complicated ge-
ometry (e.g., in the kagome lattice).

There exists a wide class of one-, two-, and three-
dimensional quantum Heisenberg antiferromagnets,
which can be studied in detail, by using special
methods. These are the so-called frustrated quantum
Heisenberg antiferromagnets with dispersionless (flat)
low-energy magnon states. The research of the prop-
erties of such spin systems in strong magnetic fields
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and at low temperatures is based on the concept of
localized magnons [2–6], which allows the problem to
be reduced to the consideration of a certain classical
lattice gas consisting of hard objects. The character-
istic features of spin systems, in which the existence
of localized magnons is allowed, are a plateau and
a jump in the magnetization curve at the saturation
field and 𝑇 = 0 (i.e. in the ground state), the Peierls
instability, and the residual entropy at the saturation
field. The theory developed in works [2–5] concerns
the so-called perfect geometry, when the one-magnon
states are strictly localized (the one-magnon band is
strictly dispersionless). This theory also predicts the
isotropic character of Heisenberg exchange interac-
tions (the anisotropy parameter Δ = 1), when the
direction of an applied magnetic field is irrelevant.

In real systems, the conditions that provide a strict
localization of magnons can be violated, and Heisen-
berg exchange interactions can be anisotropic (Δ ̸=
̸= 1). Then an important question arises: Which are
consequences for the observed properties owing to a
deviation from the perfect geometry or an arbitrary
direction of the applied magnetic field if the Heisen-
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Fig. 1. Frustrated diamond spin chain. The lattice sites are
convenient to be enumerated by a pair of indices. The first
index enumerates the lattice cells: 𝑚 = 1, ...,𝒩 ; where 𝒩 =

= 𝑁
3

, and 𝑁 is the number of lattice sites. The second index
marks the site position in the cell

berg interaction is anisotropic? In other words, how
does a theory for such frustrated quantum antifer-
romagnets look like near the paradigm of localized
magnons?

The case of a deviation from the perfect geome-
try was studied in works [7–9]. In particular, effective
Hamiltonians in the strong-coupling approximation
were constructed in work [7] to study the properties
of a deformed diamond spin chain. This model was
improved in work [8]. In work [9], a heuristic ansatz
was proposed for the partition function of a deformed
diamond spin chain. Those researches analyzed the
case of isotropic Heisenberg interaction (Δ = 1).

Within the last decade, a lot of attention has
been attracted by the natural mineral azurite,
Cu3(CO3)2(OH)2. Its magnetic properties can be de-
scribed in the framework of the frustrated Heisenberg
diamond spin chain model [10–13]. The azurite pa-
rameter set corresponds to a model near the perfect
geometry, which predicts the existence of localized
magnons [14]. In work [11], the results of experimen-
tal researches were reported concerning the magnetic
properties of azurite at a temperature 𝑇 < 4.2 K and
magnetic fields 𝐻 = 0÷50 T. In particular, the mag-
netization curves were measured in a magnetic field
applied along the crystallographic axis 𝑏 and perpen-
dicularly to it. Those curves do not coincide, which
can result from the anisotropy of Heisenberg exchange
interactions in azurite (see work [12]).

The issue concerning the magnetization of a frus-
trated diamond chain with the 𝑋𝑋𝑍 Heisenberg in-
teraction in an arbitrarily oriented field was formu-
lated in work [15]. However, the analysis was con-
fined to the case where the parameter of exchange
interaction anisotropy 0 ≤ Δ < 1. In particular, the
presented results included the magnetization curves
for a frustrated Heisenberg anisotropic diamond chain
in magnetic fields applied along either the axis 𝑥 or

the axis 𝑧. To describe the system at low tempera-
tures, corresponding effective Hamiltonians were con-
structed in the strong-coupling approximation. The
obtained models turned out exactly solvable, namely,
spin- 12 𝑋𝑌 chains in an external transverse field. For
such spin chains, the Jordan–Wigner fermionization
method is applicable [16].

In this work, a frustrated 𝑋𝑋𝑍 Heisenberg dia-
mond chain in a magnetic field oriented along one of
the axes 𝑥 and 𝑧 will be considered in the case Δ > 1
for the parameter of Heisenberg exchange interaction
anisotropy. Effective models for this spin chain will
also be constructed in the strong-coupling approxima-
tion. The magnetization curves at low temperatures
will be obtained, and their characteristic features will
be analyzed as functions of the anisotropy parameter
Δ. The developed theory will be applied to determine
the parameter Δ for azurite on the basis of experi-
mental data presented in works [10–12].

2. Effective Theory

Let us apply the spin- 12 antiferromagnetic model with
the anisotropic Heisenberg interaction to a frustrated
diamond chain (Fig. 1). The corresponding Hamilto-
nian looks like

𝐻 =
∑︁
(𝑖𝑗)

𝐽𝑖𝑗
(︀
𝑠𝑥𝑖 𝑠

𝑥
𝑗 + 𝑠𝑦𝑖 𝑠

𝑦
𝑗 +Δ𝑠𝑧𝑖 𝑠

𝑧
𝑗

)︀
− ℎ

𝑁∑︁
𝑖=1

𝑠𝛼𝑖 ,

𝛼 = 𝑥, 𝑧,

(1)

where the summation in the first term is carried out
over only the neighbor lattice sites, whereas that in
the second one is extended over all 𝑁 lattice sites (see
Fig. 1). In addition, 𝐽𝑖𝑗 > 0 and Δ ≥ 1. If 𝐽2 > 0
is the largest antiferromagnetic exchange interaction,
only two states of the vertical 𝐽2-bond are expected to
play a certain role in low-temperature properties un-
der strong magnetic fields. This circumstance allows
the initial frustrated quantum spin system to be effec-
tively described within a simpler two-state model. In
practice, such efficient theories can be developed us-
ing the strong-coupling approximation [7, 17].

Two cases will be considered: if the external mag-
netic field is directed (i) along the axis 𝑧 or (ii) along
the axis 𝑥. In the former case, Hamiltonian (1) with
𝛼 = 𝑧 is used. If the magnetic field is applied along
the axis 𝑥, a unitary transformation of the initial
Hamiltonian (1) should be made to obtain a Hamilto-
nian with anisotropic interaction in a magnetic field

1244 ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 12



Influence of the Heisenberg Exchange Interaction Anisotropy

directed along the axis 𝑧,

𝐻 =
∑︁
(𝑖𝑗)

𝐽𝑖𝑗
[︀
s𝑖 · s𝑗 + (Δ− 1) 𝑠𝑥𝑖 𝑠

𝑥
𝑗

]︀
− ℎ

∑︁
𝑖

𝑠𝑧𝑖 . (2)

The strong-coupling approximation is based on
the assumption that the interaction 𝐽2 dominates,
i.e. 𝐽𝑖/𝐽2 ≪ 1, where 𝑖 ̸= 2. Therefore, the Hamil-
tonian 𝐻 can be divided into a “major” part 𝐻main

and a “perturbation” 𝑉 : 𝐻 = 𝐻main+𝑉 . Here, 𝐻main

is the Hamiltonian describing the interaction between
two spins at the vertical bond with the constant 𝐽2
and the Zeeman interaction of all spins with the mag-
netic field ℎ0 (see below). In strong magnetic fields,
only two of four states at the vertical bond are taken
into consideration; these are the states |𝑢⟩ and |𝑑⟩
with the energies 𝜀𝑢 and 𝜀𝑑, respectively. Note that
𝜀𝑢 = 𝜀𝑑 at ℎ = ℎ0. The ground state |𝜙0⟩ of Hamil-
tonian 𝐻main is 2𝒩 -fold degenerate; here, 𝒩 = 𝑁/3
is the number of chain cells. Let us introduce the op-
erator 𝑃 of projection on the model space formed by
the 2𝒩 -fold degenerate ground state:

𝑃 = |𝜙0⟩⟨𝜙0| = ⊗𝒩
𝑚=1 [(|𝑢⟩⟨𝑢|+ |𝑑⟩⟨𝑑|)⊗ | ↑3⟩⟨↑3 |]𝑚.

(3)

For 𝐽𝑖 ̸= 0, 𝑖 ̸= 2, and ℎ − ℎ0 ̸= 0, we construct an
effective Hamiltonian that operates only in the model
space, but gives the exact energy of the ground state
for the Hamiltonian 𝐻. By applying the perturbation
theory, we obtain [18]

𝐻eff = 𝑃𝐻𝑃 + 𝑃𝑉
∑︁
𝛼 ̸=0

|𝜙𝛼⟩⟨𝜙𝛼|
𝜀0 − 𝜀𝛼

𝑉 𝑃 + ... . (4)

First, let us consider the case where the mag-
netic field is applied along the axis 𝑧. In strong
magnetic fields, we consider the following two
states at the vertical bond: the completely po-
larized state |𝑢⟩ = | ↑1↑2⟩ with the energy 𝜀𝑢 =
= Δ𝐽2

4 − ℎ and the one-magnon state |𝑑⟩ =
= 1√

2
(| ↑1↓2⟩ − | ↓1↑2⟩) with the energy 𝜀𝑑 =

−𝐽2

2 − Δ𝐽2

4 . The effective Hamiltonian is convenient
to be written in terms of the (pseudo)-spin- 12 op-
erators 𝑇 , which are defined as follows: 𝑇 𝑧 =
= 1

2 (|𝑢⟩⟨𝑢| − |𝑑⟩⟨𝑑|), 𝑇+ = |𝑢⟩⟨𝑑|, and 𝑇− = |𝑑⟩⟨𝑢|.
In terms of the (pseudo)spin- 12 operators, the first
term on the right-hand side of Eq. (4) looks like

𝑃𝐻𝑃 =

𝒩∑︁
𝑚=1

[︂
−𝐽2

4
− ℎ+Δ

𝐽

2
− (ℎ− ℎ1)𝑇

𝑧
𝑚

]︂
, (5)

where ℎ1 = ℎ0 +Δ𝐽 , ℎ0 = 𝐽2

√︁
1+Δ
2 , and 𝐽 = 𝐽1+𝐽3

2 .
To find the second term on the right-hand side of
formula (4), we should consider 𝒩×2𝒩 excited states
|𝜙𝛼⟩ – these are states with one flipped spin at the
site connecting two neighbor cells (see Fig. 1) – with
the energy 𝜀𝛼 = 𝜀0 + ℎ0. Then we have

𝑃𝑉
∑︁
𝛼 ̸=0

|𝜙𝛼⟩⟨𝜙𝛼|
𝜀0 − 𝜀𝛼

𝑉 𝑃 = − (𝐽1 − 𝐽3)
2

4𝐽2(Δ + 1)
×

×
∑︁
𝑚

[︀
1− 2𝑇 𝑧

𝑚 − 2
(︀
𝑇 𝑥
𝑚𝑇 𝑥

𝑚+1 + 𝑇 𝑦
𝑚𝑇 𝑦

𝑚+1

)︀]︀
. (6)

Therefore, we obtain the following expression for the
effective Hamiltonian 𝐻eff [Eq. (4)] in the strong-
coupling approximation:

𝐻eff =
∑︁
𝑚

[︀
C− h𝑇 𝑧

𝑚 + J
(︀
𝑇 𝑥
𝑚𝑇 𝑥

𝑚+1 + 𝑇 𝑦
𝑚𝑇 𝑦

𝑚+1

)︀]︀
, (7)

where

C = −ℎ− 𝐽2
4

+ Δ
𝐽

2
− (𝐽3 − 𝐽1)

2

4(1 + Δ)𝐽2
, 𝐽 =

𝐽3 + 𝐽1
2

,

h = ℎ− ℎ1 −
(𝐽3 − 𝐽1)

2

2(1 + Δ)𝐽2
, ℎ1 =

1 +Δ

2
𝐽2 +Δ𝐽,

J =
(𝐽3 − 𝐽1)

2

2(1 + Δ)𝐽2
.

In the limit of isotropic Heisenberg interaction, Δ =
= 1, the obtained effective Hamiltonian (7) coincides
with the results of works [7, 8]. In addition, in the
limit where Δ → ∞ but 𝐽𝑖Δ = 𝐼𝑖 < ∞, we obtain
C → −ℎ + 1

4 (𝐼1 + 𝐼3), h → ℎ − 1
2 (𝐼1 + 𝐼2 + 𝐼3), and

J ∝ 1
Δ2 → 0. Hence, in this limit, the effective model

(7) is reduced to the model of free spins in an external
magnetic field.

Now, let us consider the case where the magnetic
field is applied along the axis 𝑥. Hamiltonian (2) is
used. In a strong magnetic field, we consider the fol-
lowing two states at every vertical bond:

|𝑢⟩ = 𝛼| ↑1↑2⟩+ 𝛽| ↓1↓2⟩, (8)

Here,

𝛼 =
1

𝐶

Δ− 1

4
𝐽2,

𝛽 =
1

𝐶

[︃
ℎ−

√︂
(Δ− 1)2

16
𝐽2
2 + ℎ2

]︃
,

𝐶 =
√
2

√︃
(Δ− 1)2

16
𝐽2
2 − ℎ

√︂
(Δ− 1)2

16
𝐽2
2 + ℎ2 + ℎ2.
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with the energy 𝜀𝑢 = 1
4 [𝐽2 −

√︀
(Δ− 1)2𝐽2

2 + 16ℎ2]
and
|𝑑⟩ = 1√

2
(| ↑1↓2⟩ − | ↓1↑2⟩) (9)

with the energy 𝜀𝑑 = − 1
4 (2+Δ)𝐽2. For the first term

on the right-hand side of formula (4), we obtain

𝑃𝐻𝑃 =
∑︁
𝑚

[︂
−ℎ

2
− 2 + Δ

4
𝐽2 −

− (ℎ− ℎ0 − 𝐽)
(︀
𝛼2 − 𝛽2

)︀(︂1
2
+ 𝑇 𝑧

𝑚

)︂]︂
, (10)

where 𝐽 = 𝐽1+𝐽3

2 , ℎ0 = 𝐽2

√︁
1+Δ
2 , and the constants

𝛼 and 𝛽 were defined in formulas (8). There are two
classes of excited states that make a contribution to
the second term on the right-hand side of Eq. (4). One
of them includes 𝒩×2𝒩 states with one flipped spin
at the third site that connects two neighbor cells (see
Fig. 1). Therefore,

𝑃𝑉
∑︁
𝛼1 ̸=0

|𝜙𝛼1
⟩⟨𝜙𝛼1

|
𝜀0 − 𝜀𝛼1

𝑉 𝑃 =

=
∑︁
𝑚

(︀
C1 − h1𝑇

𝑧
𝑚 + J𝑥𝑇 𝑥

𝑚𝑇 𝑥
𝑚+1 + J𝑦𝑇 𝑦

𝑚𝑇 𝑦
𝑚+1

)︀
, (11)

where

C1 = − (𝐽3 − 𝐽1)
2

16ℎ0

[︀
1 + 2𝛼𝛽(1−Δ2) + Δ2

]︀
,

h1 = − (𝐽3 − 𝐽1)
2

4ℎ0

(︀
𝛼2 − 𝛽2

)︀
Δ,

J𝑥 =
(𝐽3 − 𝐽1)

2

4ℎ0
(𝛼− 𝛽)

2
Δ2,

J𝑦 =
(𝐽3 − 𝐽1)

2

4ℎ0
(𝛼+ 𝛽)

2
.

The other class of excited states includes
𝒩×2𝒩−1 states. In this case, the dimer state of the
𝑚-th cell equals −𝛽| ↑1↑2⟩+ 𝛼| ↓1↓2⟩, and its energy
1
4 [𝐽2 +

√︀
(Δ− 1)2𝐽2

2 + 16ℎ2], where the constants 𝛼
and 𝛽 are indicated in formulas (8). The energy of
those excited states is 𝜀𝛼2 = 𝜀0 + 1

2 (3 + Δ)𝐽2. It is
easy to verify that

𝑃𝑉
∑︁
𝛼2 ̸=0

|𝜙𝛼2
⟩⟨𝜙𝛼2

|
𝜀0 − 𝜀𝛼2

𝑉 𝑃 =

= −
∑︁
𝑚

8 (ℎ− ℎ0 − 𝐽)
2

(3 + Δ)𝐽2
𝛼2𝛽2

(︂
1

2
+ 𝑇 𝑧

𝑚

)︂
. (12)

Combining formulas (10), (11), and (12), we ob-
tain 𝐻eff . The effective Hamiltonian for the frustrated

𝑋𝑋𝑍 Heisenberg diamond spin chain in a magnetic
field directed along the axis 𝑥 and at Δ ≥ 1 looks like

𝐻eff =
∑︁
𝑚

(︀
C− h𝑇 𝑧

𝑚+ J𝑥𝑇 𝑥
𝑚𝑇 𝑥

𝑚+1+ J𝑦𝑇 𝑦
𝑚𝑇 𝑦

𝑚+1

)︀
, (13)

where

C = −ℎ

2
− 2 + Δ

4
𝐽2 −

1

2
(ℎ− ℎ0 − 𝐽)

(︀
𝛼2 − 𝛽2

)︀
−

− (𝐽3 − 𝐽1)
2

16ℎ0

[︀
1 + 2𝛼𝛽(1−Δ2) + Δ2

]︀
−

− 4 (ℎ− ℎ0 − 𝐽)
2

(3 + Δ)𝐽2
𝛼2𝛽2,

h = (ℎ− ℎ0 − 𝐽)
(︀
𝛼2 − 𝛽2

)︀
−

− (𝐽3 − 𝐽1)
2

4ℎ0

(︀
𝛼2 − 𝛽2

)︀
Δ+

8 (ℎ− ℎ0 − 𝐽)
2

(3 + Δ)𝐽2
𝛼2𝛽2,

J𝑥 =
(𝐽3 − 𝐽1)

2

4ℎ0
(𝛼− 𝛽)

2
Δ2,

J𝑦 =
(𝐽3 − 𝐽1)

2

4ℎ0
(𝛼+ 𝛽)

2
.

In the limit Δ → 1, the effective Hamiltonians (7)
and (13) coincide and correspond to an unfrustrated
spin- 12 isotropic 𝑋𝑌 chain in a transverse mag-
netic field. For a perfect frustrated diamond chains
(𝐽1 = 𝐽3), in the limit Δ → ∞ but 𝐽𝑖Δ = 𝐼𝑖 < ∞,
the effective Hamiltonian (13) is reduced to the
model of free spins in an external magnetic field:
J𝑥 = 0 and J𝑦 = 0.

Formally, the expressions for the effective Hamil-
tonians (7) and (13) are identical to those obtained
earlier in work [15] in the case 0 ≤ Δ < 1. However,
they describe a qualitatively different case where
the parameter of Heisenberg exchange interaction
anisotropy Δ > 1. In the latter case, the expressions
for the constants 𝛼 and 𝛽 differ from those in work
[15] [cf. expressions (8) for the constants 𝛼 and 𝛽 with
the corresponding expressions in work [15]]. The ob-
tained models (7) and (13) can be exactly solved, by
using the Jordan–Wigner fermionization method [16].

3. Comparison of Initial and Effective Models

To study the obtained effective models (7) and (13),
we compare their predictions with the data for ini-
tial models. As an example, let us consider the low-
temperature magnetization curves for a frustrated di-
amond spin chain in a magnetic field applied along
either the axis 𝑥 or the axis 𝑧 (see Figs. 2 and
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Fig. 2. Magnetization curves for the frustrated Heisenberg
diamond spin chain with the parameters 𝐽1 = 𝐽3 = 1, 𝐽2 = 3,
Δ = 1.5 (the upper panel) and 3 (the lower panel) in the
magnetic field directed along the axis 𝑧 or 𝑥 (the dotted
curves). The exact diagonalization data were obtained for a
finite periodic chain with 𝑁 = 15. Thin black curves illus-
trate the results obtained for infinitely large systems on the
basis of effective theory and with the use of the Jordan–Wigner
fermionization

3). The results can be obtained, by using the exact-
diagonalization method [19]. For this purpose, a chain
with 𝑁 = 15 sites and periodic boundary conditions
will be considered. The parameters are 𝐽2 = 3, Δ =
= 1.5 and 3, and the low temperature 𝑇 = 0.001. The
other parameters are 𝐽1 = 𝐽3 = 1 for the perfect ge-
ometry, and 𝐽1 = 0.85 and 𝐽3 = 1.15 for the nonper-
fect one.

If the parameter of Heisenberg interaction aniso-
tropy Δ = 1, the magnetization curves for a diamond
chain in a magnetic field applied along either the axis
𝑥 or the axis 𝑧 evidently coincide. However, if Δ dif-
fers from 1, e.g., if Δ = 1.5 or 3, the magnetiza-
tion curves are different for different magnetic orien-
tations. In the perfect geometry case (see Fig. 2), the
magnetization curve has a vertical jump at a charac-
teristic magnetic field ℎ*. If the magnetic field is ap-
plied along the axis 𝑧, ℎ* is a field, at which the mag-
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Fig. 3. The same that in Fig. 2, but for 𝐽1 = 0.85, 𝐽2 = 3,
and 𝐽3 = 1.15

netization saturates, i.e. 𝑚(ℎ* + 0) = 1
2 . If the mag-

netic field is applied along the axis 𝑥, the magnetiza-
tion saturation is achieved only in the limit ℎ → ∞;
however, at ℎ = ℎ* + 0, the chain magnetization is
close to 1

2 . An expression for the characteristic field
ℎ* can be derived from the condition h(ℎ*) = 0 [15]. If
the magnetic field is applied along the axis 𝑧,

ℎ𝑧
* =

1 +Δ

2
𝐽2 +Δ𝐽 +

(𝐽3 − 𝐽1)
2

2(1 + Δ)𝐽2
. (14)

Accordingly, for the field applied along the axis 𝑥, we
have

ℎ𝑥
* ≈

√︂
1 + Δ

2
𝐽2 + 𝐽 +

(𝐽3 − 𝐽1)
2

4
√︁

1+Δ
2 𝐽2

Δ. (15)

Those formulas, which were obtained in work [15]
when considering the case 0 ≤ Δ < 1, remain also
valid at Δ > 1.

Figure 4 demonstrates the dependence of the mag-
nitude Δ𝑚𝑥 = 𝑚𝑥(ℎ𝑥

* + 0)−𝑚𝑥(ℎ𝑥
* − 0) of the jump

observed in the magnetization curve on the parame-
ter Δ, when magnetic field is applied along the axis
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Fig. 4. Magnetization jump Δ𝑚𝑥 = 𝑚𝑥(ℎ𝑥
* + 0) − 𝑚𝑥(ℎ𝑥

* −
− 0) for the frustrated 𝑋𝑋𝑍 Heisenberg diamond chains as
a function of the parameter Δ in the magnetic field directed
along the axis 𝑥 for various parameters

Fig. 5. Low-temperature magnetization curves for the frus-
trated diamond chains with the azurite parameters 𝐽1 =

= 15.51 K, 𝐽2 = 33 K, 𝐽3 = 6.93 K (𝐽𝑚 = 0), and the gy-
romagnetic ratio 𝑔 = 2.06 in the magnetic field applied along
the axis 𝑧 or 𝑥 (dotted curves). Thin black curves illustrate the
results obtained on the basis of effective theory and with the
use of the Jordan–Wigner fermionization

𝑥. The relevant parameters are 𝐽2 = 3 and 𝐽1 = 𝐽3 =
= 1 or 0. Let us consider the case 𝐽1 = 𝐽3 = 0, so that
ℎ𝑥
* = ℎ0. Then a simple formula can be obtained for

the magnetization of a set of vertical dimers with the
interaction 𝐽2 and free spins at the sites 𝑚, 3. Really,
in a strong magnetic field for the magnetic moment
of a cell consisting of three sites, we have

(𝛼⟨↑↑ |+ 𝛽⟨↓↓ |) (𝑠𝑧1 + 𝑠𝑧2) (𝛼| ↑↑⟩+ 𝛽| ↓↓⟩) + 1

2
=

= (𝛼⟨↑↑ |+ 𝛽⟨↓↓ |) (𝛼| ↑↑⟩ − 𝛽| ↓↓⟩) + 1

2
=

= 𝛼2 − 𝛽2 +
1

2
. (16)

Therefore, for the magnetization per site, we obtain
𝑚𝑥(ℎ0 + 0) = 𝛼2−𝛽2

3 + 1
6 . Since 𝑚𝑥(ℎ0 − 0) = 1

6 , the

jump Δ𝑚𝑥 ≡ 𝑚𝑥(ℎ0 + 0)−𝑚𝑥(ℎ0 − 0) = 𝛼2−𝛽2

3 ̸= 0
takes place for any Δ (a thin curve in Fig. 4). In the
case with interactions, 𝐽1 = 𝐽3 ̸= 0, and perfect
geometry, the magnetization curves can be numeri-
cally calculated, by using the exact diagonalization
for the diamond chain with the parameters 𝐽2 = 3
and 𝐽1 = 𝐽3 = 1 (triangles and squares in Fig. 4). In
addition, Δ𝑚𝑥 can be found, by using the effective
model (13) (a bold curve in Fig. 4). The effective
model at 𝐽1 = 𝐽3 corresponds to the model of free
spins in an external magnetic field.

From Fig. 4, one can see that, as Δ increases from 0
to ∞, the jump in the magnetization curve increases
to a maximum of 1

3 at Δ = 1 and then decreases, by
tending to zero.

In the case of non-perfect geometry (𝐽1 ̸= 𝐽3) and
the magnetic field directed along either the axis 𝑥 or
the axis 𝑧, the jump in the magnetization curve is
smeared, and the magnetization drastically changes
in a vicinity of ℎ* (see Fig. 3). However, the charac-
teristic fields ℎ𝑧

* and ℎ𝑥
* remain well determined in

this case as well.

4. Application to Azurite

The model of deformed diamond spin chain [see for-
mula (1) and Fig. 1] with the parameters 𝐽1 ≈
≈ 15.51 K, 𝐽2 ≈ 33 K, and 𝐽3 ≈ 6.93 K [14]
(in addition, ℎ = 𝑔𝜇BH, where 𝑔 ≈ 2.06, 𝜇B ≈
≈ 0.67171 K/T, and the magnetic field H is reckoned
in the Tesla units) is considered to be the most suit-
able for azurite. Work [12] contains the experimental
curve for the azurite magnetization at the temper-
ature 𝑇 = 1.5 K in a magnetic field applied both
along the crystallographic 𝑏-axis and perpendicularly
to it. In the former case, the magnetization curve has
a plateau equal to 1

3 times the magnetization satu-
ration value and located between H

‖
𝑐1 = 16 T and

H
‖
𝑐2 = 26 T; then it drastically increases and satu-

rates at H
‖
𝑐3 = 32.5 T. In the case where the field

is applied normally to the axis 𝑏, the magnetization
curve has a plateau equal to 1

3 times the magnetiza-
tion saturation value and located between H⊥

𝑐1 = 11 T
and H⊥

𝑐2 = 30 T; then it drastically increases and sat-
urates at H⊥

𝑐3 = 32.5 T.
With the help of formulas (14) and (15), it is pos-

sible to evaluate the parameter of exchange inter-
action anisotropy Δ for azurite on the basis of ex-
perimental data [11]. Let the condition H ‖ 𝑏 cor-
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respond to the magnetic field H directed along the
axis 𝑧. Then, using the experimental value of the
magnetic field, at which the magnetization curve has
a jump, H‖ ≈ 29 T, the azurite parameters, and for-
mula (14), we obtain Δ ≈ 0.85 for azurite. On the
other hand, the condition H ⊥ 𝑏 corresponds to the
case where the magnetic field is directed along the
axis 𝑥. The field, at which the magnetization curve
has a jump, equals H⊥ ≈ 31 T. Then, from formula
(15), we obtain Δ ≈ 0.84 for the parameter of ex-
change interaction anisotropy in azurite. Hence, the
theory predicts Δ ≈ 0.84÷0.85 for the parameter of
exchange interaction anisotropy in azurite.

The magnetization curves calculated for the azurite
parameters and two temperatures 𝑇 = 0.08 and 1.5 K
are depicted in Fig. 5. Note that, for the agreement
with experimental data to be better, the interaction
𝐽𝑚 between the sites 𝑚, 3 and 𝑚 + 1, 3 (see Fig. 1)
and the interaction between the chains [6] should be
taken into consideration. However, these researches
go beyond the scope of this work.

5. Conclusions

The influence of the Heisenberg exchange interaction
anisotropy on low-temperature properties of an al-
most flat-band diamond spin chain in a strong mag-
netic field directed along either the axis 𝑥 or the axis
𝑧 has been studied. The analysis is done in the case
where the parameter of Heisenberg anisotropy Δ > 1,
and it supplements the research carried out earlier for
the case 0 ≤ Δ < 1 [15].

To describe the low-temperature properties of de-
formed diamond chains in an arbitrarily oriented
magnetic field, effective Hamiltonians are constructed
in the strong-coupling approximation. The obtained
low-temperature magnetization curves agree well at
strong fields with the results of exact diagonalization
for the initial diamond chain consisting of 15 sites.

The dependence of the magnetization jump magni-
tude Δ𝑚𝑥 on the parameter of Heisenberg exchange
interaction anisotropy Δ is obtained for a diamond
spin chain in a magnetic field directed along the axis
𝑥. The magnetization jump Δ𝑚𝑥 is found to be max-
imum in the isotropic case Δ = 1. On the other hand,
Δ𝑚𝑥 → 0 at Δ → ∞.

The proposed effective models allow theoretical
predictions to be made concerning the low-tempera-
ture properties of azurite in strong magnetic fields

(higher than 30 T). The parameter of Heisenberg ex-
change interaction anisotropy for azurite is evaluated
to equal Δ ≈ 0.84÷0.85.

The developed approach can also be applied to ex-
plain experimental data for other frustrated quan-
tum antiferromagnets with almost dispersionless low-
energy magnon states, e.g., for the recently synthe-
sized magnetic compound Ba2CoSi2O6Cl2 [20].

The author expresses her gratitude to O.Derzhko,
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discussing the results of this research and for the use-
ful advice.
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О.М.Крупнiцька

ВПЛИВ АНIЗОТРОПIЇ
ОБМIННОЇ ВЗАЄМОДIЇ ГАЙЗЕНБЕРГА
НА ПРОЦЕС НАМАГНIЧЕННЯ ФРУСТРОВАНОГО
РОМБIЧНОГО ЛАНЦЮЖКА У СИЛЬНОМУ
МАГНIТНОМУ ПОЛI

Р е з ю м е

Розглядається спiн- 1
2

антиферомагнiтна 𝑋𝑋𝑍 модель Гей-
зенберга на фрустрованому ромбiчному ланцюжку в зовнi-
шньому магнiтному полi, прикладеному вздовж осi 𝑥 або
вздовж осi 𝑧. Використовуючи ефективнi моделi, знайде-
нi в наближеннi сильного зв’язку для випадку взаємо-
дiї Гейзенберга з параметром анiзотропiї Δ > 1, дослi-
джено процес намагнiчення фрустрованого ромбiчного спi-
нового ланцюжка. Теорiя застосована до пояснення екс-
периментальних даних для природного мiнералу азуриту
Cu3(CO3)2(OH)2.
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