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The theory of active dynamic conductivity in a three-barrier resonance tunneling structure
subjected to the combined action of a weak electromagnetic field and a longitudinal dc electric
field is developed with regard for the contribution of laser-induced one- and two-photon elec-
tronic transitions with different frequencies. For this purpose, the full Schrödinger equation is
solved in the effective mass approximation and with the use of the model of rectangular poten-
tial wells and barriers for an electron. The maximum contribution of two-photon transitions
to the formation of the total active dynamic conductivity in laser-induced transitions is shown
not to exceed 38%. Geometric configurations of the resonance tunneling structure, for which
the laser radiation intensity increases due to laser-induced two-photon electronic transitions,
are determined.
K e yw o r d s: resonance tunneling structure, quantum cascade laser, quantum cascade detec-
tor, active dynamic conductivity, two-photon electronic transition.

1. Introduction
The development of modern nanotechnologies, in
which quantum cascade lasers (QCLs) [1,2] and quan-
tum cascade detectors (QCDs) [3, 4] are applied, is
inseparably connected with the research of transport
properties of multilayered planar semiconductor reso-
nance tunneling structures (RTSs) and physical pro-
cesses in them. The choice of the geometrical design
for RTSs, which are active elements of QCL and QCD
cascades, and the application of a longitudinal dc
electric field (in the case of QCLs) not only deter-
mine the operation frequency (energy) of those nan-
odevices, but also provides an efficient coordinated
work of nanodevice cascades.

As was shown in works [5–7], the consideration of
RTSs as open nanosystems and the research of the
physical processes responsible for the amplification of
active current (this phenomenon is associated with
the active dynamic conductivity that arises in RTSs
in an electromagnetic field owing to quantum tran-
sitions occurring between electron states and accom-
panied by the emission or absorption of electromag-
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netic waves) provide an effective method to optimize
the operational parameters of QCLs and QCDs. One
of the ways to enhance the output RTS current is
the photon-assisted tunneling in a strong electromag-
netic field [8, 9], when new non-resonance channels of
nanostructure transparency emerge [10, 11]. The case
of two-photon quantum transitions between quasi-
stationary electronic states with the emission of pho-
tons with identical or different frequencies was stud-
ied in works [12, 13] in the framework of rough mod-
els: 𝛿-like potential barriers in RTSs and a common
effective electron mass.

In this connection, the main results obtained in
the cited works have only a qualitative character
and, as is known [14], cannot be applied to opti-
mize the geometrical design of the active zone or cas-
cade in QCLs and QCDs. A required theory has to
be based on a more realistic model, e.g., rectangu-
lar potentials and different effective electron masses
in different media of the open nano-RTS. In this
case, such an essential factor as finite electron life-
times in quasi-stationary states, which, to some ex-
tent, determines the dynamic conductivity and is
one of the factors that make the optimization of
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a nanodevice operation possible, can be taken into
account.

In this work, a quantum-mechanical theory of ac-
tive dynamic conductivity in a three-barrier active
zone of QCL with one- and two-photon electronic
transitions characterized by different frequencies is
developed in the framework of the models of effective
electron masses and rectangular potential wells and
barriers, by applying the perturbation theory in the
framework of the weak-signal approximation. Using
the experimentally studied three-barrier RTS playing
the role of active zone in a QCL with GaAs potential
wells and Al𝑥Ga1−𝑥As potential barriers as an ex-
ample, the dependence of the spectral characteristics
of electronic quasi-stationary states and the dynamic
conductivity formed by one- and two-photon quan-
tum transitions of electrons accompanied by the elec-
tromagnetic wave emission on the geometric design
of a structure is analyzed. Geometric configurations
of three-barrier RTS, in which the conditions for a
two-photon laser generation with the enhancement of
the QCL radiation intensity to 38% can be realized,
are found.

2. Theory of Active Dynamic
Conductivity in the Three-Barrier Active
Zone of a Quantum Cascade Laser in the
Case of Two-Photon Electronic Transition

Let us consider a three-barrier RTS, which is so ar-
ranged in the Cartesian coordinate frame that the
axis 𝑂𝑍 is perpendicular to the medium interfaces
in the nanosystem (Fig. 1). A dc electric field with
the strength F is applied perpendicularly to the RTS
layers. Taking into account an insignificant difference
between the lattice constants in the well and bar-
rier layers, the model of effective masses for the elec-
tron and the model of rectangular potentials are ap-
plied:

𝑚(𝑧) = 𝑚0

3∑︁
𝑝=0

[𝜃(𝑧 − 𝑧2𝑝−1)− 𝜃(𝑧 − 𝑧2𝑝)] +

+𝑚1

2∑︁
𝑝=0

[𝜃(𝑧 − 𝑧2𝑝)− 𝜃(𝑧 − 𝑧2𝑝+1)], (1)

𝑈(𝑧) = 𝑈0

2∑︁
𝑝=0

[(𝜃(𝑧 − 𝑧2𝑝)− 𝜃(𝑧 − 𝑧2𝑝+1)]−

− 𝑒𝐹 {𝑧 [𝜃(𝑧)− 𝜃(𝑧 − 𝑧5)] + 𝑧5𝜃(𝑧 − 𝑧5)}, (2)

Fig. 1. Geometric and energy diagrams of a three-barrier RTS

where 𝜃(𝑧) is the Heaviside unit function, 𝑧−1 → −∞,
𝑧6 → ∞, and 𝑚0 and 𝑚1 are the effective electron
masses in the RTS potential wells and barriers, re-
spectively. Expression (2) for 𝑈(𝑧) describes the po-
tential energy of an electron in the RTS with regard
for the influence of a dc electric field, and 𝑈0 in this
expression is the value of electron energy in the ab-
sence of this field.

Let a monoenergetic flux of electrons with energy 𝐸
close to the energy of the third energy level, 𝐸 ≈ 𝐸3,
and the concentration 𝑛0 propagate from left to right
along the axis 𝑂𝑍 perpendicularly to the layers of
three-barrier RTS. Under those conditions, the elec-
tron wave function Ψ(𝑧, 𝑡) has to satisfy the full
Schrödinger equation:

𝑖~
𝜕Ψ(𝑧, 𝑡)

𝜕𝑡
= [𝐻0(𝑧) +𝐻(𝑧, 𝑡)] Ψ(𝑧, 𝑡), (3)

where

𝐻0(𝑧) =
~2

2

𝜕

𝜕𝑧

1

𝑚(𝑧)

𝜕

𝜕𝑧
+ 𝑈(𝑧) (4)

is the Hamiltonian of the corresponding stationary
problem for the electron, and

𝐻(𝑧, 𝑡) = −𝑒
[︁
ℰ1(𝑒𝑖𝜔1𝑡 + 𝑒−𝑖𝜔1𝑡)+

+ ℰ2(𝑒𝑖𝜔2𝑡 + 𝑒−𝑖𝜔2𝑡) [𝑧𝜃(𝑧) + (𝑧5 − 𝑧)𝜃(𝑧 − 𝑧5)]
]︁

(5)

is the Hamiltonian describing the interaction of elec-
trons with a weak two-frequency electromagnetic field
in the dipole approximation. The components of this
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field are characterized by the frequencies 𝜔1 and 𝜔2,
and the electric strength amplitudes ℰ1 and ℰ2, re-
spectively.

In the weak-signal approximation and provided
the two-photon transitions between electronic states,
which are accompanied by the radiation and the ab-
sorption of electromagnetic waves, the solution of the
Schrödinger equation (3) is sought in the second order
of perturbation theory in the form

Ψ(𝑧, 𝑡) = Ψ0(𝑧)𝑒
−𝑖𝜔0𝑡 +

+Ψ−1(𝑧)𝑒
−𝑖(𝜔0−𝜔1)𝑡 +Ψ+1(𝑧)𝑒

−𝑖(𝜔0+𝜔1)𝑡 +

+Ψ−2(𝑧)𝑒
−𝑖(𝜔0−𝜔1−𝜔2)𝑡 +Ψ+2(𝑧)𝑒

−𝑖(𝜔0+𝜔1+𝜔2)𝑡, (6)

where 𝜔0 = 𝐸/~. Substituting Eq. (6) into Eq. (3),
we obtain a system of equations for the wave function
Ψ0(𝑧) and the corresponding corrections of the first,
Ψ±1(𝑧), and second, Ψ±2(𝑧), orders:

[𝐻0(𝑧)− 𝐸] Ψ0(𝑧) = 0, (7)

[𝐻0(𝑧)− (𝐸 ± Ω1)] Ψ±1(𝑧)−

− 𝑒ℰ1 [𝑧𝜃(𝑧) + (𝑧5 − 𝑧)𝜃(𝑧 − 𝑧5)] Ψ0(𝑧) = 0, (8)

[𝐻0(𝑧)− (𝐸 ± (Ω1 +Ω2)] Ψ±2(𝑧)−

− 𝑒ℰ2 [𝑧𝜃(𝑧) + (𝑧5 − 𝑧)𝜃(𝑧 − 𝑧5)] Ψ±1(𝑧) = 0, (9)

where Ω1 = ~𝜔1 and Ω2 = ~𝜔2. The solution of the
stationary Schrödinger equation (7) is well known
for each RTS region [5, 6]. Therefore, the function
Ψ0(𝐸, 𝑧) can be written in the form

Ψ0(𝐸, 𝑧) = Ψ
(0)
0 (𝐸, 𝑧)𝜃(−𝑧) + Ψ

(6)
0 (𝐸, 𝑧)𝜃(𝑧 − 𝑧5)+

+

5∑︁
𝑝=1

Ψ
(𝑝)
𝐸,0(𝑧) [𝜃(𝑧 − 𝑧𝑝−1)− 𝜃(𝑧 − 𝑧𝑝)] =

= (𝐴
(0)
0 𝑒𝑖𝑘

(0)
0 𝑧 +𝐵

(0)
0 𝑒−𝑖𝑘

(0)
0 𝑧)𝜃(−𝑧)+

+𝐴
(6)
0 𝑒𝑖𝑘

(6)
0 (𝑧−𝑧5)𝜃(𝑧 − 𝑧5)+

+

5∑︁
𝑝=1

[︁
𝐴

(𝑝)
0 𝐴𝑖(𝜉(𝑝)(𝑧)) +𝐵

(𝑝)
0 𝐵𝑖(𝜉(𝑝)(𝑧))

]︁
×

× [𝜃(𝑧 − 𝑧𝑝−1)− 𝜃(𝑧 − 𝑧𝑝)], (10)

where 𝐴(0)
0 and 𝐵

(0)
0 are coefficients in the solution

of Eq. (7) to the left from the RTS, 𝐵(6)
0 to the right

from the RTS, and 𝐴
(𝑝)
0 and 𝐵

(𝑝)
0 in the RTS, 𝐴𝑖(𝜉)

and 𝐵𝑖(𝜉) are the Airy functions,

𝑘
(0)
0 = ~−1

√︀
2𝑚0𝐸, 𝑘

(6)
0 = ~−1

√︀
2𝑚0(𝐸 + 𝑒𝐹𝑧5),

𝜉(1)(𝑧) = 𝜉(3)(𝑧) = 𝜉(5)(𝑧) =

=
(︀
2𝑚1𝑒𝐹/~2

)︀1/3[(𝑈0−𝐸)/𝑒𝐹−𝑧]
, (11)

𝜉(2)(𝑧) = 𝜉(4)(𝑧) = −
(︀
2𝑚0𝑒𝐹/~2

)︀1/3
[𝐸/𝑒𝐹 + 𝑧].

The wave function Ψ0(𝐸, 𝑧) determined according to
relations (10) satisfies the normalization condition

∞∫︁
−∞

Ψ*
0(𝑘

′, 𝑧)Ψ0(𝑘, 𝑧)𝑑𝑧 = 𝛿(𝑘 − 𝑘′) (12)

and allows us to calculate the distribution function
for the density of probability to find an electron in
the RTS analytically:

𝑊 (𝐸, 𝑧) =
1

𝑧5

𝑧5∫︁
0

|Ψ0(𝐸, 𝑧)|2 𝑑𝑧. (13)

This function determines the spectral characteristics
of quasi-stationary electronic states: the resonance
energies 𝐸𝑛 and the lifetimes 𝜏𝑛 [14].

In view of the analytical complexity of Eqs. (8) and
(9), it is expedient to solve them, by using the linear
approximation for the effective potential 𝑈𝑒𝑓𝑓 (𝑧) =
𝑈(𝑧) in each RTS layer (see, e.g., work [15]). Then the
approximate effective potential for an electron looks
like

�̃�eff(𝑧)=

5∑︁
𝑝=1

𝑁∑︁
𝑙=0

𝑈(𝑧𝑝𝑙
)[𝜃(𝑧−𝑧𝑝𝑙

)− 𝜃(𝑧−𝑧𝑝𝑙+1
)], (14)

where

𝑧𝑝𝑙
=

𝑙

2𝑁
(𝑧𝑝 − 𝑧𝑝−1), 𝑝 = 1÷5; 𝑧0 = 0, (15)

and𝑁 is the number of mesh intervals in the 𝑝-th RTS
layer. Now, the solution of the stationary Schrödinger
equation (7) can be written with a required accuracy
in the form

Ψ0(𝐸, 𝑧) = Ψ
(0)
0 (𝑧)𝜃(−𝑧) + Ψ

(6)
0 (𝑧)𝜃(𝑧 − 𝑧5)+

+

5∑︁
𝑝=1

𝑁∑︁
𝑙=0

Ψ
(𝑝)
0𝑙 (𝑧)

[︀
𝜃(𝑧 − 𝑧𝑝𝑙

)− 𝜃(𝑧 − 𝑧𝑝𝑙+1
)
]︀
=
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= (𝐴
(0)
0 𝑒𝑖𝑘

(0)
0 𝑧 +𝐵

(0)
0 𝑒−𝑖𝑘

(0)
0 𝑧)𝜃(−𝑧)+

+𝐴
(6)
0 𝑒𝑖𝑘

(6)
0 (𝑧−𝑧5)𝜃(𝑧 − 𝑧5)+

+

5∑︁
𝑝=1

𝑁∑︁
𝑙=0

[𝐴
(𝑝)
0𝑙 𝑒

𝑖𝑘
(𝑝𝑙)

0 (𝑧−𝑧𝑝𝑙 ) +𝐵
(𝑝)
0𝑙 𝑒

−𝑖𝑘
(𝑝𝑙)

0 (𝑧−𝑧𝑝𝑙 )]×

×
[︀
𝜃(𝑧 − 𝑧𝑝𝑙

)− 𝜃(𝑧 − 𝑧𝑝𝑙+1
)
]︀
, (16)

where

𝑘
(𝑝𝑙)
0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
~−1

√︀
2𝑚0(𝐸 + 𝑒𝐹𝑧𝑝𝑙

),

𝑧𝑝𝑙
∈ (𝑧1, 𝑧2)

⋃︀
(𝑧3, 𝑧4);

~−1
√︀
2𝑚1(𝐸 − 𝑈0 + 𝑒𝐹𝑧𝑝𝑙

),

𝑧𝑝𝑙
∈ (𝑧0, 𝑧1)

⋃︀
(𝑧2, 𝑧3)

⋃︀
(𝑧4, 𝑧5),

(17)

and 𝐴
(𝑝)
0𝑙 and 𝐵

(𝑝)
0𝑙 are coefficients in the solutions of

Eq. (7) for the 𝑙-th interval in the 𝑝-th RTS layer.
Those coefficients, as well as the coefficients 𝐴(𝑝)

0 and
𝐵

(𝑝)
0 , are determined from the continuity conditions

for the wave function Ψ0(𝐸, 𝑧) and the fluxes of prob-
ability density across the heterointerfaces between all
layers in the nanostructure and across the boundaries
of mesh intervals created, while approximating the ef-
fective potential.

The required accuracy of solutions (16), which was
mentioned above, is determined by the evident con-
dition

𝜀 =

⃒⃒⃒⃒⃒⃒⃒
Ψ0(𝐸, 𝑧)

⃒⃒⃒2
−
⃒⃒⃒
Ψ̃0(𝐸, 𝑧)

⃒⃒⃒2 ⃒⃒⃒⃒
|Ψ0(𝐸, 𝑧)|2

≪ 1, (18)

where Ψ0(𝐸, 𝑧) and Ψ̃0(𝐸, 𝑧) are solutions (10) and
(16), respectively.

The solutions of Eqs. (8) and (9) are superpositions
of two functions:

Ψ±𝛼(𝑧) = 𝜓±𝛼(𝑧) + Φ±𝛼(𝑧) (𝛼 = 1, 2). (19)

The functions

𝜓±𝛼(𝑧) = 𝜓
(0)
±𝛼(𝑧)𝜃(−𝑧) + 𝜓

(6)
±𝛼(𝑧)𝜃(𝑧 − 𝑧5)+

+

5∑︁
𝑝=1

𝑁∑︁
𝑙=0

𝜓
(𝑝)
±𝛼𝑙(𝑧)

[︀
𝜃(𝑧 − 𝑧𝑝𝑙

)− 𝜃(𝑧 − 𝑧𝑝𝑙+1
)
]︀
=

= 𝐵
(0)
±𝛼𝑒

−𝑖𝑘
(0)
±𝛼𝑧𝜃(−𝑧) +𝐴

(6)
±𝛼𝑒

𝑖𝑘
(6)
±𝛼(𝑧−𝑧5)𝜃(𝑧 − 𝑧5)+

+

5∑︁
𝑝=1

𝑁∑︁
𝑙=0

[︁
𝐴

(𝑝)
±𝛼𝑙𝑒

𝑖𝑘
(𝑝𝑙)

±𝛼 (𝑧−𝑧𝑙−1)+𝐵
(𝑝)
±𝛼𝑙𝑒

−𝑖𝑘
(𝑝𝑙)

±𝛼 (𝑧−𝑧𝑙−1)
]︁
×

×
[︀
𝜃(𝑧 − 𝑧𝑝𝑙

)− 𝜃(𝑧 − 𝑧𝑝𝑙+1
)
]︀

(20)

are solutions of the homogeneous equations (8) and
(9). The signs “+” and “−” correspond to the pro-
cesses associated with the emission and the absorp-
tion of an electromagnetic field, respectively. The
functions

Φ±1(𝑧) =

5∑︁
𝑝=1

𝑁∑︁
𝑙=0

Φ
(𝑝)
±1𝑙(𝑧)

[︀
𝜃(𝑧 − 𝑧𝑝𝑙

)− 𝜃(𝑧 − 𝑧𝑝𝑙+1
)
]︀
+

+Φ
(6)
±1(𝑧)𝜃(𝑧 − 𝑧5) =

=

5∑︁
𝑝=1

𝑁∑︁
𝑙=0

[︃
∓𝑈1

Ω1

𝑧

𝑧5
Ψ

(𝑝)
0𝑙 (𝑧) +

~2𝑈1

𝑚𝑙𝑧5Ω2
1

𝑑Ψ
(𝑝)
0𝑙 (𝑧)

𝑑𝑧

]︃
×

×
[︀
𝜃(𝑧 − 𝑧𝑝𝑙

)− 𝜃(𝑧 − 𝑧𝑝𝑙+1
)
]︀
∓ 𝑈1

Ω1
Ψ

(6)
0 (𝑧)𝜃(𝑧 − 𝑧5),

(21)
and

Φ±2(𝑧) =

5∑︁
𝑝=1

𝑁∑︁
𝑙=0

Φ
(𝑝)
±2𝑙(𝑧)

[︀
𝜃(𝑧 − 𝑧𝑝𝑙

)− 𝜃(𝑧 − 𝑧𝑝𝑙+1
)
]︀
+

+Φ
(6)
±2(𝑧)𝜃(𝑧 − 𝑧5) =

=

5∑︁
𝑝=1

𝑁∑︁
𝑙=0

[︂
𝑈1 𝑈2

Ω1(Ω1 +Ω2)

(︂
~2

𝑚𝑝𝑙
𝑧25

Ω1 +Ω2 ∓ 4𝐸0

(Ω1 +Ω2)2
+

+

(︂
𝑧

𝑧5

)︂2)︂
Ψ

(𝑝)
0𝑙 (𝑧)+

(︂
~2
√
𝑈1 𝑈2

𝑚𝑝𝑙
𝑧5Ω1(Ω1 +Ω2)

)︂2
𝑑2Ψ

(𝑝)
0𝑙 (𝑧)

𝑑𝑧2
∓

∓ ~2

𝑚𝑝𝑙
𝑧25

𝑈1 𝑈2(3Ω1 +Ω2)

Ω2
1(Ω1 +Ω2)2

𝑧
𝑑Ψ

(𝑝)
0𝑙 (𝑧)

𝑑𝑧
∓

∓ 𝑈2

Ω2

𝑧

𝑧5
𝜓
(𝑝)
±1𝑙(𝑧) +

~2𝑈2

𝑚𝑝𝑙
𝑧5Ω2

2

𝑑𝜓
(𝑝)
±1𝑙(𝑧)

𝑑𝑧

]︂
×

×
[︀
(𝑧 − 𝑧𝑝𝑙

)− 𝜃(𝑧 − 𝑧𝑝𝑙+1
)
]︀
+

+

(︂
𝑈1 𝑈2

Ω1(Ω1 +Ω2)
Ψ

(6)
0 (𝑧)∓ 𝑈2

Ω2
𝜓
(6)
±1(𝑧)

)︂
𝜃(𝑧 − 𝑧5) (22)

are solutions of the inhomogeneous equations (8) and
(9). Here,

𝑈1 = 𝑒ℰ1𝑧5, 𝑈2 = 𝑒ℰ2𝑧5,

𝑚𝑝𝑙
=

{︃
𝑚0, 𝑧𝑝𝑙

∈ (𝑧1, 𝑧2)
⋃︀
(𝑧3, 𝑧4);

𝑚1, 𝑧𝑝𝑙
∈ (𝑧0, 𝑧1)

⋃︀
(𝑧2, 𝑧3)

⋃︀
(𝑧4, 𝑧5),

(23)

𝑘
(𝑝𝑙)
±1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
~−1

√︀
2𝑚0(𝐸 + 𝑒𝐹𝑧𝑝𝑙

± Ω1),

𝑧𝑝𝑙
∈ (𝑧1, 𝑧2)

⋃︀
(𝑧3, 𝑧4);

~−1
√︀

2𝑚1(𝐸 − 𝑈0 + 𝑒𝐹𝑧𝑝𝑙
± Ω1),

𝑧𝑝𝑙
∈ (𝑧0, 𝑧1)

⋃︀
(𝑧2, 𝑧3)

⋃︀
(𝑧4, 𝑧5),

(24)
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𝑘
(𝑝𝑙)
±2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
~−1

√︀
2𝑚0(𝐸 + 𝑒𝐹𝑧𝑝𝑙

± (Ω1 +Ω2)),

𝑧𝑝𝑙
∈ (𝑧1, 𝑧2)

⋃︀
(𝑧3, 𝑧4);

~−1
√︀
2𝑚1(𝐸 − 𝑈0 + 𝑒𝐹𝑧𝑝𝑙

± (Ω1 +Ω2)),

𝑧𝑝𝑙
∈ (𝑧0, 𝑧1)

⋃︀
(𝑧2, 𝑧3)

⋃︀
(𝑧4, 𝑧5).

(25)

All unknown coefficients – these are 𝐴(0)
0 , 𝐵(0)

0 , 𝐴(6)
0 ,

𝐴
(𝑝)
0𝑙 , 𝐵(𝑝)

0𝑙 , 𝐵(0)
±1 , 𝐴

(6)
±1, 𝐴

(𝑝)
±1𝑙, 𝐵

(𝑝)
±1𝑙, 𝐵

(0)
±2 , 𝐴

(6)
±2, 𝐴

(𝑝)
±2𝑙,

and𝐵(𝑝)
±2𝑙 (𝑝 = 0÷5, 𝑙 = 0÷𝑁) – are unambiguously

found from the continuity conditions for the wave
function Ψ(𝑧, 𝑡) and the probability density fluxes
across all RTS heterointerfaces at an arbitrary time
moment 𝑡,

Ψ(𝑝𝑙)(𝑧𝑝𝑙
, 𝑡) = Ψ(𝑝𝑙+1)(𝑧𝑝𝑙

, 𝑡);

1

𝑚𝑝𝑙

𝑑Ψ(𝑝𝑙)(𝑧, 𝑡)

𝑑𝑧

⃒⃒⃒⃒
𝑧=𝑧𝑝𝑙

=
1

𝑚𝑝𝑙+1

𝑑Ψ(𝑝𝑙+1)(𝑧, 𝑡)

𝑑𝑧

⃒⃒⃒⃒
𝑧=𝑧𝑝𝑙

,
(26)

which together with normalization condition (12) un-
ambiguously determine the wave function Ψ0(𝑧), the
corrections Ψ±1(𝑧) and Ψ±2(𝑧) to it, and, hence, the
total wave function Ψ(𝑧, 𝑡).

After analytically calculating the energy of inter-
action between the electron and the electromagnetic
field as a sum of the energies of the electron waves
emitted from the both sides of nano-RTS, we can find,
in the quasi-classical approximation, a formula for the
real part of the active conductivity 𝜎 in terms of the
flux densities of those waves [5–7]:

𝜎(II)(Ω1,Ω2, 𝐸) =
Ω1

2𝑧5𝑒ℰ2
1

{[𝑗+1(𝐸 +Ω1, 𝑧 = 𝑧5)−

− 𝑗−1(𝐸 − Ω1, 𝑧 = 𝑧5)]− [𝑗+1(𝐸 +Ω1, 𝑧 = 𝑧0)−

− 𝑗−1(𝐸 − Ω1, 𝑧 = 𝑧0)]}+

+
(Ω1 +Ω2)

2𝑧5𝑒ℰ2
2

{[𝑗+2(𝐸 +Ω1 +Ω2, 𝑧 = 𝑧5)−

− 𝑗−2(𝐸 − (Ω1 +Ω2), 𝑧 = 𝑧5)]−

− [𝑗+2(𝐸 +Ω1 +Ω2, 𝑧 = 𝑧0)−

− 𝑗−2(𝐸 − (Ω1 +Ω2), 𝑧 = 𝑧0)]}, (27)

where the first four terms describe the densities of
electron fluxes that arise in one-photon electron tran-
sitions, and the following four terms in two-photon
ones.

According to quantum mechanics, the densities of
electron currents that arise in the RTS as a result
of the quantum transitions between the electronic
states with the energy emission or absorption in one-,
Ψ±1(𝑧), and two-photon, Ψ±2(𝑧), transitions are de-
termined by the expression

𝑗±𝛼(𝐸, 𝑧) =
𝑖𝑒~𝑛0
2𝑚0

(︂
Ψ±𝛼(𝐸, 𝑧)

𝑑Ψ*
±𝛼(𝐸, 𝑧)

𝑑𝑧
−

− Ψ*
±𝛼(𝐸, 𝑧)

𝑑Ψ±𝛼(𝐸, 𝑧)

𝑑𝑧

)︂
, 𝛼 = 1, 2. (28)

In view of Eq. (29), the real part of the dynamic
RTS conductivity 𝜎 is taken as a sum of two partial
components,

𝜎(II)(Ω1, Ω2) = 𝜎(1)(Ω1) + 𝜎(2)(Ω1, Ω2), (29)

where

𝜎(1)(Ω1) = 𝜎(1)+(Ω1) + 𝜎(1)−(Ω1) (30)

is the conductivity in the first order of perturbation
theory (i.e. formed by one-photon electronic transi-
tions) and

𝜎(2)(Ω1, Ω2) = 𝜎(2)+(Ω1, Ω2) + 𝜎(2)−(Ω1, Ω2) (31)

is the conductivity in the second order of perturbation
theory (i.e. formed by two-photon electronic transi-
tions). Here,

𝜎(1)+(Ω1) =
𝑒2~Ω1𝑧5𝑛0
2𝑚0𝑈2

1

(︂
𝑘
(6)
+1

⃒⃒⃒
𝐴

(6)
+1

⃒⃒⃒2
−

− 𝑘
(6)
−1

⃒⃒⃒
𝐴

(6)
−1

⃒⃒⃒2
+

𝑈1

2Ω1

(︀
𝑃+
01 − 𝑃−

01

)︀)︂
, (32)

𝜎(1)−(Ω1) =
𝑒2~Ω1𝑧5𝑛0
2𝑚0𝑈2

1

(︂
𝑘
(0)
+1

⃒⃒⃒
𝐵

(0)
+1

⃒⃒⃒2
− 𝑘

(0)
−1

⃒⃒⃒
𝐵

(0)
−1

⃒⃒⃒2)︂
,

(33)

𝜎(2)+(Ω1, Ω2) =
𝑒2~(Ω1 +Ω2) 𝑧5𝑛0

𝑚0𝑈2
2

×

×
(︂
𝑈2

2Ω2

(︀
𝑃+
12 − 𝑃−

12

)︀
+ 𝑘

(6)
+2

⃒⃒⃒
𝐴

(6)
+2

⃒⃒⃒2
− 𝑘

(6)
−2

⃒⃒⃒
𝐴

(6)
−2

⃒⃒⃒2
+

+
𝑈1𝑈2

2Ω1 (Ω1 +Ω2)

(︀
𝑃+
02 − 𝑃−

02

)︀
+

+

(︂
𝑈2

Ω2

)︂2 (︂
𝑘
(6)
+1

⃒⃒⃒
𝐴

(6)
+1

⃒⃒⃒2
− 𝑘

(6)
−1

⃒⃒⃒
𝐴

(6)
−1

⃒⃒⃒2)︂
+

+
𝑈1 𝑈

2
2

2Ω1 Ω2(Ω1 +Ω2)

(︀
𝑃+
01 − 𝑃−

01

)︀)︂
, (34)
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𝜎(2)−(Ω1, Ω2) =
𝑒2~(Ω1 +Ω2) 𝑧5𝑛0

𝑚0𝑈2
2

×

×
(︂
𝑘
(0)
+2

⃒⃒⃒
𝐵

(0)
+2

⃒⃒⃒2
− 𝑘

(0)
−2

⃒⃒⃒
𝐵

(0)
−2

⃒⃒⃒2)︂
, (35)

𝑃±
01 = ∓(𝑘

(6)
0 + 𝑘

(6)
±1)

(︁
𝐴

(6)
0 𝐴

(6)*
±1 +𝐴

(6)*
0 𝐴

(6)
±1

)︁
, (36)

𝑃±
02 = (𝑘

(6)
0 + 𝑘

(6)
±2)

(︁
𝐴

(6)
0 𝐴

(6)*
±2 +𝐴

(6)*
0 𝐴

(6)
±2

)︁
, (37)

𝑃±
12 = ∓(𝑘

(6)
±1 + 𝑘

(6)
±2)

(︁
𝐴

(6)
±1𝐴

(6)*
±2 +𝐴

(6)*
±1 𝐴

(6)
±2

)︁
. (38)

The introduced partial components 𝜎+(Ω) and
𝜎−(Ω) correspond to the conductivities of the elec-
tron fluxes directed to the output and the input of
RTS, respectively, relatively to the direction of the
initial electron flux.

Note that, as one can see from relations (21), (32),
(33), and (36) (𝐴(6)

±1, 𝐴
(6)*
±1 , 𝐵

(6)
±1 , 𝑃

∓
01 ∼ 𝑈1), the dy-

namic conductivity does not depend on the strength
of electric components of the electromagnetic field in
the first order of perturbation theory [5–7]. At the
same time, as one can see from formulas (22), (34),
(35), (37), and (38) (𝐴(6)

±2, 𝐴
(6)*
±2 , 𝐵

(6)
±2 , 𝑃

∓
02 ∼ 𝑈1𝑈2

and 𝑃∓
12 ∼ 𝑈2

1𝑈2), the dynamic conductivity found in
the second order of perturbation theory, on the con-
trary, turns out dependent on the strengths of electric
components of the electromagnetic field.

3. Discussion

It is clear from physical considerations that the opti-
mal performance of a QCL with an arbitrary geomet-
rical design of its active zone depends on whether the
maximum of the dynamic conductivity 𝜎+(Ω) formed
by a direct electron flow is attained in the required
frequency interval or not. The approach to the opti-
mization of the work of cascade nanodevices operat-
ing in the single-mode regime, which was developed
in works [5–7], can be generalized to the case of opti-
mization of the geometrical design of the QCL active
zone for the processes of two-photon generation.

Specific calculations were carried out for an experi-
mentally researched three-barrier RTS [16] with GaAs
potential wells and Al0.15Ga0.85As potential barri-
ers, which is characterized by the following known
physical parameters: 𝑛0 = 3.2 × 1015 cm−3, 𝑚0 =
0.063𝑚𝑒, where 𝑚𝑒 is the free electron mass, 𝑚1 =
0.075𝑚𝑒,𝑈 = 516 meV, and 𝐹 = 17 kV/cm. The ge-
ometrical parameters of the examined three-barrier
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Fig. 2. Dependences of the electron resonance energies 𝐸𝑛

(a) and the lifetimes 𝜏𝑛 in picosecond units (b) on the position
𝑏1 of the internal barrier in a common potential well

RTS are as follows: the widths of the potential wells
𝑏1 = 7.1 nm and 𝑏2 = 16.7 nm; and the thicknesses
of the input, internal, and output potential barriers
Δ1 = 5.6 nm, Δ2 = 3.1 nm, and Δ3 = 5.6 nm, respec-
tively. The results of calculations of the resonance en-
ergies (𝐸1, 𝐸2, and 𝐸3) and the lifetimes (𝜏1, 𝜏2, and
𝜏3) of the first three quasi-stationary electron states
as functions of the internal barrier position 𝑏1 in the
common potential well 𝑏, when the other geometrical
parameters of RTS are fixed, are depicted in Fig. 2.

The energies of quantum transitions Ωtheor
32 = 𝐸3−

𝐸2 = 20.8 meV and Ωtheor
21 = 𝐸2 − 𝐸1 = 41.1 meV,

which are theoretically calculated in this work for
the experimentally realized geometrical configuration
of RTS (𝑏exp1 ), differ from the experimental values
Ωexp

32 = 19 meV and Ωexp
21 = 37 meV obtained in work

[16] by no more than 10%. The lifetimes of an elec-
tron in the first three working quasi-stationary states
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Fig. 4. Dependence of the relative amplification 𝜂 on the
position 𝑏1 of the internal barrier in a common potential well

are as follows: 𝜏1 = 19.22 ps, 𝜏2 = 2.20 ps, and
𝜏3 = 1.89 ps.

In order to study the contribution of two-photon
processes to the formation of the electron active dy-
namic conductivity in RTSs, the corresponding calcu-
lations for laser quantum transitions from the third
excited electronic state are carried out in the frame-
work of the one- and two-photon approximations of
the theory developed in the previous section. To sat-
isfy the weak-signal conditions 𝑈1 = 𝑒ℰ1𝑧5 ≪ Ω1 and
𝑈2 = 𝑒ℰ2𝑧5 ≪ Ω2, the 𝑈1- and 𝑈2-values are selected
to be small: 𝑈1 = 10−3Ω1 and 𝑈2 = 10−3Ω2.

The results of calculations of the active dynamic
conductivity and its partial components as functions

of the internal barrier position 𝑏1 in the common po-
tential well 𝑏 obtained in the one- and two-photon
approximations are shown in Fig. 3. The calcula-
tions are carried out for the laser quantum transi-
tions from the third quasi-stationary state that give
rise to the emission of one photon with the energy
Ω1 = Ω32 (transition 3 → 2 in the one-photon ap-
proximation, the component 𝜎(1)

32 , triangles) and two
photons with the energies Ω1 = Ω32 = 𝐸3 − 𝐸2

and Ω2 = Ω21 = 𝐸2 − 𝐸1 (consecutive transitions
3 → 2 and 2 → 1 in the two-photon approximation,
the components 𝜎(II)

32,21 (circles), 𝜎(II)+
32,21 (solid curve),

and 𝜎
(II)−
32,21 (dashed curve)). Figure 3 also illustrates

the dependences of the conductivity 𝜎
(1)
31 in transi-

tion 3 → 1, which is competing to transition 3 → 2,
on the parameter 𝑏1 calculated in the one-photon ap-
proximation (the dotted curve).

The contribution of two-photon transitions to the
total dynamic conductivity in comparison with the
one-photon approximation will be characterized by
the relative amplification 𝜂 = (𝜎(II) − 𝜎(1))/𝜎(II).
The dependence 𝜂(𝑏1) is shown in Fig. 4. One can
see that two intervals of variation can be distin-
guished for the parameter 𝑏1: 0 nm ≤ 𝑏1 ≤ 8 nm
and 8 nm ≤ 𝑏1 ≤ 23.8 nm.

The main criterion formulated, while optimizing
the performance of the active zone or cascade in
QCLs or QCDs, consists in that the dynamic con-
ductivity maximum in the required quantum transi-
tion should be realized for a definite QCL or QCD
geometrical configuration. As was found in works [5–
7], this conductivity is governed by the electron flux
at the nanosystem output, and it has to be much
higher in comparison with both the conductivity com-
ponent in the opposite direction and the conductiv-
ity values that are formed in other quantum tran-
sitions.

In the first interval of 𝑏1-variation, which con-
tains the experimental geometrical configuration 𝑏exp1 ,
the mentioned condition is satisfied, because 𝜎(1)

32 ≈
≈ 𝜎

(1)+
32 ≫ 𝜎

(1)−
32 , 𝜎

(1)
31 . From Fig. 4, it is evident

that the contribution of two-photon processes is small
(𝜂 < 2%) in this interval; therefore, no two-photon
laser generation takes place. Hence, in the mentioned
interval of 𝑏1-variation, the analyzed RTS can effec-
tively operate as an active zone of QCL, in which one-
photon laser transitions with the frequency Ω = Ω32

are realized.
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In the second interval of 𝑏-variation, the condition
for the performance optimization of the active zone of
QCL is not obeyed, because (i) if 8 nm ≤ 𝑏1 ≤ 12 nm,
we have 𝜎

(1)
31 ≫ 𝜎

(1)
32 , 𝜎

(II)
32,21, i.e. the conductivity

formed in transition 3 → 1 prevails; (ii) if 12 nm ≤
≤ 𝑏1 ≤ 14.7 nm, we have 𝜎

(II)
32,21 ≈ 𝜎

(II)−
32,21 ≫ 𝜎

(II)+
32,21 ,

𝜎
(1)
31 , i.e. the conductivity determined by the flux in

the opposite direction to the RTS output prevails;
(iii) if 14.7 nm ≤ 𝑏1 ≤ 19.7 nm, we have 𝜎(1)

31 ≫ 𝜎
(1)
32 ,

𝜎
(II)
32,21, i.e. the conductivity formed in transition 3 →

→ 1 prevails; and (iv) finally, if 19.7 nm ≤ 𝑏1 ≤
≤ 23.8 nm, we have 𝜎(II)

32,21 ≈ 𝜎
(II)−
32,21 ≫ 𝜎

(II)+
32,21 , 𝜎

(1)
31 ,

i.e. the conductivity determined by the flux in the
opposite direction to the RTS output prevails.

From Fig. 4, one can see that the dependence 𝜂(𝑏1)
gradually grows in the interval 8 nm ≤ 𝑏1 ≤ 16 nm,
forms a maximum 𝜂 ≈ 0.38 at 𝑏1 ≈ 16 nm, and af-
terward gradually vanishes, as 𝑏1 → 23.8 nm. Hence,
by varying 𝑏1, it is possible to obtain such geometri-
cal configurations of examined RTSs, which play the
role of an active zone in QCL, when the laser gen-
eration can be enhanced up to 38% (𝑏1 ≈ 16 nm,
𝜎
(II)
32, 21 ≫ 𝜎

(1)
32 , 𝜎

(1)
31 ) owing to two-photon electron

transitions. For those RTS configurations, the total
conductivity formed in one- and two-photon transi-
tions is determined, to a great extent, by the partial
component of the electron flux directed in the op-
posite direction to the nanostructure output. As one
can see from Fig. 2, b, the electron lifetimes in the
relevant quasi-stationary states become large in the
obtained geometrical configurations, which is a sub-
stantial negative factor that interferes a correlated co-
herent electron transport through the active zone and
the cascade of QCLs. Therefore, the performance op-
timization conditions [5–7] are not satisfied for those
RTS configurations.

4. Conclusions

On the basis of exact solutions obtained for the full
Schrödinger equation in the dipole approximation, a
quantum-mechanical theory of active dynamic con-
ductivity in the three-barrier active zone of QCL in
a weak electromagnetic field, when one- and two-
photon laser generation processes are realized, is de-
veloped. The variation in the position of the internal
barrier in the common potential of the nanostruc-
ture is found to result in such geometrical configu-

rations where the contribution of two-photon radia-
tion processes to the formation of the total dynamic
conductivity becomes substantial, amounting to not
less than 38%. The calculation of the active dynamic
conductivity made it possible to reveal that, for the
studied RTS, the processes of two-photon generation
manifest themselves in those of its geometrical config-
urations, in which the total dynamic conductivity is
mainly determined by the electron flux in the direc-
tion opposite to the nanosystem output. It is estab-
lished that the conditions of effective one-photon laser
generation at the quantum transition between the
third and second quasi-stationary electronic states are
satisfied in the experimentally analyzed RTS config-
uration.

The author is sincerely grateful to Head of the
Chair of Theoretical Physics of Yu. Fed’kovych Na-
tional University of Chernivtsi, Dr. Sci. (Phys.-
Math.), Professor M.V.Tkach for his useful advice
concerning the writing of this work and the discus-
sion of the results obtained.
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ВНЕСОК ДВОФОТОННИХ
ЕЛЕКТРОННИХ ПЕРЕХОДIВ У ФОРМУВАННI
АКТИВНОЇ ДИНАМIЧНОЇ ПРОВIДНОСТI
ТРИБАР’ЄРНИХ РЕЗОНАНСНО-ТУНЕЛЬНИХ
СТРУКТУР IЗ ПОСТIЙНИМ ЕЛЕКТРИЧНИМ ПОЛЕМ

Р е з ю м е

У наближеннi ефективних мас та прямокутних потенцiаль-
них ям i бар’єрiв для електрона, з використанням знайдених
розв’язкiв повного рiвняння Шредiнгера, розвинена теорiя

активної динамiчної провiдностi трибар’єрної резонансно-
тунельної структури з прикладеним постiйним поздовжнiм
електричним полем у слабкому електромагнiтному полi з
урахуванням внеску лазерних одно- та двофотонних еле-
ктронних переходiв з рiзними частотами. Показано, що для
лазерних електронних переходiв величина внеску двофо-
тонних переходiв у формуваннi загальної величини актив-
ної динамiчної провiдностi в лазерних переходах не бiльша
за 38%. Встановлено геометричнi конфiгурацiї резонансно-
тунельної структури, для яких за рахунок двофотонних
лазерних електронних переходiв отримується зростання iн-
тенсивностi лазерного випромiнювання.

74 ISSN 2071-0186. Ukr. J. Phys. 2016. Vol. 61, No. 1


