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A short review of theoretical and experimental works dealing with the research of acoustic pa-
rameters of some classical liquids and their solutions is made. On the basis of the analytical
expressions obtained in the framework of molecular-kinetic theory for the sound velocity 𝑐(𝜈)
and the absorption factor 𝛼(𝜈), as well as the choice of a model for the potential of intermolec-
ular interaction Φ(|r|) and the radial distribution function 𝑔 (|r|), the frequency dispersion of
acoustic parameters for liquid N2, O2, and CH4 was numerically calculated in wide intervals
of density and temperature.
K e yw o r d s: sound velocity, sound absorption coefficient, translational and structural relax-
ations, friction coefficient, density, temperature, frequency.

The propagation velocity and the absorption coeffi-
cient of sound waves in a liquid are those parameters,
which directly depend on the liquid structure. The
mentioned quantities are studied as functions of the
temperature, pressure, density, frequency, and so
on. In many cases, the absorption and the velocity
of sound comprise an important tool to study rapid
molecular processes. The frequency dispersion of the
propagation velocity and the absorption coefficient of
sound waves in liquids can be expressed in terms of
dynamic elastic moduli and transport coefficients. On
the basis of relevant data on the dispersion, it is pos-
sible to obtain a valuable information concerning the
molecular structure of a liquid and the interparticle
interaction in it, to study the kinetics of irreversible
processes running in liquids under an external action,
and to reveal specific features in the character of re-
laxation processes in them.
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In classical work [1], the Stokes–Kirchhoff, Man-
delshtam–Leontovich, and Kneser theories, and some
general relaxation theories were reviewed, as well as
results of experimental measurements of the coeffi-
cient of ultrasonic wave absorption in liquids, which
is related to the structure and the transport coeffi-
cients in liquids. It was noticed that the frequency
dependence of the absorption coefficient (and, on the
same footing, the sound velocity) can actually turn
out much more complicated, because a variety of re-
laxation processes with different relaxation times can
run in liquids.

In works [2, 3], the sound velocity in liquids was
studied in the framework of molecular theory. The
corresponding problem was formulated for the model
of one-dimensional liquid, which allowed the sound
velocity to be accurately expressed in terms of the
molecular parameters of a liquid. In their further
researches, the cited authors generalized the prob-
lem to a three-dimensional model of liquid repre-
sented as a system of hard noninteracting spheres,
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which can be characterized by an arbitrary density
value.

The detailed reviews of researches aimed at study-
ing the liquid structure, the nature of internal relax-
ation processes, the transfer phenomena, the acous-
tic properties of liquids, and the corresponding re-
sults obtained in the framework of the general theory
of relaxation processes by applying temporal corre-
lation functions, projection operators, kinetic equa-
tions, nonequilibrium static operators, and, mainly,
the molecular acoustics method were presented in
works [4–6]. The results of measurements of the ultra-
sound velocity and the absorption coefficient in some
viscous liquids and their dependences on the pressure
(at 1–1000 atm) and temperature (at 8–50∘C) were
discussed in work [7], where the dependences of the
relative variation of relaxation times were plotted. It
was pointed out that a growth of the relaxation time
under the pressure action may probably by typical of
only the structural relaxation.

In works [8, 9], the sound velocity in liquid car-
bon dioxide was measured in the temperature inter-
val from the ternary point to 293 K along the liquid
phase saturation curve. Numerical results which were
obtained for the adiabatic compressibility 𝛽𝑆 , the spe-
cific heat capacities 𝐶𝑃 and 𝐶𝑉 , the isobaric coeffi-
cient of thermal expansion 𝛼𝑃 , and the temperature
coefficient of pressure 𝛾𝑉 in the indicated tempera-
ture interval are in a satisfactory agreement with the
literature data. On the basis of sound wave absorp-
tion measurements, the frequency dispersion of the
bulk viscosity coefficients of liquid N2, CO, CH4, and
CD4 in the temperature interval from 77 to 300 K
were determined. A relation between the rotational
relaxation times was established, and the correspond-
ing kinetic transverse cross-section was found.

Using the reverberation technique [10], the absorp-
tion coefficient of ultrasonic waves in cottonseed and
linseed oils was measured in vessels 0.5 l in volume in
the frequency interval from 50 kHz to 4 MHz. The
relaxation of a bulk viscosity was found in both
oils. The quantity 𝛼/𝜈2 was demonstrated to become
constant at frequencies below 50 kHz.

The main results of researches concerning the tem-
perature dependences of the propagation velocity and
the absorption coefficient for longitudinal and trans-
verse hypersounds in liquids obtained by analyzing
the spectra of molecular light scattering were re-
ported in work [11]. Using the shift and the width of

Mandelstam–Brillouin components, the velocity and
absorption coefficient of hypersound 109–1010 Hz in
frequency were measured in glycerol, benzophenone,
salol, and 𝛽, 𝛽′-dichlorodiethyl ether in a wide inter-
val of temperatures. The results were compared with
the data of numerical calculations according to the
formula derived for the sound velocity and the ab-
sorption coefficient in the framework of a nonlocal
diffusion theory, and a satisfactory agreement was ob-
tained. The character of transverse hypersound prop-
agation was studied by analyzing the spectra with a
fine structure of the Rayleigh line wing obtained in
salol and benzophenone in the geometry, when the
exciting light was polarized in the scattering plane,
and the scattered light normally to it. The obtained
results and their comparison with experimental data
show that the molecular light scattering is a conve-
nient method to study the propagation of longitudinal
and transverse high-frequency sounds in liquids.

The sound absorption coefficient, the bulk viscos-
ity, and the relaxation times in liquid nitrogen (N2)
and oxygen (O2) were studied in work [12]. The sound
absorption in liquid N2 and O2 was measured at fre-
quencies of 5–145 MHz along the saturation curve in a
wide interval of temperatures, and the values of bulk
viscosity were calculated. The vibrational relaxation
does not affect experimental results in this case, and
the presence of rotational degrees of freedom leads
to a certain acceleration of the relaxation over the
momenta (the translational one). On the basis of the
theory of effective collisions, it was shown that the
“forgetting” time of a coordinate at low temperatures
substantially exceeds the period between “ordinary”
collisions.

In work [13], the absorption coefficient 𝛼 and the
sound velocity 𝐶 were measured in liquid methane
(CH4) and tetrafluoromethane (CF4) along the sat-
uration curve at frequencies from 5 to 126 MHz and
temperatures from 90 to 210 K. In CF4, the disper-
sion of the quantity 𝛼/𝜈2 was observed in the whole
examined temperature and frequency regions, and the
sound velocity revealed a weak dispersion at low tem-
peratures. In CH4, the dispersion of 𝛼/𝜈2 was ob-
served only at 𝑇 > 140 K. In the whole temperature
region, the absorption considerably exceeded dissipa-
tive losses associated with external degrees of freedom
of the thermal motion. The analysis of the results ob-
tained brings about a conclusion that the phenomena
observed in both substances are related to the exci-
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tation of intramolecular vibrational degrees of free-
dom. The obtained characteristics of the vibrational
relaxation testify to a different kinetics of this process
in each of the examined liquids, which is associated
with the different characters of a rotational motion of
particles.

The researches of the acoustic properties of clas-
sical liquids and their solutions with regard for the
contributions of various internal relaxation processes
were successfully carried out in recent decades as
well. The frequency dispersion and the temperature
dependence of ultra- and hypersound velocities in
aqueous solutions of electrolytes and mixed solutions
were studied in works [14–16]. In those works, along
with the temperature dependence, the negative dis-
persion of the sound velocity in a narrow interval of
hypersound frequencies was revealed. The calculated
deviations of the sound velocity in a mixed solution
from the corresponding value in pure water are in
good agreement with the corresponding experimen-
tal data.

In work [17], the propagation of acoustic waves in
chemically nonequilibrium media was considered. It
was shown that, in this case, the inversion of
the frequency dispersion of the velocity and the
sound absorption, as well as the second viscosity, is
possible.

In works [18–21], the analytical expressions for the
velocity and the absorption coefficient of sound waves
in classical liquids with regard for the contributions
of internal relaxation processes were derived in the
framework of molecular-kinetic theory. For a certain
choice of the potential energy of interaction and the
radial distribution function, numerical calculations of
the dependences of those acoustic parameters on the
density, temperature, concentration, and frequency
were carried out. The obtained results are in a satis-
factory agreement at the quantitative level with ex-
perimental data.

This work is aimed at calculating the velocity 𝑐 and
the absorption factor 𝛼/𝜈2 for liquids N2, O2, CH4 of
sound in a wide interval of density 𝜌, temperature 𝑇 ,
and frequency 𝜈, as well as at comparing the obtained
results with experimental data. Here, for the poten-
tial of intermolecular interaction Φ (|r|)) and the ra-
dial distribution function 𝑔 (|r|), we use the most op-
timum initial model considered in work [22].

In work [21], the following analytical expressions
were derived for the velocity 𝐶(𝜔) and the absorption

coefficient 𝛼(𝜔) of sound waves:

𝐶 (𝜔) = 𝐶0
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where 𝑐0 =
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is the adiabatic bulk elastic modulus. The expressions
obtained describe the dispersions of the sound veloc-
ity and the absorption coefficient in liquids in wide
intervals of thermodynamic state parameters and fre-
quencies, and make allowance for the translational
and structural relaxations.

For numerical calculations, let us apply the follow-
ing analytical expressions derived for the dynamic co-
efficients of bulk, 𝜂𝑉 (𝜔), and shear, 𝜂𝑆(𝜔), viscosities
in a liquid and for the dynamic elastic moduli of a
liquid 𝜇(𝜔) and 𝐾(𝜔) [21]:
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where
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𝜏 = 𝑚/(2𝛽) and 𝜏0 = 𝛽𝜎2 /(2𝑘𝑇 ). In the formulas
above, 𝑚, 𝜎, and 𝑛 = 𝑁

𝑉 are the mass, diameter, and
concentration, respectively, of particles in a liquid;
r12 = q2 − q1 and 𝑟 = r12/𝜎 are the relative and re-
duced distances between them; 𝛽 is the friction coeffi-
cient; 𝑘 the Boltzmann constant, 𝑇 the absolute tem-
perature, and 𝜔 = 2𝜋𝜈 is the cyclic frequency of the
process. It should be noted that expressions (2) and
(3) for the dynamic elastic moduli and expressions (4)
and (5) for the viscosity coefficients were obtained for
liquids with spherical molecules. The parameter of ec-
centricity for liquids with quasi-spherical molecules is
known to be small [23]. However, the referral of those
liquids to Lennard-Jones ones can be made only in a
certain approximation. Hence, let us use expression
(1) and, taking Eq. (2)–(5) into account, numerically
calculate 𝑐(𝜈) and 𝛼(𝜈) for N2, O2, and CH4 in wide
intervals of density, temperature, and frequency.

For this purpose, according to expressions (1)–(5),
we need to know the molecular parameters of a liq-
uid such as the mass 𝑚 and the diameter 𝜎 of a
particle, the potential well depth 𝜀, which is known
from the literature [24–28], and the relaxation times
𝜏 and 𝜏0, which can be determined through the coef-
ficient of friction in a liquid 𝛽 (the latter cannot be
determined in the framework of the considered the-
ory). The right-hand sides of kinetic equations, which
are responsible for the irreversibility of those equa-
tions in time (in our case, this is the Fokker–Planck
collision operator), describe the dissipation processes
in liquids and contain the friction coefficient 𝛽. In
work [29], by determining the autocorrelation func-
tion of momenta and finding the average force acting

on the probe particle moving at a constant velocity,
the following expression for 𝛽 was obtained:

𝛽2 = (4𝜋/3)𝜌𝜎

∞∫︁
0

∇2Φ (|r|) 𝑔 (|r|) 𝑟2𝑑𝑟, (6)

where 𝜌 is the density of a liquid, and ∇2 = 1
𝑟2 ×

× 𝜕
𝜕𝑟

(︀
𝑟2 𝜕

𝜕𝑟

)︀
the radial part of the Laplace opera-

tor. Hence, the study of the origin and the determi-
nation of the dependences of the coefficients 𝛽, 𝑐(𝜈),
and 𝛼(𝜈) on the state parameters 𝜌, 𝑇 , and 𝑃 requires
a choice of the potential Φ (|r|) and the radial distri-
bution function 𝑔 (|r|). Let us select the most optimal
initial model considered in work [22]:

Φ (|r|) =
{︂∞ if 𝑟 < 1,

4𝜀
(︀
𝑟−12 − 𝑟−6

)︀
if 𝑟 > 1,

(7)

𝑔 (|r|) = 𝑦
(︁*
𝜌
)︁
exp (−Φ (|r|)/𝑘𝑇 ), (8)

where 𝑦(
*
𝜌) = (2−

*
𝜌)/[2(1−

*
𝜌)3] is the Carnahan–

Starling function, 𝜌* = (𝜋/6)𝑁0𝜎
3𝜌/𝑀 is the re-

duced density, 𝑁0 the Avogadro constant, 𝑀 the mo-
lar mass, and 𝜌 the density of a liquid.

Expressions (7) and (8) make it possible to perform
a theoretical research and to execute numerical cal-
culations of the friction coefficient 𝛽, the relaxation
times defined as 𝜏 = 𝑚/(2𝛽) and 𝜏0 = 𝛽𝜎2 /(2𝑘𝑇 ),
the velocity 𝑐(𝜈), and the absorption coefficient 𝛼(𝜈)
of sound waves in liquids in a wide interval of the fre-
quency 𝜈 = 𝜔/2𝜋 as functions of the thermodynamic
state parameters (𝜌, 𝑇 ). The results of numerical cal-
culations of the frequency dependences of the veloc-
ity 𝑐(𝜈) and the absorption coefficient 𝛼(𝜈) of sound
waves on the state parameters are given in Tables 1
and 2, respectively.

Hence, the theoretical calculations of the sound ve-
locity 𝑐(𝜈) and the sound absorption coefficient 𝛼/𝜈2
in liquid N2, O2, and CH4 give the numerical val-
ues that are in a satisfactory agreement with ex-
perimental data. An insignificant difference between
them may probably follow from the neglecting of con-
tributions inserted by orientational angles to the in-
terparticle interaction potential. As one can see from
Tables 1 and 2, as well as from Figure, the region of
frequency dispersion of the quantities 𝑐(𝜈) and 𝛼/𝜈2

for sound in the liquids with quasi-spherical molecules
(N2, O2, and CH4) is rather wide (about 104 Hz). It
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Table 1. Frequency dependence of the sound
velocity 𝑐(𝜈) in liquid nitrogen, oxygen, and methane (𝜈 = 106÷1012 Hz)

𝑇 , K 𝜌, kg/m3 [12]
𝑐(𝜈), m/s

𝑐, m/s [12] 𝜈* = 10−6 𝜈* = 10−5 𝜈* = 10−4 𝜈* = 10−3 𝜈* = 10−2 𝜈* = 10−1 𝜈* = 1

nitrogen

80 794 831 831.00 831.00 831.02 831.25 838.37 937.06 1231.06
90 744 717 717.00 717.00 717.02 717.23 722.49 806.93 1068.87

100 688 603 603.00 603.00 603.02 603.25 607.63 679.88 909.60
110 623 475 475.00 475.00 475.03 475.32 479.57 543.38 744.31
115 581 405 405.00 405.00 405.04 405.38 409.83 470.13 653.29
120 527 318 318.00 318.01 318.05 318.49 323.64 383.63 549.68

oxygen

80 1190 986 986.00 986.00 986.02 986.41 997.42 1114.01 1440.60
90 1142 905 905.00 905.00 905.02 905.26 913.01 1013.95 1310.45

100 1090 823 823.00 823.00 823.02 823.22 829.06 917.29 1185.98
110 1035 732 732.00 732.00 732.02 732.22 737.04 815.60 1061.14
120 974 643 643.00 643.00 643.02 643.25 647.50 717.05 937.69
130 903 542 542.00 542.00 542.03 542.30 546.39 608.73 805.27
140 813 422 422.00 422.00 422.04 422.39 426.83 484.73 657.16
146 741 338 338.00 338.01 338.05 338.49 343.61 401.44 557.42

𝑇 , K 𝜌, kg/m3 [13] 𝑐, m/s [13] 𝜈* = 10−6 𝜈* = 10−5 𝜈* = 10−4 𝜈* = 10−3 𝜈* = 10−2 𝜈* = 10−1 𝜈* = 1

methane

100 440 1444 1444.00 1444.00 1444.03 1444.54 1459.62 1632.55 2127.73
120 413 1245 1245.00 1245.00 1245.02 1245.36 1254.93 1398.56 1835.34
140 380 1040 1040.00 1040.00 1040.03 1040.38 1047.56 1166.35 1541.54
150 361 926 926.00 926.00 926.04 926.42 933.14 1041.88 1387.60
160 339 797 797.00 797.00 797.05 797.49 804.16 904.85 1221.85
170 312 646 646.00 646.01 646.06 646.62 653.82 749.82 1039.00
180 277 483 483.00 483.01 483.08 483.84 492.54 588.98 844.61

Dependences of the sound velocity (a) and sound absorption coefficient (b) on the reduced frequency for liquid N2, O2, and CH4

at 𝑇 = 100 K
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Table 2. Frequency dependence of the sound absorption
coefficient 𝛼2/𝜈 in liquid nitrogen, oxygen, and methane (𝜈 = 106÷1012 Hz)

𝑇 , K 𝜌, kg/m3 [12]
𝛼/𝜈2, 10−15 s2/m

[12] 𝜈* = 10−6 𝜈* = 10−5 𝜈* = 10−4 𝜈* = 10−3 𝜈* = 10−2 𝜈* = 10−1 𝜈* = 1

nitrogen

80 794 10.3 12.022 12.005 11.949 11.757 10.548 4,697 0.865
90 744 13.6 13.881 13.872 13.843 13.725 12.736 6.448 1.297

100 688 19.9 17.741 17.731 17.697 17.565 16.585 9.496 2.017
110 623 34.2 27.562 27.543 27.482 27.268 26.043 16.692 3.623
115 581 52.6 37.838 37.812 37.731 37.450 36.008 24.411 5.268
120 527 84.0 64.864 64.826 64.705 64.296 62.344 44.650 9.373

oxygen

80 1190 7.5 9.64 9.62 9.56 9.36 8.27 3.55 0.63
90 1142 7.8 10.00 9.99 9.97 9.86 9.02 4.29 0.83

100 1090 8.7 10.12 10.07 9.93 9.48 7.87 3.04 0.48
110 1035 11.7 11.51 11.50 11.48 11.38 10.61 5.56 1.14
120 974 15.9 13.88 13.87 13.84 13.72 12.93 7.44 1.59
130 903 23.9 18.78 18.76 18.72 18.54 17.62 11.07 2.40
140 813 44.2 31.30 31.27 31.19 30.92 29.67 20.30 4.36
146 741 89.6 51.47 51.44 51.32 50.94 49.27 35.38 7.36

𝑇 , K 𝜌, kg/m3 [13]
𝛼/𝜈2, 10−15 s2/m

[13] 𝜈* = 10−6 𝜈* = 10−5 𝜈* = 10−4 𝜈* = 10−3 𝜈* = 10−2 𝜈* = 10−1 𝜈* = 1

methane

100 440 3.38 4.82 4.80 4.74 4.57 3.88 1.56 0.26
120 413 3.80 5.00 5.00 4.98 4.93 4.50 2.12 0.41
140 380 5.76 6.18 6.18 6.16 6.12 5.74 3.16 0.66
150 361 7.30 7.48 7.47 7.45 7.39 6.99 4.13 0.89
160 339 10.70 9.91 9.90 9.88 9.79 9.31 5.90 1.28
170 312 18.40 15.39 15.37 15.33 15.20 14.57 9.88 2.13
180 277 41.00 29.70 29.68 29.62 29.40 28.47 20.54 4.25

is a result of the power law of damping of relax-
ing fluxes, which in turn corresponds to the diffu-
sion mechanism. In other words, it is a contribution
of the structural relaxation, when, according to the
exponential law of damping, on the basis of the gen-
eral relaxation theory [4, 5], the region of dispersion
of the acoustic parameter is narrow (about 102 Hz).
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С.Одiнаєв, А.Абдурасулов

РОЗРАХУНОК ШВИДКОСТI
I КОЕФIЦIЄНТА ПОГЛИНАННЯ ЗВУКУ
В РIДИНАХ З КВАЗIСФЕРИЧНИХ МОЛЕКУЛ

Р е з ю м е

Наведено короткий огляд теоретичних та експерименталь-
них робiт з дослiдження акустичних параметрiв класичних
рiдин i їх розчинiв. На основi аналiтичних виразiв швид-
костi i коефiцiєнта поглинання звуку, отриманих згiдно
з молекулярно-кiнетичною теорiєю i вибором моделi для
потенцiалу мiжмолекулярної взаємодiї i радiальної фун-
кцiї розподiлу, проведений чисельний розрахунок частотної
дисперсiї акустичних параметрiв рiдин N2, O2, СН4 в ши-
рокому iнтервалi змiни густини i температури.
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