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KINETIC MODEL FOR SPATIAL DISTRIBUTION
OF ELECTRON EXCITATIONS IN LIQUID PHOSPHORSPACS 71.20.Nr, 72.20.Pa

A model of luminescence in liquid phosphors under X-ray excitation has been proposed. The
corresponding spatial distributions for electronic excitations and local heating are ob-
tained. They are described by Gaussian functions, the parameters of which are related to the
kinetic energy of an X-ray quantum and the medium characteristics. The explanation to a low
quantum yield of luminescence in liquid phosphors under the X-ray excitation in comparison
with a high quantum yield at the photoluminescence is given. It is shown that the major losses
in this case occur at the stage of electronic excitation migration from the solvent to phosphor
molecules.
K e yw o r d s: luminescence, photoluminescence, spatial distribution of electronic excitations,
liquid phosphors.

1. Introduction
Scintillators are phosphors, in which light flashes or
scintillations arise under the action of ionizing radi-
ation. Two types of phosphors are distinguished: or-
ganic and inorganic (crystalline) [1,2]. As liquid scin-
tillators, solvents with a primary additive (a lumines-
cent substance) and a secondary one (a shifter), which
shifts the luminescence toward longer wavelengths,
are used. Typical luminescent additives in scintilla-
tors are 𝑛-terphenyl (C18H14), PBD (C20H14N20),
butyl PBD (C24H22N20), and PPO (C15H11NO). As
a secondary additive, POPOP (C24H16N20) and oth-
ers are used. Popular solvents for liquid scintillators
are toluene, xylene, benzene, phenylcyclohexane, tri-
ethylbenzene, and decalin [3].

A specific feature of liquid scintillators is a short
fall time, which is of an order of tens of nanosec-
onds. Liquid scintillators have some advantages in
comparison with crystalline ones. First, additives sen-
sitive to any specific form of irradiation can be in-
troduced into them; e.g., liquid scintillators as ioniz-
ing radiation counters [3]. Second, liquid scintillators
can be fabricated with any volume and any shape
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required for experiments. Third, they remain homo-
geneous even at large sizes, which is almost impossi-
ble for crystals. The luminescence properties of liq-
uid scintillators are governed by the properties of
phosphor molecules. The concentrations of the pri-
mary and secondary additives are much lower than
the concentration of solvent molecules (less than sev-
eral grams per liter). Despite those advantages, the
yield of X-ray luminescence in liquid phosphors is al-
ways less than in powders, ceramics, polycrystals, and
single crystals [1–4].

The major aim of the work is to determine the
processes responsible for a low luminescence quan-
tum yield at the X-ray excitation in liquid phosphors,
bearing in mind that the same phosphors have a quan-
tum yield close to unity at the photoexcitation.

2. Mechanisms of X-Ray
Luminescence Excitation in the Medium

In the general case, exciting radiation has to be ab-
sorbed in order to excite a medium. The dependence
of the exciting radiation absorption is described by
the Bouguer–Lambert–Beer law [5, 6]

𝐽 = 𝐽0 exp(−𝛼𝑥), (1)



V.Ya. Degoda, I.M. Moroz

where 𝐽0 is the intensity of incident electromagne-
tic radiation, 𝐽 the intensity of exciting radiation
at the depth 𝑥 in the medium, and 𝛼 the to-
tal coefficient of electromagnetic wave damping in
the medium. The magnitude of damping coefficient
equals the sum of coefficients for every process that
occurs in the medium. The mechanism of interaction
between gamma or X-ray quanta and the medium dif-
fers from a similar process for charged particles, be-
cause the former have no electric charge and no rest
mass. Electromagnetic quanta can only be absorbed
or scattered in the medium. In all processes when X-
ray or gamma quanta interact with the medium, the
energy and momentum conservation laws are obeyed
simultaneously. It should also be borne in mind that
the momentum of even a high-energy quantum is
much less than that of an electron or atom at their
vibrational motion.

Processes of four types are distinguished when an-
alyzing the interaction of electromagnetic radiation
with a medium [7, 8]:

∙ photoabsorption of quanta, which can be accom-
panied by the Auger effect,

∙ coherent (Rayleigh) scattering,
∙ noncoherent scattering (the Compton effect),
∙ formation of electron-positron pairs.
Coherent scattering does not excite the liquid

phosphor. Noncoherent scattering (the Compton ef-
fect) does, but the energy obtained by the phos-
phor is by orders of magnitude lower in comparison
with the photoabsorption case. Since the formation
of electron-positron pairs has a considerable energy
threshold, which exceeds the energy of X-ray radia-
tion, this process is not realized. Hence, when excit-
ing the liquid phosphors by an electromagnetic field,
the major contribution to the interaction with the
medium is given by the photoabsorption, whereas
the other processes of luminescence excitation in liq-
uid phosphors can be neglected. If the medium is
excited by a flux of X-ray quanta, than, with re-
gard for the values of absorption coefficients for them
(<1000 cm−1), one can easily be convinced that, even
at a powerful X-ray excitation, the events of X-ray
quantum absorption can be considered independently
of one another.

The photoabsorption gives rise to the generation of
a high-energy photoelectron and either another free
electron (the Auger effect) or characteristic fluores-
cent X-ray radiation. The high-energy photoelectron,

by moving in a liquid phosphor, loses its energy by
generating the electronic excitations and heat. The
energy transfer from this electron to the medium
takes place through a considerable number of its col-
lisions with medium atoms. Those collisions can be
classified into the following types, depending on the
impact parameter of an incident photoelectron with
respect to the atom [10, 11, 14]:

∙ elastic collisions, which are characterized by low
energy losses Δ𝑊 by the photoelectron at every in-
teraction event (Δ𝑊 < 𝐼, where 𝐼 is the potential of
liquid phosphor excitation or the energy gap width in
semiconductors);

∙ inelastic collisions, which are characterized by
high energy losses at every interaction event (Δ𝑊 >
> 𝐼) accompanied by the electronic excitation of
molecules in the medium.

In both cases, the collisions of a high-energy pho-
toelectron with an atom or a molecule in the medium
result also in the heat generation according to the
energy conservation law.

In nuclear physics, the ionization losses by high-
energy particles at their interaction with the medium
are analyzed with the use of the Bethe–Bloch equa-
tion. In the SI system [8, 12], it looks like

−𝑑𝐸

𝑑𝑥
=

𝑛𝑒4

8𝜋𝜀20𝑚𝑣2𝐵
, (2)

where

𝐵 = 𝑍

[︂
ln (2𝑚𝑐2𝛽2)

𝐼(1− 𝛽2)
− 𝛽2 − 𝐶

𝑍
− 𝛿

]︂
(3)

is the stopping power factor for the medium, 𝑛 is
electron concentration (cm−3), 𝐼 is average ionization
potential (eV), 𝑍 is atomic number of the medium,
𝐸 = 𝑚𝑣2

2 is the kinetic energy of the particle, 𝜀0 the
dielectric constant, 𝑒 the electron charge, and 𝛽 the
relativistic correction. Since the photoelectron energy
in the X-ray range is low, the relativistic correction
can be neglected in Eqs. (2) and (3). At low ener-
gies, the shell correction 𝐶

𝑍 and the correction for the
medium polarization 𝛿 are also neglected, which con-
siderably simplifies the Bethe–Bloch equation.

While developing a basic model of the kinetic X-
ray luminescence theory, the main difficulty is the
fact that all trajectories of high-energy photoelec-
trons that arise at the absorption of X-ray quanta
differ from one another similarly to the trajectories
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of motion of molecules in a gas. In order to ob-
tain one photoelectron trajectory from the infinite
set of possible trajectories, the Monte-Carlo method
is used [13]. This method is based on the proba-
bilistic approach to the solution of problems in sta-
tistical physics. Therefore, while considering the X-
ray luminescence excitation, a generalizing concept
of the “average spatial distribution of electronic ex-
citations” has to be introduced for a spatial distri-
bution of charge carriers. As a result, the trajec-
tory of every particle should not be considered sepa-
rately. A considerable number of X-ray quanta (more
than 106) are always used in X-ray luminescence re-
searches. Therefore, the averaging is carried out in
this case over a large number of local excitation re-
gions. It is for this average spatial distribution of elec-
tronic excitations that the kinetic model can be devel-
oped. If this model produces results that agree with
the experiment, the applied approach is valid.

Therefore, leaving the Monte-Carlo method be-
yond the calculation scheme, we propose the follow-
ing procedure that allows the character of particle
motion in a medium to be described (Fig. 1). Let a
high-energy electron move in a medium and sporad-
ically collide with atoms or molecules. As a result,
the electron loses its kinetic energy. We assume that
the particle almost does not lose energy at elastic
collisions, whereas the inelastic collisions are char-
acterized by considerable energy losses. An energy of
about 𝑊 ≈ 3𝐼 is required to generate one electronic
excitation [10, 14, 15]. Actually, we consider uniform
losses of the kinetic energy by a photoelectron along
its path in the medium. The number of correspond-
ing inelastic collisions 𝑁0 ≫ 1. Therefore, the initial
kinetic energy of a photoelectron can be divided into
𝑁0 identical intervals. In each of them, the photoelec-
tron loses the energy 𝑊 , and one electronic excitation
is generated.

In order to determine the probability to find the
photoelectron in the space at the moment when it
loses the energy 𝑊 , the diffusion equation can be
used. The general form of this equation for a homo-
geneous medium looks like

d𝑛(𝑟, 𝑡)

d𝑡
= ∇

[︀
𝐷∇𝑛(𝑟, 𝑡)

]︀
, (4)

where 𝑛(𝑟, 𝑡) is the concentration of particles in the
medium. The solution of this equation gives a value
for the concentration of particles in the space at a

Fig. 1. Schematic representation of the energy variation of a
photoelectron at its motion in the medium

given time moment. To find a solution of the diffusion
equation, the initial condition is required: at 𝑡 = 0,
the initial concentration is determined by the depen-
dence 𝑛(𝑟, 𝑡 = 0) = 𝑛0𝑓(𝑟), where 𝑛0 is the total
number of particles. Then the probability to find one
particle at the time moment 𝑡 at the distance 𝑟 is de-
termined by the formula 𝑛(𝑟,𝑡)

𝑛0
= 𝑝(𝑟, 𝑡). Hence, the

diffusion equation determines, in effect, the probabil-
ity density to find the particle at a definite spatial
point at a definite time moment.

We assume that the photoelectron coordinate at
the initial time moment (when an X-ray quantum
is absorbed) is equal to zero, 𝑟 = 0. This is the re-
quired initial condition for the diffusion equation in
the spherical coordinate system. For the probability
to find the particle in a homogeneous medium taking
only the radial particle motion into account, we have⎧⎨⎩

d𝑝(𝑟, 𝑡)

d𝑡
= 𝐷(𝑡)Δ𝑝(𝑟, 𝑡),

𝑝(𝑟, 0) = 𝛿(𝑟),
(5)

where 𝑟 is the distance from the start point in
the spherical coordinate system, i.e. from the place,
where the X-ray quantum was absorbed.

Diffusion (4) and Bethe–Bloch (2) equations make
it possible to determine the statistical spatial dis-
tribution of excitations generated by the photoelec-
tron in the liquid phosphor. Owing to the photoelec-
tron thermalization, we obtain a small region near
the point of X-ray quantum absorption, where elec-
tronic excitations and heat are generated simultane-
ously. This local region will be cooled down in time.
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For the description of this process, the heat conduc-
tivity equation can be used if the generation region is
large enough to be described with the use of macro-
scopic parameters.

The processes of excitation transfer in a liquid
phosphor are governed by the properties of its compo-
nents, i.e. the properties of the solvent and phosphor
molecules. The concentration of phosphor molecules
in the phosphor is much lower than the concentra-
tion of solvent molecules. In general, the processes of
excitation transfer between molecules are described
by the Förster–Dexter theory and were studied in de-
tail by V.M. Agranovich (see works [14, 16–19]). In
the general case, phosphor molecules can be excited
owing to the excitation transfer from the solvent or
through the direct excitation transfer at the absorp-
tion of an optical quantum, which is called photolu-
minescence. In fact, any photoluminescence research
includes the direct excitation of phosphor molecules,
whereas, in X-ray researches, the excitation transfer
from solvent molecules to phosphor ones are consid-
ered. Therefore, it is always necessary to compare X-
ray luminescence and photoluminescence spectra. A
consecutive detailed analysis makes it possible to de-
termine which mechanism can be responsible for a low
yield at the X-ray luminescence against a high quan-
tum yield at the photoexcitation. In other words, it
is necessary to understand the contribution of each
component of the process (generation, migration, lu-
minescence) while analyzing the experimental data of
X-ray luminescence researches.

3. Generation of Electronic Excitations

In order to calculate the probability density to find
a particle at the given time 𝑡 at the distance 𝑟, it is
necessary firstly to determine the total number of ex-
citations generated in the medium. The absorption of
one X-ray quantum in the condensed medium at the
photoelectron thermalization gives rise to the gener-
ation of 𝑁0 excitations. The specific number is deter-
mined by the following phenomenological dependence
[14, 15]:

𝑁0 =
ℎ𝜈𝑥
3𝐼

, (6)

which includes the X-ray quantum energy ℎ𝜈𝑥 and the
potential of solvent molecule excitation or ionization
𝐼. Knowing the total average magnitude of excitation

and the initial energy of a photoelectron, it is possi-
ble to obtain an analytical formula that approximates
the solution of the Bethe–Bloch equation (2). With
regard for the mean-value theorem [14], this formula
looks like
𝑥∫︁

0

d𝑥 =

∫︀ 𝐸

0
(𝑥) d𝐸

𝑒4𝑛
8𝜋𝜀20

ln 4𝐸

3̃︀𝐼 ≈ 𝐸2
0 − 𝐸(𝑥)2

2𝐴
. (7)

For the total rectified path length travelled by a
high-energy electron (𝑥0) at the photoelectron ther-
malization, we obtain

𝑥0 =
𝐸2

0 −𝑊 2
0

2𝐴
≈ 𝐸2

0

2𝐴
, 𝐴 =

𝑒4𝑛 ln𝑁0

8𝜋𝜀20
. (8)

This formula coincides with the Thomson–Whidding-
ton equation. Using Eq. (7), the approximate analyt-
ical dependence of the photoelectron energy on the
travelled path length can be written in the form

𝐸(𝑥) = 𝐸0

√︂
1− 𝑥

𝑥0
. (9)

It can be used to describe the variation in the kinetic
energy of a photoelectron at its passage through a
medium (see Fig. 1).

Since the kinetic energy of a high-energy electron
gradually decreases at inelastic collisions with mole-
cules in the medium, the diffusion coefficient 𝐷 also
changes during the thermalization. In order to take
the photoelectron thermalization into consideration,
it is necessary to consider the dependence of the dif-
fusion coefficient on the thermalization time. In the
general case, the diffusion coefficient is determined by
the formula

𝐷 =
1

3
𝐿(𝑡)𝑣(𝑡), (10)

where 𝐿(𝑡) is the mean free path, which is defined as
the distance between two inelastic scattering events
(i.e. the generation of an electronic excitation), and
𝑣(𝑡) is the photoelectron velocity, which decreases in
this model in a step-like manner in the course of pho-
toelectron thermalization, but remains constant in
this energy interval.

Using dependence (9) for the variation of the par-
ticle energy and the formula 𝑣(𝑡) =

√︀
2𝐸[𝑥(𝑡)]/𝑚 for

the particle velocity, we can obtain the dependences
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𝑥(𝑡) and 𝑣(𝑡):

𝑣(𝑥) =

(︂
2𝐸0

𝑚

)︂2 (︂
1− 𝑥

𝑥0

)︂
= 𝑣0

(︂
1− 𝑥

𝑥0

)︂1/4
,

𝑣(𝑡) = 𝑣0

(︂
1− 𝑡

𝑡0

)︂1/4
, де 𝑣0 =

√︂
2𝐸0

𝑚
,

𝑡(𝑥) =

𝑥∫︁
0

d𝑥

𝑣(𝑥)
=

4𝑥0

3𝑣0

[︃
1−

(︂
1− 𝑥

𝑥0

)︂3/4]︃
,

𝑥(𝑡) = 𝑥0

[︃
1−

(︂
1− 𝑡

𝑡0

)︂4/3]︃
,

where 𝑣0 =
√︁

2𝐸0

𝑚 . The total time of the photoelec-
tron thermalization 𝑡0 is determined from the condi-
tion 𝑥 → 𝑥0, so that we have 𝑡0 = 4𝑥0

3𝑣0
. The depen-

dence 𝐿(𝑥) or 𝐿(𝑡) is obtained from the condition that
the photoelectron loses the energy 𝑊 ≈ 3𝐼 and gen-
erates one electronic excitation along this distance:

𝐿(𝑥) =
2𝑊0𝑥0

𝐸0

√︂
1− 𝑥

𝑥0
,

𝐿(𝑡) =
2𝑊0𝑥0

𝐸0

(︂
1− 𝑡

𝑡0

)︂2/3
,

where 𝐿0 = 2𝑊0𝑥0

𝐸0
= 2𝑥0

𝑁0
. Hence, the analytical de-

pendences for the diffusion coefficient are

𝐷(𝑥) = 𝐷0

(︂
1− 𝑥

𝑥0

)︂3/4
,

𝐷(𝑡) = 𝐷0

(︂
1− 𝑡

𝑡0

)︂
,

where 𝐷0 =
√
2
3

𝑊0𝐸
3/2
0

𝐴𝑚1/2 . The obtained dependence
𝐷(𝑡) is used, while solving the diffusion equation (5).

The diffusion equation is solved with the help of the
variable separation method. In this case, we obtain
two equations for the time and spatial variables. The
general solution of the diffusion equation (5) corre-
sponding to the initial condition has the following
form in the spherical coordinate system:

𝑝(𝑟, 𝑡) = 2𝜋𝐷0𝑡0

[︃
1−

(︂
1− 𝑡

𝑡0

)︂2]︃−3/2

×

× exp

{︃
− 𝑟2

2𝜋𝐷0𝑡0

[︁
1−

(︁
1− 𝑡

𝑡0

)︁2]︁
}︃
. (11)

This is an analytical formula for the probability
density to find a high-energy electron at the distance
𝑟 from the center at the time moment 𝑡 in the course
of thermalization.

Since every inelastic scattering event generates one
electronic excitation, the total distribution of excita-
tions generated by a photoelectron in the medium can
be found by summing up the probability density to
find the particle at the moment 𝑡 over 𝑖 up to 𝑁0:

𝑁0(𝑟) =

𝑁0∑︁
𝑖=0

𝑝(𝑟, 𝑡).

The moments of the electronic excitation generation,
𝑡0, can be found from the condition that the pho-
toelectron loses the energy 𝑊 in each interval from
𝑡𝑖 to 𝑡𝑖+1: 𝐸(𝑡𝑖) = 𝐸0 − 𝑖𝑊0. Then we may write
down 𝑡𝑖 = 𝑡0

[︀
1− (1− 𝑖𝑊0/𝐸0)

3/2
]︀
, and the final ex-

pression for the spatial distribution of the electronic
excitation density reads

𝑁0(𝑟) =

𝑁0∑︁
𝑖=0

exp

{︂
− 𝑟2

𝐷0𝑡0
[︁
1−(1−𝑖

𝑊0
𝐸0)

3
]︁}︂{︂

2𝜋𝐷0𝑡0

[︂
1−

(︁
1− 𝑖𝑊0

𝐸0

)︁3]︂}︂3/2
. (12)

The dependences 𝑁0(𝑟) at various energies of X-
ray quanta calculated in the case of the absorption in
water (H2O) are depicted in Fig. 2. Hence, for the
generation stage of the kinetic X-ray luminescence
theory, we have a procedure to calculate the initial
distribution 𝑁0(𝑟) of the electronic excitation den-
sity in a medium, provided that one X-ray quantum
is absorbed.

The sum of Gaussians in Eq. (12) is not a sim-
ple analytical function. Therefore, let us estimate the
volume, in which electronic excitations are gener-
ated. The spatial distribution can be characterized by
the relative number of excitations that are generated
in a sphere of radius 𝑟:

𝑅(𝑟) =

𝑟∫︀
0

𝑁0(𝑟)4𝜋𝑟
2d𝑟

𝑁0
. (13)

Despite the fact that the dependence 𝑁0(𝑟) is a sum of
Gaussians, it can be described rather well by a single
Gaussian. The calculated dependences 𝑅(𝑟) and their
counterparts obtained, when 𝑁0(𝑟) is approximated
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Fig. 2. Spatial distributions of electronic excitations in wa-
ter (𝑛 = 0.334 × 1024 cm−3, 𝐼 = 12.59 eV) for various initial
excitation energies (a) 𝐸 = 1 (1 ), 2 (2 ), and 5 keV (3 ); and
(b) 𝐸 = 10 (1), 15 (2 ), and 20 keV (3 )

Fig. 3. Calculated distributions of generated excitations (solid
curves) and their approximations (dashed curves) for X-ray
quantum energies of 1 (1 ), 2 (2 ), and 5 keV (3 )

by a single Gaussian, are depicted in Fig. 3 for various
energies of X-ray quanta.

Note that the functional dependences of the func-
tion 𝑁0(𝑟) are described well enough by the approxi-
mating function

𝑁0(𝑟) =
𝑁0

(2𝜋)
3/2

𝑟3𝑔
exp−

{︂
𝑟2

2𝑟2𝑔

}︂
. (14)

This function is also suitable for higher X-ray quan-
tum energies. It is characterized by the quantity 𝑟𝑔,
which is a phenomenological parameter depending on

the medium characteristics:

𝑟𝑔 =
11𝜋𝜀20

√︀
ℎ𝜈3𝑥𝐼

2𝑒4𝑛 ln (ℎ𝜈𝑥/3𝐼)
. (15)

A comparison of the obtained formula for 𝑟𝑔 with
the rectified path length 𝑥0 in liquid phosphors shows
that the obtained generation radius is 20–30 times
smaller. However, it should be noted that the quan-
tities 𝑟𝑔 (ℎ𝜈𝑥) and 𝑥0 (ℎ𝜈𝑥) depend differently on the
energy of X-ray quanta (see Eqs. (8) and (15), res-
pectively).

The proposed calculation scheme gives the spatial
distribution of the electronic excitation generation
at the absorption of one X-ray quantum. The model
is characterized by only one parameter 𝑟𝑔, which is
determined by the medium characteristics (electron
concentration and ionization potential at the place,
where the generation occurs) and the X-ray quantum
energy.

4. Cooling of Excitation Region

The braking of a high-energy electron in the medium
simultaneously generates electronic excitations and
heat in it. Therefore, the heat relaxation has to be
determined. To calculate a spatial distribution of the
temperature in the excitation and cooling regions,
we suppose that the total excitation energy obtained
from an X-ray quantum is directly transformed into
heat. This heat is released within a rather short time
interval and in a small enough volume around the
point 𝑟 = 0, where the X-ray quantum was ab-
sorbed. Actually, at the braking (thermalization) of
a high-energy electron within the generation period,
the distribution of released heat in space has, to some
extent, a random character, which is associated with
a stochastic character of high-energy electron scatter-
ing. Similarly to the case with electronic excitations,
the average spatial distribution of the temperature
has to be found. To obtain and analyze the functional
dependence of the temperature on the coordinate, the
heat equation written in the spherical coordinate sys-
tem is used:

𝜕𝑇

𝜕𝑡
= 𝑎2

[︂
1

𝑟2
𝜕

𝜕𝑟

(︂
𝑟2

𝜕𝑇

𝜕𝑡

)︂
+

1

𝑟2 sin 𝜃

𝜕

𝜕𝜃

(︂
sin 𝜃

𝜕𝑇

𝜕𝜃

)︂
+

+
1

𝑟2 sin2 𝜃

𝜕2𝑇

𝜕𝜙2

]︂
, (16)
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where 𝑎2 = 𝜆
𝑐𝜌 is the thermal diffusivity, 𝜆 the ther-

mal conductivity, 𝑐 the specific heat capacity, and 𝜌
the density of the medium. We note that all param-
eters in this equation are macroscopic. In the case
of isotropic heat propagation, this equation can be
made simpler by transforming it into an equation
for the temperature as a function of two variables,
𝑇 (𝑟, 𝑡). The solution of the heat equation (16) under
the condition that the heat Δ𝑄 is instantly released
at the point 𝑟 = 0 (at 𝑡 = 0, its distribution looks like
the 𝛿-function) equals

Δ𝑇 (𝑟, 𝑡) =
Δ𝑄

(4𝜋𝑎2𝑡)
3/2

𝑐𝜌
exp

{︂
− 𝑟2

4𝑎2𝑡

}︂
, (17)

where Δ𝑇 (𝑟, 𝑡) = 𝑇 (𝑟, 𝑡) − 𝑇0, 𝑇0 is the initial tem-
perature of a specimen, and Δ𝑄 = ℎ𝜈𝑥. Note that
the values of thermal diffusivity lie in a narrow inter-
val 𝑎2 = (0.62± 1.4)× 10−7 m2/s for a wide class of
liquids [19, 20].

Since heat is generated simultaneously with elec-
tronic excitations, the spatial temperature distribu-
tion in the medium after absorbing one X-ray quan-
tum should be taken into account. Then the solution
of the heat equation acquires the form

Δ𝑇 (𝑟, 𝑡) =
Δ𝑄

(𝜋(4𝑎2𝑡+ 2𝑟2𝑔))
3/2𝑐𝜌

exp

{︂
− 𝑟2

4𝑎2𝑡+ 2𝑟2𝑔

}︂
,

(18)

where the radius of the electronic excitation genera-
tion region is determined by formula (15).

The temperature distributions calculated making
allowance for the local heating of liquid phosphors at
the absorption of one X-ray quantum are shown in
Figs. 4 (for water) and 5 (for toluene). They illus-
trate the evolution of the corresponding spatial tem-
perature distributions in the region of electronic ex-
citation generation.

The calculations of the electronic excitation region
radius, 𝑟𝑔, at the absorption of one X-ray quantum
with various energies in liquids gave values larger in
comparison with the case of absorption in solids. This
difference can be explained by the influence of the
medium density, which is less in liquids.

Evidently, the temperature is maximum at 𝑟 = 0:

Δ𝑇 (𝑟 = 0, 𝑡) =
Δ𝑄(︀

𝜋
(︀
4𝑎2𝑡+ 2𝑟2𝑔

)︀)︀3/2
𝑐𝜌

.

Fig. 4. Spatial distributions of the temperature in water in the
region of X-ray quantum absorption (ℎ𝜈𝑥 = 1 keV) at various
cooling times Δ𝑡 = 0.1 (1 ), 1 (2 ), and 5 ps (3 )

Fig. 5. The same as in Fig. 4, but for toluene. Δ𝑡 = 0.1 (1 )
and 1 ps (2 )

The cooling dynamics of the central parts of exci-
tation regions for water and toluene is illustrated
in Fig. 6. The local temperature decreases following
a hyperbole with an exponent of 3/2. So, even if
the liquid became heated up rather strongly, it cools
down to the initial temperature (Δ𝑇max < 1 K) very
rapidly (within tens of picoseconds). The lumines-
cence kinetics of excited luminescent centers is de-
scribed by an exponential dependence, with the aver-
age lifetime of excited phosphor molecules being con-
siderably longer than the characteristic time of lo-
cal region cooling. This circumstance allows the local
heating in the region of X-ray luminescence excitation
to be neglected.

Generally speaking, the concept of probability den-
sity to find a photoelectron in space used in the frame-
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Fig. 6. Cooling of the central part of the excitation region
(𝑟 = 0) after the absorption of an X-ray quantum with an
energy of 1 or 5 keV: in water (curves 1 and 2, respectively)
and toluene (curves 3 and 4, respectively)

work of diffusion theory allows one to considerably
simplify calculations of the initial distribution of elec-
tronic excitations and determine the size of the region
of their generation.

The only shortcoming of the considered model
for the generation of electronic excitations by X-ray
quanta is the monoenergetic character of photoelec-
trons adopted at the calculation of the spatial dis-
tribution of electronic excitations. Actually, owing to
the photoabsorption by different ionic shells, the gen-
eration of photoelectrons with corresponding energies
is accompanied by the emission of characteristic X-
ray radiation, which is effectively absorbed in the
surrounding environment. Those factors only slightly
enlarge the local region of electronic excitation dis-
tribution and elevated temperature. The further mi-
gration of electronic excitations and the cooling of a
local region results also in the expansion of this local
region. Therefore, the method proposed for the cal-
culation of the spatial distributions of electronic ex-
citations and heat adequately describes this process,
and its shortcomings do not insert principal inconsis-
tencies into the calculation scheme.

Hence, the generation of electronic excitations in
liquids does not differ in principle from that in crys-
tals. Since the intracenter quantum yield of phosphor
molecules is very high, the low intensity of the X-ray
luminescence in molecules of liquid phosphors can be
explained by only a single factor: this is the migra-
tion of generated electronic excitations to phosphor
molecules.

5. Conclusions

In this work, a kinetic model of X-ray luminescence
in liquid phosphors at the absorption of one X-ray
quantum is proposed. The model involves the spatial
distribution of generated electronic excitations at the
absorption of one X-ray quantum in a solution. The
spatial distributions are obtained for the generation
of electronic excitations and the local heating. It is
shown that the distributions can be described by
Gaussians with parameters depending of the X-ray
quantum energy and the medium parameters.

A shortcoming of the proposed model for the gener-
ation of electronic excitations at the X-ray irradiation
of a liquid phosphor consists in that only monoen-
ergetic photoelectrons are taken into account, while
calculating the spatial distribution of electronic ex-
citations. Actually, besides the generation of photo-
electrons with the corresponding energy, the accom-
panying characteristic X-ray radiation is also emit-
ted due to the photoabsorption by various ionic
shells. However, this shortcoming does not substan-
tially affect the adequacy of the model with respect
to real physical processes running in liquid phosphors
at the X-ray quantum absorption.

In addition, the migration of electronic excitations
to phosphor molecules is found to be the main ori-
gin of the low yield of X-ray luminescence in liquid
phosphors.
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КIНЕТИЧНА МОДЕЛЬ ПРОСТОРОВОГО
РОЗПОДIЛУ ЕЛЕКТРОННИХ ЗБУДЖЕНЬ
В РIДИННИХ ЛЮМIНОФОРАХ

Р е з ю м е

Для рiдинних люмiнофорiв запропонована модель рент-
генолюмiнесценцiї при поглинаннi одного рентгенiвського
кванта. Для такої моделi одержано просторовий розподiл
генерацiї електронних збуджень та локального нагрiвання,
якi описуються гаусiанами з параметрами, що визначаю-
ться енергiєю рентгенiвського кванта та характеристика-
ми середовища. Робота присвячена вивченню процесiв, якi
зумовлюють низький квантовий вихiд люмiнесценцiї при
рентгенiвському збудженнi в рiдинних люмiнофорах, в той
час, як цi люмiнофори мають близький до одиницi кван-
товий вихiд при фотозбудженнi. Встановлено, що основнi
втрати згенерованих збуджень при рентгенiвському опромi-
неннi вiдбуваються на етапi мiграцiї електронних збуджень
вiд розчинника до молекул люмiнофора.
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