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New exact rules have been obtained for the propagation of the error and the mean value for a
measured physical quantity onto another one with a functional relation of the cos 𝑥 or arccos 𝑥
type between those quantities. The obtained formulas are shown to provide an accurate result,
if being applied to a set of data obtained in a real experiment. This is a consequence of the
fact that the distribution of experimental data is inherently based on the Gaussian weight
scheme. An analytical form used to present the mentioned rules (“analytical propagation rules”)
and the exact character of the latter allow the processing and the analysis of experimental data
to be simplified and accelerated.
K e yw o r d s: propagation of error, propagation of uncertainty.

1. Introduction

It is often impossible to measure the value of a cer-
tain physical quantity 𝑦 directly. Instead, this value
has to be determined with the help of another quan-
tity 𝑥 by using the functional relation 𝑦 = ℎ(𝑥) be-
tween them. The measured 𝑥-values, 𝑥𝑖, form a set
of random numbers, i.e. a statistical set {𝑥𝑖}. The
latter is described by two parameters: the mean
value (or, simply, the mean) ⟨𝑥⟩ and the mean er-
ror |Δ𝑥|, which is related with the mean-square de-
viation

⟨︀
Δ𝑥2

⟩︀
. Those means determine the physical

quantity 𝑥.
For the given function 𝑦 = ℎ(𝑥), we can calculate a

set of values {𝑦𝑖 = ℎ(𝑥𝑖)}. This set also has a statisti-
cal character, being described by two parameters: the
mean ⟨𝑦⟩ and the “error” |Δ𝑦|, which determine, in
turn, the calculated physical quantity 𝑦. Sometimes,
however, we cannot construct the set {𝑦𝑖} and use it
to determine ⟨𝑦⟩ and |Δ𝑦|. Therefore, in this case,
we have to look for the relations ⟨𝑥⟩ → ⟨𝑦⟩ and
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|Δ𝑥| → |Δ𝑦|, by using the properties of the func-
tional relation 𝑦 = ℎ(𝑥). This is the essence of the
propagation of the error of the physical quantity 𝑥 on
a new physical quantity 𝑦 = ℎ(𝑥) and the calculation
of its “shifted mean value” after processing a set of
physical measurements {𝑥𝑖}. This problem is rather
challenging.

For example, when carrying out X-ray diffraction
measurements, we are not interested, generally speak-
ing, in the values and the measurement accuracy of
X-ray scattering angles from a crystal. Our goal is
the unit cell parameters and their “propagated” accu-
racy. In the simplest case of the Bragg–Wulf equation,

2𝑑 sin 𝜃 = 𝑛𝜆,

it looks like the error propagation Δ𝜃 → Δ𝑑. In such
a simple case, the error Δ𝑑 can be roughly estimated
by differentiating this equation, i.e.

Δ𝑑 = − cot 𝜃Δ𝜃.

However, in more complicated cases, this procedure
is not so simple and may produce wrong results. For
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instance, in practice, the same parameters of a unit
cell are determined from an overdetermined system
of quadratic-type equations (50–100 equations) of the
Bragg–Wulf type,

𝜆2
(︀
ℎ2𝑎2*+𝑘2𝑏2*+𝑙2𝑐2*+2ℎ𝑘𝑎*𝑏* cos 𝛾* +

+2ℎ𝑙𝑎*𝑐*cos𝛽*+2𝑘𝑙𝑏*𝑐* cos𝛼*
)︀
= 4 sin2 𝜃𝑖,

where the right-hand sides contain the known,
i.e. experimentally measured, values. From this sys-
tem, using statistical methods, six means and six de-
viations are obtained for six unknown quantities: 𝑎2*,
𝑏2*, 𝑐2*, 𝑎*𝑏* cos 𝛾*, 𝑎*𝑐*cos𝛽*, and 𝑏*𝑐*cos𝛼*. Then
the mean values have to be calculated for the recipro-
cal lattice parameters 𝑎*, 𝑏*, 𝑐*, 𝛼*, 𝛽*, and 𝛾*, and
the deviations have to be propagated on them. At
the next stage, we have to obtain six means for
the direct lattice parameters (𝑎*→ 𝑎, 𝑏*→ 𝑏, 𝑐*→ 𝑐,
𝛼*→ 𝛼, 𝛽* → 𝛽, 𝛾* → 𝛾) and propagate six variances
on them, by using an involved system of relations
(7 equations) of the type

cos𝛼 =
cos𝛽*cos 𝛾*− cos𝛼*

sin𝛽*sin 𝛾*
.

The calculation procedure for the means and de-
viations also becomes complicated and works badly
if the function 𝐻(cos𝑥, arccos𝑥) is a chain of func-
tions cos𝑥 and arccos𝑥 or any other combination of
those functions, because the whole function 𝐻 has to
be differentiated with respect to 𝑥. The expansion in
series [1] at the point 𝑥0 = ⟨𝑥⟩,

𝐻(𝑥)−𝐻(𝑥0) =
𝑑𝐻

𝑑𝑥0
(𝑥− 𝑥0) +

1

2

𝑑2𝐻

𝑑2𝑥0
(𝑥− 𝑥0)

2 + ...,

can give more exact results, if higher-order terms in
the expansion are taken into account. However, the
calculations become more cumbersome in this case.

Analytical formulas for the propagation of error
and the shifted mean would greatly simplify the
required calculations. However, till now, they were
known only for the linear function 𝑦 = 𝑘𝑥 [1]. It
should be noted that the propagation of errors with
the help of the expansion in a Taylor series (“differen-
tiation”), if it is regarded as a method, has a more gen-
eral character, because it is applicable to any contin-
uous function. On the contrary, the “analytical” ap-
proach reduces its usage to specific functions (in this
work, these are cos𝑥 and arccos𝑥). Therefore, in all

modern theoretical and practical applications, meth-
ods, and considerations of the error propagation, this
procedure is built exclusively on the basis of the dif-
ferentiation operation [3–11]. The best review of the
problems associated with the “analytical” propagation
of errors was made in work [1].

2. New Rules for the Calculation
of Mean and Propagation of Error in the Case
of Elementary Functions cos 𝑥 and arccos 𝑥

In order to obtain the analytical rules for two cho-
sen functions, cos 𝑥 and arccos 𝑥, the mean ⟨𝑥⟩ and
the “error” 𝑘 ⟨Δ𝑥⟩2 were related (formalized) to the
basic concepts of mathematical statistics: the math-
ematical expectation 𝐸𝑥 and the variance 𝐷𝑥 of the
measured quantity 𝑥,

⟨𝑥⟩ ≈ 𝐸𝑥, 𝑘 ⟨Δ𝑥⟩2 ≈ 𝐷𝑥.

In the framework of this formalization, the individ-
ual values 𝑥𝑖 of a measured physical quantity 𝑥 are
assumed to appear in accordance with a certain func-
tion 𝑓(𝑥), which describes the probability distribu-
tion for the appearance of 𝑥𝑖. Of course, this func-
tion depends on the measurement conditions (it im-
plicitly depends on the measurement device, chosen
technique, and so on). As usual, the function 𝑓(𝑥)
is normalized, and, if the physical quantity 𝑥 has a
continuous distribution, it is called the probability
density function for the appearance of 𝑥 [1]:

∞∫︁
−∞

𝑓(𝑥)𝑑𝑥 = 1. (1)

In this case, the true value of 𝑥, which is called the
mathematical expectation, can be calculated if the
function 𝑓(𝑥) is known:

𝜇 = 𝐸𝑥 =

∞∫︁
−∞

𝑥𝑓(𝑥)𝑑𝑥 (2)

Equation (2) is the definition of mathematical expec-
tation 𝐸𝑥 [1]. Simultaneously, the function 𝑓(𝑥) de-
termines the dispersion of the physical quantity 𝑥 [1],
i.e. the spread of its values at measurements:

𝐷𝑥 =

∞∫︁
−∞

(𝑥− 𝐸𝑥)
2𝑓(𝑥)𝑑𝑥 =
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=

∞∫︁
−∞

(𝑥− 𝜇)2𝑓(𝑥)𝑑𝑥; 𝜇 = 𝐸𝑥. (3)

Among the distributions 𝑓(𝑥), the so-called normal
(Gaussian) probability distribution is considered to
be the most important [1]:

𝑓(𝑥) =
𝑝√
𝜋
exp[−𝑝2(𝑥− 𝜇)2], (4)

where

𝑝2 =
1

2𝐷𝑥
, 𝜇 = 𝐸𝑥.

In the case where the quantities 𝑥 and 𝑦 are related
by the functional dependence 𝑦 = ℎ(𝑥), the mathe-
matical expectation and the variance for the function
ℎ(𝑥) equal [1]

𝜒 = 𝐸ℎ =

∞∫︁
−∞

ℎ(𝑥)𝑓(𝑥)𝑑𝑥, (5)

𝐷ℎ =

∞∫︁
−∞

[ℎ(𝑥)−𝐸ℎ]
2𝑓(𝑥)𝑑𝑥 =

∞∫︁
−∞

[ℎ(𝑥)−𝜒]2𝑓(𝑥)𝑑𝑥.

(6)

Expression (6) can be rewritten in a more convenient
form [1],

𝐷ℎ =

∞∫︁
−∞

[ℎ2(𝑥)− 2ℎ(𝑥)𝐸ℎ + 𝐸2
ℎ]𝑓(𝑥)𝑑𝑥 =

=

∞∫︁
−∞

ℎ2(𝑥)𝑓(𝑥)𝑑𝑥− 𝐸2
ℎ. (7)

In Eqs. (4)–(7), the quantities 𝜇 = 𝐸𝑥 and 𝐷𝑥 en-
ter 𝑓(𝑥) as parameters. Therefore, strictly speaking,
𝑓(𝑥) = 𝑓(𝑥, 𝐸𝑥, 𝐷𝑥), and

𝐸ℎ =

∞∫︁
−∞

ℎ(𝑥) 𝑓(𝑥,𝐸𝑥, 𝐷𝑥)𝑑𝑥, (8)

𝐷ℎ + 𝐸2
ℎ =

∞∫︁
−∞

ℎ2(𝑥) 𝑓(𝑥,𝐸𝑥, 𝐷𝑥)𝑑𝑥. (9)

It is easy to see that Eqs. (8) and (9) are integral
equations. Having solved them, we could obtain the

desired analytical relations, on the one hand, between
𝐸ℎ and 𝐷ℎ (they are analogs of the means for the
function ℎ(𝑥)) and, on the other hand, those between
𝐸𝑥 and 𝐷𝑥 (analogs of the measured means).

In the case of two elementary functions, cos 𝑥 and
arccos 𝑥, it turned out that the tabulated integrals
[2] similar to Eqs. (8) and (9) can be chosen, which
makes the problem resolved (see Appendix). For the
function cos 𝑥, those relations look like

𝐸cos = exp

(︂
−𝐷𝑥

2

)︂
cos𝐸𝑥;

𝐷cos =
1

2
[1− exp(−𝐷𝑥)][1− exp(−𝐷

𝑥
) cos 2𝐸𝑥],

(10)

where 𝐸𝑥 and 𝐷𝑥 are the mean and the error, respec-
tively, for measured data, whereas 𝐸cos and 𝐷cos are
the corresponding quantities for the propagation of
the results using the function cos 𝑥.

For the function arccos 𝑥, the corresponding rela-
tions read

𝐸arccos = arccos
𝐸𝑥

±
√︁
𝐸2

𝑥 +
√︀
(1− 𝐸2

𝑥)
2 − 2𝐷𝑥

;

𝐷arccos = ln
1

𝐸2
𝑥 +

√︀
(1− 𝐸2

𝑥)
2 − 2𝐷𝑥

,

(11)

where 𝐸𝑥 and 𝐷𝑥 are the mean and the error, respec-
tively, for measured data, whereas 𝐸arccos and 𝐷arccos

are the corresponding quantities for the propagation
of the results using the function arccos𝑥.

Hence, we obtained the desired rules for the prop-
agation of error and the calculation of a shifted mean
of the type 𝐸ℎ = 𝐸ℎ(𝐸𝑥, 𝐷𝑥) and 𝐷ℎ = 𝐷ℎ(𝐸𝑥, 𝐷𝑥)
for the functions ℎ(𝑥) = cos 𝑥 and arcos 𝑥.

3. Application of New
Rules to Experimental Data

The set of experimental data is a collection of separate
random values 𝑥𝑖 measured for a physical quantity 𝑥;
this is the so-called “sample” {𝑥𝑖}. The distribution
of the quantity 𝑥 can be continuous [1], i.e. {𝑥𝑖} is
a set of values randomly “chosen” by a measurement
device from a continuous set.

Let us consider how the obtained relations work in
the case of samples. For this purpose, let us calcu-
late the means for four samples: selected from two
sets of experimental data {𝑥𝑖} and from two sets of
calculated functions cos 𝑥 and arccos 𝑥. First, let us
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calculate them in the standard way (it will be con-
sidered as a reference). The obtained result will be
compared with the results calculated, by using rela-
tions (10) and (11), and with the results obtained by
the series expansion method (differentiation) [1].

3.1. Example for cos𝑥

As an example, let the sample {𝑥𝑖} contain 20 mea-
surements for an angle of the unit cell (hereafter,
the presented samples were constructed on the basis
of the measurement data obtained on a three-circle
diffractometer [12, 13]):
{𝑥𝑖} = 70.5, 70.58, 70.66, 70.74, 70.82, 70.9, 70.98,

71.06, 71.14, 71.22, 70.5, 70.42, 70.34, 70.26, 70.18,
70.1, 70.02, 69.94, 69.86, and 69.78 (deg).

The arithmetic means calculated for this sample
with the constant probability 𝑤𝑖 = 1/20 give us the
following values:

𝐸𝑛 = 70.5; 𝐷𝑛 = 0.1824, Δ𝑛 = 0.42708.

Using them as the first approximation, we calculate
the Gaussian means (this routine takes 2 to 3 itera-
tions) with the help of the Gaussian weight scheme:

𝐸𝑥=

∑︀
𝑥𝑖𝑤𝑖∑︀
𝑤𝑖

, 𝐷𝑥=

∑︀
(𝑥𝑖 − 𝐸𝑥)

2𝑤𝑖∑︀
𝑤𝑖

, Δ𝑥=
√︀
𝐷𝑥,

(12)

where

𝑤𝑖 =
𝑝√
𝜋
exp[−𝑝2(𝑥𝑖 − 𝜇)2], 𝑝2 =

1

2𝐷𝑥
. (13)

Then we obtain

𝐸𝑥 = 70.5, 𝐷𝑥 = 0.11736, Δ𝑥 = 0.34258.

In other words, for this sample, we have 𝐸𝑥 = 70.5±
± 0.3 deg.

For the calculation of means for the function cos 𝑥
to be correct, it is necessary to construct a new sta-
tistical sample {cos 𝑥𝑖} and calculate the means for
it. The new sample looks like
{cos𝑥𝑖} = 0.33381, 0.33249, 0.33117, 0.32986,

0.32854, 0.32722, 0.3259, 0.32458, 0.32326, 0.32194,
0.33381, 0.33512, 0.33644, 0.33775, 0.33907, 0.34038,
0.341690, 0.343, 0.34432, and 0.34563.

Using the values of 𝐸𝑥, 𝐷𝑥, and Δ𝑥, as well as for-
mulas (12) and (13), we obtain the sought means for
the function cos 𝑥 in the standard way (the reference):

𝐸cos = 0.3338, 𝐷cos = 3.17649× 10−5,

Δcos = 0.00564.

The use of the analytical relations (10) for the prop-
agation of errors gives the values:

𝐸cos = 0.33381, 𝐷cos = 3.18104× 10−5,

Δcos = 0.00564.

We intentionally left more digits than required (two
digits for 𝐷𝑥, and only one for Δ𝑥) in order to trace all
calculations in more details. The results demonstrate
that, in the case of function cos 𝑥, the standard devi-
ations Δcos 𝑥 completely coincide. In other words, the
propagation of errors for the function cos 𝑥 according
to relations (10) is correct and gives good results for
samples.

3.2. Example for arccos 𝑥

The other example will be considered for the func-
tion arccos 𝑥. The following sample {cos𝑥𝑖} for the
measured angle 𝛼 of the unit cell is used [12, 13]:
{𝑦𝑖} = {cos𝑥𝑖} = 0.18224, 0.17674, 0.17399,

0.16436, 0.16436, 0.16298, 0.16298, 0.1616, 0.1616,
0.16023, 0.18224, 0.18772, 0.19047, 0.20005, 0.20005,
0.20142, 0.20142, 0.20279, 0.20279, and 0.20415.

We repeat the standard procedure for the calcula-
tion of sample means:
(i) we calculate the arithmetic means (the probability
𝑤𝑖 = 1/20):

𝐸𝑛 = 0.18221, 𝐷𝑛 = 2.80422×10−4, Δ𝑛 = 0.01675;

(ii) then, we calculate the Gaussian means using
weight scheme (13):

𝐸𝑦 = 0.18222, 𝐷𝑦 = 1.9731×10−4, Δ𝑦 = 0.00444;

(iii) finally, we form an array (sample) in accordance
with the function arccos 𝑦:
{arccos 𝑦𝑖} = 79.5, 79.82, 79.98, 80.54, 80.54,

80.62, 80.62, 80.7, 80.7, 80.78, 79.5, 79.18, 79.02,
78.46, 78.46, 78.38, 78.38, 78.3, 78.3, and 78.22 (deg).
The standard statistical processing of this sample
with the use of the values of 𝐸𝑦, 𝐷𝑦, and Δ𝑦 results
in

𝐸arccos = 79.5, 𝐷arccos = 0.67007,

Δarccos = 0.81858.
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The calculations by relations (11) give the following
values (attention should be paid that the second equa-
tion in (11) gives values for 𝐷arccos in radians, which
we transform into degrees according to work [1]):

𝐸arccos = 79.4998, 𝐷arccos = 0.66995,

Δarccos = 0.81851.

One can see that the coincidence in this case is almost
ideal again. In other words, for the function arccos 𝑥,
the propagation of errors using relations (10) and (11)
is also correct and gives good results for samples.

The propagation of errors using the series expan-
sion (differentiation) gives the following values:

𝐸arccos = 79.5009, 𝐷arccos = 0.066939,

Δarccos = 0.25872.

The numerical results for all three methods can be
compared easily.

4. Some Common Properties
of the Obtained Relations

The analytical form obtained for the propagation
rules allows the features of corresponding relations
to be easily distinguished and even the relevant de-
pendences to be plotted graphically, which is very
useful for planning and analyzing the physical ex-
periment.

It should be noted that the quantities 𝐸ℎ, 𝐷ℎ, 𝐸𝑥,
and 𝐷𝑥 are interrelated. In addition, 𝐸ℎ and 𝐷ℎ are
functions of two variables rather than one:

𝐸ℎ = 𝐸ℎ(𝐸𝑥, 𝐷𝑥), 𝐷ℎ = 𝐷ℎ(𝐸𝑥, 𝐷𝑥).

Sometimes, this fact may be difficult to get used to,
as, e.g., the fact that the errors Δcos and Δarccos

of the function ℎ(𝑥) depend on the measured mean
value ⟨𝑥⟩. All that is well illustrated in Figs. 1 and
2, where the dependences of the variances 𝐷ℎ =
= 𝐷cos(𝐸𝑥, 𝐷𝑥) and 𝐷ℎ = 𝐷arccos(𝐸𝑥, 𝐷𝑥) on the
values of measured “mean” arguments 𝐸𝑥 (𝐷𝑥 is a
parameter) are depicted. In addition, the possibil-
ity to plot the obtained relations allows the char-
acter of future measurements to be discussed and
planned.

It becomes clear why the radicand in the sec-
ond equation in (11) is always positive, i.e.
(1− 𝐸2

𝑥)
2 > 2𝐷𝑥.

Fig. 1. Dependence of the 𝐷cos(𝐸𝑥, 𝐷𝑥) function variance on
𝐸𝑥 at 𝐷𝑥 = 0.01

Fig. 2. The same as in Fig. 1, but for the 𝐷arccos(𝐸𝑥, 𝐷𝑥)

function

Note that, in the limiting case 𝐷𝑥 = 0,

𝐸ℎ = 𝐸cos = cos𝐸𝑥; 𝐷ℎ = 𝐷cos = 0;

𝐸ℎ = 𝐸arccos = arccos±𝐸𝑥, 𝐷ℎ = 𝐷arccos = 0.

Therefore, the “usual” propagation rules

𝐸cos = cos𝐸𝑥, 𝐸arccos = arccos±𝐸𝑥

can be applied. In other cases where the 𝐷𝑥-values
are rather considerable, expressions (10) and (11 for
𝐸cos and 𝐸arccos give more adequate values.

ISSN 2071-0194. Ukr. J. Phys. 2016. Vol. 61, No. 4 349



G.G. Rode

5. Conclusions

Relations (10) and (11) provide a correct result for
samples and can be widely used to considerably re-
duce and to simplify computational procedures in
the case of the functions cos 𝑥 and arccos 𝑥. In the
case where the initial array of experimental data is
absent, the method of error propagation may turn
out a unique simple correct way to calculate 𝐸ℎ

and 𝐷ℎ, as well as the errors 𝜎, for the indicated
functions. Since 𝐷ℎ and the errors 𝜎 for both ex-
amined functions practically coincide with the cor-
responding real values, the exact propagation of er-
rors is possible for a chain of functions of the type
cos(arccos(cos(arccos... (𝑥)))) or any other sequence
of indicated functions.

Therefore, on the basis of the obtained analytical
relations, two simple universal algorithms for the cal-
culation of pairs of the separate values (𝐸cos, 𝐷cos)
and (𝐸arccos, 𝐷arccos) can be constructed. Those al-
gorithms can be inserted as separate modules (sub-
routines) into any software program. The algorithms
remain transparent (easy for reading) at that. This is
essentially impossible for other propagation methods,
because the latter demand that the superposition of
functions should be expanded in series (or differenti-
ated) as a whole. Therefore, a separate procedure has
to be built for every problem.

The magnitude of function error can be predicted,
and its dependence in the planned region of measure-
ments of a physical quantity can be plotted.

Interesting is the possibility to obtain an exact
mean shift for 𝐸cos and 𝐸arccos. In the presented ex-
amples, this shift does not affect the mean values and
does not play any role. However, in some applications,
it does exist, and its value can be used.

Since the analytical expressions for the means
(𝐸cos;𝐷cos) and (𝐸arccos;𝐷arccos) are inherently con-
nected with the Gaussian distribution, the calculated
value allows them to be compared with the values of
the same quantities calculated for different distribu-
tions. The minimum of 𝐷cos or 𝐷arccos is a criterion
to decide, which of them is better.

APPENDIX

In this Appendix, the validity of the relations obtained for
two functions, 𝐸cos and 𝐸arccos, i.e. the reduction of integral
equations (8) and (9) to tabulated integrals and the reduction

of the obtained relations to the convenient forms (10) and (11),
is proved mathematically.

1. Mathematical expectation 𝐸ℎ

for the function ℎ(𝑥) = cos𝑥

Making allowance for the Gaussian distribution 𝑓(𝑥) (see
Eq. (4)) in Eq. (8) and substituting 𝑦 = 𝑥− 𝜇, we obtain

𝜒 = 𝐸ℎ =
𝑝
√
𝜋

∞∫︁
−∞

cos(𝑥) exp[−𝑝2(𝑥− 𝜇)2]𝑑𝑥 =

=
𝑝
√
𝜋

∞∫︁
−∞

cos(𝑦 + 𝜇) exp[−𝑝2𝑦2]𝑑𝑦 =
𝑝
√
𝜋
𝐽. (14)

The integral 𝐽 is nothing else but the tabulated integral 𝑇2

(3 896.2) from work [2]. As 𝑝 ↔ 𝑞, it looks like

𝑇2 =

∞∫︁
−∞

cos 𝑞(𝑦 + 𝜆) exp[−𝑝2𝑦2]𝑑𝑦 =

√
𝜋

𝑝
exp

(︂
−

𝑞2

4𝑝2

)︂
cos𝜆.

It is evident that 𝐽 = 𝑇2, if 𝑞 = 1 and 𝜆 = 𝜇. Then we
immediately obtain

𝐽=

√
𝜋

𝑝
exp

(︂
−

𝑞2

4𝑝2

)︂
cos𝜆=

√
𝜋

𝑝
exp

(︂
−

1

4𝑝2

)︂
cos𝜇. (15)

Recalling that 𝜇 = 𝐸𝑥 and substituting this value into ex-
pression (14), we obtain a final relation between the integral
𝐸cos and the integrals 𝐸𝑥 and 𝐷. Taking into account that
𝑝2 = 1

2𝐷𝑥
, this relation looks like

𝜒 = 𝐸cos = exp

(︂
−
𝐷𝑥

2

)︂
cos𝐸𝑥. (16)

This is the sought result. At small 𝐷𝑥, there is a small shift
induced by the factor exp(−𝐷𝑥

2
) ≈ 1; so it can be ignored

under certain conditions. However, Eq. (16) is an exact working
formula for ℎ(𝑥) = cos𝑥.

2. Variance 𝐷ℎ for the function ℎ(𝑥) = cos𝑥

From Eq. (7), we obtain the error propagation

𝐷cos =

∞∫︁
−∞

cos2(𝑥) 𝑓(𝑥)𝑑𝑥− 𝐸2
ℎ = 𝐽0 − 𝐸2

ℎ. (17)

Let us transform 𝐽0 to the tabulated form:

𝐽0 =

∞∫︁
−∞

cos2(𝑥) 𝑓(𝑥)𝑑𝑥 =

∞∫︁
−∞

(1 + cos 2𝑥)/2 𝑓(𝑥)𝑑𝑥 =

=
1

2

⎡⎣ ∞∫︁
−∞

𝑓(𝑥)𝑑𝑥+

∞∫︁
−∞

cos 2𝑥 𝑓(𝑥)𝑑𝑥

⎤⎦ =
1

2
+

1

2
𝐽01.

For 𝑦 = 𝑥− 𝜇, we obtain the expression for 𝐽01:

𝐽01 =
𝑝
√
𝜋

∞∫︁
−∞

cos 2𝑥 exp[−𝑝2(𝑥− 𝜇)2]𝑑𝑥 =
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=
𝑝
√
𝜋

∞∫︁
−∞

cos 2(𝑦 + 𝜇) exp[−𝑝2𝑦2]𝑑𝑥 =
𝑝
√
𝜋
𝐽02.

The integral 𝐽02 for 𝑞 = 2 and 𝜆 = 𝜇 coincides with the tabu-
lated integral 𝑇2 (3 896.2) in work [2], which, as 𝑝 ↔ 𝑞, looks
like

𝑇2 =

∞∫︁
−∞

cos 𝑞(𝑦+𝜆) exp[−𝑝2𝑦2]𝑑𝑦 =

√
𝜋

𝑝
exp

(︂
−

𝑞2

4𝑝2

)︂
cos 𝑞𝜆.

Therefore, using the substitutions 𝜇 = 𝐸𝑥 and 𝑝2 = 1
2𝐷𝑥

again,
we finally obtain

𝐽0 =
1

2
+

1

2
𝐽01 =

1

2
+

1

2

𝑝
√
𝜋
𝐽02 =

=
1

2
+

1

2

𝑝
√
𝜋

√
𝜋

𝑝
exp

(︂
−

1

𝑝2

)︂
cos 2𝜇 =

=
1

2
+

1

2
exp(−2𝐷𝑥) cos 2𝐸𝑥.

Substituting 𝐽0 into Eq. (17), we obtain the following “crude”
expression for 𝐷cos, because it contains 𝐸2

cos:

𝐷cos =
1

2
+

1

2
exp(−2𝐷𝑥) cos 2𝐸𝑥 − 𝐸2

cos.

Substituting 𝐸2
cos with the help of Eq. (16) into this formula,

we obtain the explicit dependence 𝐷cos(𝐸𝑥, 𝐷𝑥):

𝐷cos =
1

2
+

1

2
exp(−2𝐷𝑥) cos 2𝐸𝑥 − exp(−𝐷𝑥) cos2 𝐸𝑥. (18)

This formula is the rule of “error propagation” for ℎ(𝑥) = cos𝑥.
Expression (11) can be rewritten in a more homogeneous form:

𝐷cos =
1

2
[1− exp(−𝐷𝑥)][1− exp(−𝐷𝑥 ) cos 2𝐸𝑥], (19)

if the relation

cos2 𝐸𝑥 =
1

2
[1 + cos 2𝐸𝑥]. (20)

is taken into account.
It should be noted that all mathematical procedures per-

formed above (the presentation of an integral as a sum of inte-
grals, factorization, and so on) are correct operations from the
viewpoint of statistics rules [1].

3. The mean 𝐸ℎ and the variance 𝐷ℎ

for the function ℎ(𝑥) = arccos 𝑥

The direct way to calculate 𝐸(arccos𝑥) and 𝐷(arccos𝑥) using
tabulated integrals is rather a problematic task. The desired
relations can be obtained, if the function arccos𝑥 is consid-
ered as the inverse function to cos𝑥, and relations (10) are ap-
plied. Really, Eqs. (10) give us explicit relations between four
integrals or, roughly speaking, four values: 𝐸cos, 𝐷cos, 𝐸𝑥,
and 𝐷𝑥:

𝐸cos = 𝐸cos(𝐸𝑥, 𝐷𝑥); 𝐷cos = 𝐷cos(𝐸𝑥, 𝐷𝑥). (21)

The inverse functions 𝐸𝑥 = 𝐸𝑥(𝐸cos, 𝐷cos) and 𝐷𝑥 =

= 𝐷𝑥(𝐸cos, 𝐷cos) obtained from Eqs. (10) and (21) must also
correctly describe the mathematical relations between four in-
tegrals 𝐸𝑥, 𝐷𝑥, 𝐸cos, and 𝐷cos. However, if 𝐸cos and 𝐷cos

are obtained in any other way (e.g., if they are measured) and
have the same numerical values as those calculated by Eq. (10),
they will satisfy the constraint equations (10) for four integrals
if and only if the quantities 𝐸𝑥 and 𝐷𝑥 have the same values
as in Eq. (10).

In other words, if 𝑦 = cos𝑥 and, accordingly, 𝑥 = arccos 𝑦,
then relations of the type 𝐸𝑥 = 𝐸𝑥(𝐸𝑦 , 𝐷𝑦) and 𝐷𝑥 =

= 𝐷𝑥(𝐸𝑦 , 𝐷𝑦), which are inverse to Eqs. (10) and (21), give
us true values for the integral expressions of the mathematical
expectation 𝐸𝑥 and variance 𝐷𝑥 that were determined using
Eqs. (8) and (9) for a random variable function 𝑦, which is
connected with the variable 𝑥 by means of the law 𝑦 = cos𝑥

(or 𝑥 = arccos 𝑦). Therefore, by solving Eq. (10) with respect
to 𝑥, we can simply calculate the values of 𝐸𝑥 and 𝐷𝑥 on the
basis of 𝐸𝑦- and𝐷𝑦-values, which are the means for the mea-
sured random variable 𝑦, if the latter is connected with 𝑥 by
the relation 𝑥 = arccos 𝑦.

Let us solve Eq. (10) with respect to 𝐸𝑦 and 𝐷𝑦 . For this
purpose, let us rewrite those equations in the form

𝐸𝑦 = exp

(︂
−
𝐷𝑥

2

)︂
cos𝐸𝑥, (22)

𝐷𝑦 =
1

2
[1− exp(−𝐷𝑥)][1− exp(−𝐷𝑥 ) cos 2𝐸𝑥]. (23)

bearing in mind that the integrals 𝐸𝑦 and 𝐷𝑦 are coupled with
the function 𝑦 = cos𝑥, and the integrals 𝐸𝑥 and 𝐷𝑥 with the
function 𝑥 = arccos 𝑦. Let us solve those equations with respect
to the integrals 𝐸𝑥 and 𝐷𝑥, i.e. let us obtain the equations
inverse to Eqs. (10), (22), and (23). From Eq. (20), we have

cos 2𝐸𝑥 = 2 cos2 𝐸𝑥 − 1.

From Eq. (22), we obtain the equation, whose both terms are
denoted as 𝑓 :

𝐸2
𝑦

cos2 𝐸𝑥
= exp(−𝐷𝑥) = 𝑓 ; 𝑍 =

1

cos2 𝐸𝑥
; 𝑓 = 𝑍 𝐸2

𝑦 . (24)

Then Eq. (23) reads

2𝐷𝑦 = 1− 𝑓2 + 2𝑓2 cos2 𝐸𝑥 − 2𝑓 cos2 𝐸2
𝑥.

Substituting notations (24) into this equation and carrying
out simple transformations, we obtain a quadratic equation
for 𝑍 = 𝑍(𝐸𝑥),

𝑍2 − 2𝑍 +𝐵 = 0, (25)

where

𝐵 =
[2𝐸2

𝑦 + 2𝐷𝑦 − 1]

𝐸4
𝑦

= 𝐵(𝐸𝑦 , 𝐷𝑦).

The solution of this equation brings us to

cos2 𝐸𝑥 =
𝐸2

𝑦

𝐸2
𝑦 ±

√︁
(1− 𝐸2

𝑦)
2 − 2𝐷𝑦

. (26)

Since cos2 𝐸𝑥 6 1, we have to select the plus sign in front of
the root sign. Ultimately, we have

𝐸𝑥 = arccos
𝐸𝑦

±
√︁

𝐸2
𝑦 +

√︀
(1− 𝐸𝑦)2 − 2𝐷𝑦

. (27)
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The sign plus or minus is selected, by depending on the “com-
mon sense”, i.e. on the expected value of 𝐸𝑥.

The solution for 𝐷𝑥 is found from Eqs. (22) and (26) as

𝐷𝑥 = ln
cos2 𝐸𝑥

𝐸2
𝑦

= ln
1

𝐸2
𝑦 +

√︁
(1− 𝐸2

𝑦)
2 − 2𝐷𝑦

. (28)

Since 𝐷𝑥 > 0, there must be

𝐸2
𝑦 +

√︁
(1− 𝐸2

𝑦)
2 − 2𝐷𝑦 6 1.

This inequality is satisfied, because 𝐸𝑦 6 1 on all occasions. As
a consequence, the following chain of inequalities has to be
obeyed:

(1− 𝐸2
𝑦)

2 − 2𝐷𝑦 6 (1− 𝐸2
𝑦)

2 →

→
√︁

(1− 𝐸2
𝑦)

2 − 2𝐷𝑦 6 1− 𝐸2
𝑦 →

→ 𝐸2
𝑦 +

√︁
(1− 𝐸2

𝑦)
2 − 2𝐷𝑦 6 1.

The radicand in Eq. (27) must be positive. This assertion can
be understood from the following consideration. The quantity
𝐸𝑦 is, in essence, the function cos 𝑥, i.e. 𝐸𝑦 6 1 and separate
measurements give 𝐸𝑖 6 1 as well. For the confidence interval
𝜎
√
2, the average deviation 𝐸𝑦 + 𝜎

√
2 has to satisfy the in-

equality 𝐸𝑦 + 𝜎
√
2 6 1. Accordingly, 𝜎

√
2 6 1−𝐸𝑦 6 1−𝐸2

𝑦 ,
so that 2𝐷𝑦 6 (1− 𝐸2

𝑦)
2 and, finally, (1− 𝐸2

𝑦)
2 − 2𝐷𝑦 > 0.

Now, let us rewrite the obtained relations (10), (26), and
(27) in a clearer symbolic form, by using the notation 𝑥 for the
measured physical quantity (argument) and the notation ℎ for
the corresponding function (cos 𝑥 or arccos 𝑥):

𝐸ℎ = 𝐸cos=exp

(︂
−
𝐷𝑥

2

)︂
cos𝐸𝑥;

𝐷ℎ = 𝐷cos=
1

2
[1− exp(−𝐷𝑥)][1− exp(−𝐷𝑥 ) cos 2𝐸𝑥];

(29)

𝐸ℎ = 𝐸arccos = arccos
𝐸𝑥

±
√︁

𝐸2
𝑥 +

√︀
(1− 𝐸2

𝑥)
2 − 2𝐷𝑥

;

𝐷ℎ = 𝐷arccos = ln

(︃
1

𝐸2
𝑥 +

√︀
(1− 𝐸2

𝑥)
2 − 2𝐷𝑥

)︃
.

(30)

In view of the formalization

𝑥 ≈ 𝐸𝑥; 𝑘(Δ𝑥)2 ≈ 𝐷𝑥,

the obtained relations correspond to the desired “propagation
rules” for the means and errors of the cosine and arccosine
functions:

𝑋 → 𝐻; |Δ𝑋| → |Δ𝐻|.
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Г.Г. Роде

ПЕРЕНОС ПОХИБОК ТА СЕРЕДНIХ ВИМIРIВ
ФIЗИЧНОЇ ВЕЛИЧИНИ ДЛЯ ЕЛЕМЕНТАРНИХ
ФУНКЦIЙ cos(𝑥) ТА arccos(𝑥)

Р е з ю м е

Отриманi новi точнi “правила переносу похибки та сере-
днього” однiєї вимiрюваної фiзичної величини на iншу,
що пов’язана з нею функцiйним зв’язком типу cos(𝑥) або
arccos(𝑥). Показано, що добутi спiввiдношення iдеально
працюють при обробцi набору даних реального фiзичного
дослiдження. Це пов’язано з тим, що по природi в них не-
явно вже закладена вагова схема Гауса. Аналiтична форма,
в якiй наведенi згаданi правила (“аналiтичнi правила пере-
носу”), а також точний характер їх дозволяє спростити i
прискорити процедуру обробки й аналiзу експерименталь-
них даних.
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