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AN OPTICAL TRAP FOR ATOMS
ON THE BASIS OF COUNTER-PROPAGATING
BICHROMATIC LIGHT WAVES

PACS 37.10.Gh, 37.10.Mn,
37.10.Pq

It has been shown that the field of counter-propagating bichromatic light waves can form a
one-dimension trap for atoms. The confinement of an ensemble of atoms in the trap and their
simultaneous cooling to a temperature close to the Doppler cooling limit can be achieved without
using auxiliary fields, by properly choosing the detuning of monochromatic components from
the atomic transition frequency. The specific numerical simulation is carried out for sodium
atoms. A possible application of such a trap for the confinement and the cooling of molecules
with an almost diagonal array of Franck–Condon factors is discussed.
K e yw o r d s: trap for atoms and molecules, laser cooling, Monte Carlo wave function con-
struction.

1. Introduction

Optical traps for atoms where the latter are addition-
ally cooled down are one of the basic tools in modern
optics. In particular, the magnetooptical trap [1] is
widely used for this purpose, where continuous laser
radiation together with a magnetic field is applied to
confine and simultaneously to cool down atoms. As
was shown in a number of papers [2–6], the trap for
atoms can be formed by the field of pulsed lasers as
well. Moreover, if the pulse parameters are properly
chosen, it is possible to reach simultaneously the con-
finement and the cooling of atoms in such traps [7–
9]. Traps on the basis of light pulses can be used to
confine and to cool down not only atoms, but also
molecules with the matrix close to the diagonal one,
when the interaction between a molecule and the field
can be described well by a scheme with two or three
energy levels [9].

Traps formed by light pulses are based on the spa-
tial nonuniformity of an electromagnetic field, which
results in the formation of a force directed to a certain
point on a large spatial interval. This force brakes
atoms at their removal from this point and, hence,
forms a trap. In the field generated by sequences of
counter-propagating light pulses, the point, where
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those pulses “meet” [2], is a trap center. On the differ-
ent sides from this point, the sequences of pulse-atom
interactions are different, and this fact results in the
formation of a force directed to the trap center. The
spatial period of the field in the trap formed by the
sequences of counter-propagating pulses is equal to
the distance between the pulses propagating in the
same direction. Besides atoms and molecules, the
trap on the basis of light pulses can retain nanopar-
ticles as well.

The large-scale spatial structure of the field gener-
ated by the sequences of counter-propagating pulses
is closely related to their spectrum: to the set
of frequencies and the phases of spectral compo-
nents. Evidently, at least two spectral components
are required to form such a structure. Therefore, a
trap for atoms may expectedly be constructed by the
field of counter-propagating bichromatic waves. If the
frequency difference between two components of a
bichromatic wave is Ω, the period of spatial mod-
ulation of this field equals 𝐿 = 2𝜋𝑐/Ω. In the case
of bichromatic field, if comparing it with the case of
short light pulses, which have a wide spectrum, one
may expect a reduction of the probability for unde-
sirable resonances to emerge at the interaction of the
field with atoms and molecules, as well as a simpli-
fication in the implementation of experimental light
traps.
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Fig. 1. Schematic diagram of the trap. The combined action
of counter-propagating waves 1, 2 and 3, 4 stimulates an atom
to move near the trap center 𝑂
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Fig. 2. Schematic diagram of the interaction between atoms or
molecules and light. The difference of frequencies of the waves
2, 4 and 1, 3 is equal Ω, their detunings from the resonance
frequency of the atomic transition are 𝛿3 = 𝛿4 = 𝛿 and 𝛿1 =

= 𝛿2 = 𝛿 +Ω, the parameter 𝑠 = 𝛿 +Ω/2

The possibility to form a trap for atoms by the field
of running counter-propagating bichromatic waves,
which can also be considered as a bichromatic field
of two collinear standing waves, was indicated for the
first time in work [12]. It should be noted that the
bichromatic field has already been used for a long
time to brake atoms for their further cooling and
confinement, and numerous publications are aimed
just at this aspect [10–20]. Recent researches de-
voted to the monochromation of atomic beams with a
bichromatic field at a low rate of spontaneous radia-
tion emission from the excited state [21,22] open new
prospects for the application of bichromatic fields to
atomic physics, in particular, to the control over the
motion of molecules and their cooling.

Below, we consider the interaction of atoms with
a bichromatic field of two standing waves near the
point, where the antinodes of both waves coincide,

i.e. their phase difference equals zero. Near this point,
the force of light pressure that acts on the atom is
proportional to the phase difference [10,20]. Since the
latter linearly depends on the coordinate, a trap for
atoms is formed. We will demonstrate that atoms in
the trap can be simultaneously confined and cooled,
as it takes place in a trap formed by the sequences of
counter-propagating pulses [7–9].

The structure of the prsent work is as follows. The
trap model is described in the next section, and the
master equations are presented in Section 3. Section 4
is devoted to the calculation of the atomic wave func-
tion by the Monte Carlo method. In Section 5, an an-
alytical expression for the force of light pressure act-
ing on the atom in a weak field is obtained. Section 6
gives description of the numerical calculation pro-
cedure. The corresponding results are presented and
discussed in Section 7. Short conclusions are formu-
lated in Section 8.

2. Trap Model

A one-dimensional trap for atoms is formed by
counter-propagating monochromatic waves with the
frequencies close to the frequency 𝜔0 of the transition
between the ground, |1⟩, and excited, |2⟩, states of
the atom (Figs. 1 and 2). An atom (a circle in Fig. 1)
near the point 𝑂 is subjected to the action of a bichro-
matic field generating by two standing waves; each
of them can be considered as a superposition of two
counter-propagating monochromatic waves (1, 2 and
3, 4). Under the action of the light pressure force, the
atom moves near the plane 𝐴𝐵 that passes through
the point 𝑂 and is oriented perpendicularly to the
wave vectors of the monochromatic waves that form
the trap.

3. Master Equations

In the general case, the spatial and temporal depen-
dences of the electric field strength of monochromatic
light waves that act on an atom or a molecule in the
trap look like

E𝑛 = 1
2e𝐸0𝑛 exp (𝑖𝜔𝑛𝑡∓ 𝑖𝑘𝑛𝑧 + 𝑖𝜙𝑛) + c.c., (1)

where the sign “−” corresponds to odd 𝑛, and the sign
“+” to even ones; e is the unit polarization vector; and
𝜔𝑛 the frequency of a monochromatic wave. In the
case where standing waves with identical amplitudes
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are formed (just this case is considered here),

𝐸01 = 𝐸02 = 𝐸03 = 𝐸04 = 𝐸0, (2)
𝜔2 = 𝜔1, 𝜔4 = 𝜔3. (3)

The detunings 𝛿𝑛 of the frequencies 𝜔𝑛 (𝑛 = 1, ..., 4)
from the resonance frequency of the atomic transition
𝜔0 equal

𝛿𝑛 = 𝜔0 − 𝜔𝑛 = 𝛿, 𝑛 = 3, 4,

𝛿𝑛 = 𝜔0 − 𝜔𝑛 = 𝛿 +Ω, 𝑛 = 1, 2,
(4)

where Ω = 𝜔3 − 𝜔1 ≪ 𝜔0 is the difference be-
tween the standing wave frequencies. The parameter
𝑠 = 𝛿 + Ω/2 (see Fig. 2) is equal to the detuning
of the arithmetic mean of the monochromatic wave
frequencies from the atomic transition frequency.

The fields formed by the counter-propagating
waves can be written in the form

E12 = E1 +E2 = 2𝐸01e cos

[︂
𝜔1𝑡+

1

2
(𝜙1 + 𝜙2)

]︂
×

× cos

[︂
𝑘1𝑧 +

1

2
(𝜙2 − 𝜙1)

]︂
, (5)

E34 = E3 +E4 = 2𝐸03e cos

[︂
𝜔3𝑡+

1

2
(𝜙3 + 𝜙4)

]︂
×

× cos

[︂
𝑘3𝑧 +

1

2
(𝜙4 − 𝜙3)

]︂
, (6)

and the total field acting on the atom equals

E = E12 +E34. (7)

A representation of the field in the form of a superpo-
sition of counter-propagating amplitude-modulated
waves has also been used since the early studies
of the mechanical action of a bichromatic field on
atoms [10, 12]. This representation allows an analogy
to be drawn between the bichromatic field and the
field generated by a sequence of counter-propagating
pulses. This analogy forms a basis for the explana-
tion of the force of stimulated light pressure, which
can considerably exceed the force of light pressure on
the atom in a single running wave [23]. In the case

𝐸01 = 𝐸02 = 𝐸03 = 𝐸04 = 𝐸0, (8)

which was analyzed in work [10, 12], those counter-
propagating waves look like

E13 = E1+E3 = 2𝐸0e cos

[︂
𝜔𝑡− 𝑘𝑧 +

1

2
(𝜙1 + 𝜙3)

]︂
×

× cos

[︂
1

2
Ω𝑡− 1

2
Δ𝑘𝑧 +

1

2
(𝜙3 − 𝜙1)

]︂
, (9)

E24 = E2+E4 = 2𝐸0e cos

[︂
𝜔𝑡+ 𝑘𝑧 +

1

2
(𝜙2 + 𝜙4)

]︂
×

× cos

[︂
1

2
Ω𝑡+

1

2
Δ𝑘𝑧 +

1

2
(𝜙4 − 𝜙2)

]︂
, (10)

where

𝜔 =
1

2
(𝜔1 + 𝜔3) =

1

2
(𝜔2 + 𝜔4), (11)

Ω = 𝜔3 − 𝜔1 = 𝜔4 − 𝜔2, (12)

𝑘 =
1

2
(𝑘1 + 𝑘3) =

1

2
(𝑘2 + 𝑘4), (13)

Δ𝑘 = 𝑘3 − 𝑘1 = 𝑘4 − 𝑘2 = Ω/𝑐. (14)

Let us select wave phases 𝜙𝑛 such that the maxima
in the standing waves E12 and E34 would be observed
at 𝑧 = 0 and 𝑡 = 0. It is valid if

𝜙1 = 𝜙2 = 𝜙3 = 𝜙4 = 0. (15)

Then, by analogy with the trap on the basis of the
sequences of counter-propagating pulses, we may ex-
pect that, under certain conditions, the bichromatic
field will form a trap for atoms in a vicinity of the
coordinate origin 𝑧 = 0.

The force of light pressure acting on the atom is
determined by the expression [1, 24]

𝐹 = (𝜚12d21 + 𝜚21d12)
𝜕E

𝜕𝑧
, (16)

where d𝑖𝑗 (𝑖, 𝑗 = 1, 2) are the matrix elements of the
dipole moment, and 𝜚𝑖𝑗 the elements of the density
matrix 𝜚. Under the action of the force (𝜚), the atom
moves according to Newton’s law

�̇� = 𝐹/𝑚, (17)
�̇� = 𝑣, (18)

where 𝑚 is the mass of the atom, and 𝑣 its velocity.
In order to calculate the force, one has to know,

besides the field, the atom density matrix as well. It
can be determined from the wave function of the atom

|𝜓⟩ = 𝑐1 |1⟩+ 𝑐2𝑒
−𝑖𝜔0𝑡 |2⟩, (19)

which satisfies the Schrödinger equation

𝑖~
𝑑

𝑑𝑡
|𝜓⟩ = 𝐻 |𝜓⟩. (20)
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The wave function is constructed with regard for
quantum jumps that are responsible for the process of
spontaneous radiation by the atom (the Monte Carlo
method for the wave function [25]). The elements of
the density matrix in Eq. (16) look like

𝜚12 = 𝑐1𝑐
*
2𝑒

𝑖𝜔0𝑡, 𝜚21 = 𝑐2𝑐
*
1𝑒

−𝑖𝜔0𝑡. (21)

After the averaging over the ensemble, the Monte
Carlo calculations of the wave function gives the
same result as the calculations with the help of the
equations for the density matrix [25]. At the same
time, unlike the calculation on the basis of the den-
sity matrix, the calculation of the wave function by
the Monte Carlo method simulates the trajectory
of motion for a separate atom. The averaging over
the atomic ensemble gives its statistical characteris-
tics: the average velocity of atoms, 𝑣, the root-mean-
square deviation of their velocities from the average
value, Δ𝑣, the average coordinate of atoms, 𝑧, and the
root-mean-square deviation of their coordinates from
the average value, Δ𝑧. Knowing the parameters Δ𝑣
and Δ𝑧, it is possible to evaluate the temperature of
the atomic ensemble and the region of its localization.

4. Wave Function of the Atom

The Hamiltonian in the Schrödinger equation (20) for
the calculation of a wave function using the Monte
Carlo method looks like

𝐻 = 𝐻0 +𝐻int +𝐻rel, (22)

where the term

𝐻0 = ~𝜔0|2⟩⟨2| (23)

describes the atom in the absence of the field and the
relaxation, the term

𝐻int = −d12|1⟩⟨2|E(𝑡)− d21|2⟩⟨1|E(𝑡) (24)

does the interaction between the atom and the field,
and the term

𝐻rel = − 𝑖~
2
𝛾|2⟩⟨2| (25)

does the spontaneous radiation emission of the atom
in the excited state accompanied by its transition into
the state |1⟩ at the rate 𝛾.

Hamiltonian (22) is non-Hermitian because of term
(25), so that the square of the wave-function abso-
lute value changes in time. When the Monte Carlo
method is used to model the wave function, the nor-
malization of the latter is performed after every short
time step. In addition, after each time step, the con-
dition of the quantum jump [25], i.e. the emission of
a photon by the atom in the excited state and its
transition into the state |1⟩, has to be checked.

Below, the Monte Carlo method of the first accu-
racy order (see work [25]) is described. The methods
of the second and fourth accuracy orders were de-
scribed in work [26].

Let the atom be described by the wave function
|𝜓(𝑡)⟩ at the time moment 𝑡. The wave function
|𝜓(𝑡+Δ𝑡)⟩ at the moment 𝑡 + Δ𝑡 can be found in
two stages.

1. From the Schrödinger equation (20), it follows
that, after a sufficiently short interval Δ𝑡, the wave
function |𝜓(𝑡)⟩ becomes equal to

|𝜓(1)(𝑡+Δ𝑡)⟩ =
(︂
1− 𝑖Δ𝑡

~
𝐻

)︂
|𝜓(𝑡)⟩. (26)

Since Hamiltonian (22) is non-Hermitian, the func-
tion 𝜓(1)(𝑡 + Δ𝑡) is not normalized to unity. From
Eqs. (22) and (26), it follows that

⟨𝜓(1)(𝑡+Δ𝑡)|𝜓(1)(𝑡+Δ𝑡)⟩ = 1−Δ𝑃, (27)

where

Δ𝑃 =
𝑖Δ𝑡

~
⟨𝜓(𝑡)|𝐻 −𝐻+|𝜓(𝑡)⟩ = 𝛾|Δ𝑡|𝑐2|2. (28)

2. At the second stage, let us take the possibility
of a quantum jump into account. If the value of the
random variable 𝜖 uniformly distributed between zero
and unity is larger than Δ𝑃 (it is so in the majority
of cases, because Δ𝑃 ≪ 1), the jump does not occur,
and the wave function at the moment 𝑡+Δ𝑡 equals

|𝜓(𝑡+Δ𝑡)⟩ = |𝜓(1)(𝑡+Δ𝑡)⟩√
1−Δ𝑃

, Δ𝑃 < 𝜖. (29)

At the same time, if 𝜖 < Δ𝑃 , the jump takes place,
and the atom transits into the state |1⟩.

Now, let us obtain equations for the amplitudes 𝑐𝑛
of states |𝑛⟩ (𝑛 = 1, 2). The substitution of Eqs. (19)
and (22) into Eq. (20) gives the following equations
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for 𝑐1 and 𝑐2:

𝑖~
𝑑

𝑑𝑡
𝑐1 =− d12E𝑐2𝑒

−𝑖𝜔0𝑡,

𝑖~
𝑑

𝑑𝑡
𝑐2 =− d21E𝑐1𝑒

𝑖𝜔0𝑡 − 1

2
𝛾𝑐2.

(30)

In the rotating wave approximation (i.e. rapidly os-
cillating terms ∼𝑒±2𝑖𝜔0𝑡 are neglected), Eqs. (30) and
the relation

E =

4∑︁
𝑛=1

E𝑛 (31)

yield
𝑑

𝑑𝑡
𝑐1 =− 𝑖

2
Ω0

4∑︁
𝑛=1

𝑒(−1)𝑛𝑖𝑘𝑛𝑧−𝑖𝛿𝑛𝑡𝑐2,

𝑑

𝑑𝑡
𝑐2 =− 𝑖

2
Ω*

0

4∑︁
𝑛=1

𝑒(−1)𝑛+1𝑖𝑘𝑛𝑧+𝑖𝛿𝑛𝑡𝑐1 −
1

2
𝛾𝑐2,

(32)

where the Rabi frequency of monochromatic waves is
introduced,

Ω0 = −d12e𝐸0/~, (33)

and Eq. (15) is made allowance for. Without any loss
of generality, the parameter Ω0 can be regarded as a
real-valued number.

The found wave function makes it possible, using
Eqs. (16) and (21), to calculate the force of light pres-
sure on the atom and to describe its motion by simul-
taneously integrating the Schrödinger equation and
Newton’s equations of motion. After the averaging
of expression (16) for the force over a time interval
that considerably exceeds the time of rapid oscilla-
tions with the characteristic time 2𝜋/𝜔0, but, at the
same time, is short enough for the averaged force of
light pressure to be practically independent of the
time of the averaging, we obtain

𝐹 = ~
4∑︁

𝑛=1

(−1)𝑛+1𝑘𝑛 Im
[︀
𝑐1𝑐

*
2Ω

*
𝑛𝑒

𝑖𝛿𝑛𝑡 ×

× 𝑒𝑖(−1)𝑛+1𝑘𝑛𝑧
]︀ (︀

|𝑐1|2 + |𝑐2|2
)︀−1

. (34)

The normalization in Eq. (34) is not required, if the
method of the first accuracy order was used, when
integrating the Schrödinger equation (20) simultane-
ously with Eqs. (17) and (18). However, in the case
where the integration of the Schrödinger equation and

the equations of motion within the method of the
fourth accuracy order is combined with the Monte
Carlo method of the first accuracy order, such a nor-
malization for the wave function is necessary, because
the transient time points are used.

5. Force of Light
Pressure on the Atom in a Weak Field

In order to explain the operating mechanism of the
trap, let us determine the force of light pressure act-
ing on the atom in a weak field on the basis of the
equations for the density matrix. The analysis of the
expression obtained for the force will allow us to un-
derstand the physical basis of the trap functioning
with regard for the fluctuation variation of the veloc-
ity due to the momentum diffusion (a random varia-
tion of the atomic momentum) in the process of spon-
taneous radiation.

The force of light pressure can be determined pro-
ceeding from expression (16) and the equation for the
density matrix

𝑖~
𝜕

𝜕𝑡
𝜚𝑗𝑘 =

∑︁
𝑙

(𝐻𝑗𝑙𝜚𝑙𝑘 − 𝜚𝑗𝑙𝐻𝑙𝑘) + 𝑖~
∑︁
𝑙,𝑚

Γ𝑗𝑘,𝑙𝑚𝜚𝑙𝑚,

(35)where the Hamiltonian 𝐻 equals
𝐻 = ~𝜔0|2⟩⟨2| − d12|1⟩⟨2|E(𝑡)− d21|2⟩⟨1|E(𝑡). (36)

In contrast to the description of the atom by the wave
function, we cannot include relaxation processes into
the Hamiltonian. The relaxation in Eq. (35) is de-
scribed by the term containing the matrix Γ. The
nonzero matrix elements of the latter equal

Γ12,12 = Γ21,21 = −𝛾/2,
Γ11,22 = −Γ22,22 = 𝛾.

(37)

In view of Eqs. (36) and (37), Eq. (35) implies that

𝑖~
𝜕

𝜕𝑡
𝜚11 = (d12𝜚21 − d21𝜚12)E(𝑡) + 𝑖~𝛾𝜚22,

𝑖~
𝜕

𝜕𝑡
𝜚22 = (d21𝜚12 − d12𝜚21)E(𝑡)− 𝑖~𝛾𝜚22,

𝑖~
𝜕

𝜕𝑡
𝜚12 = (𝜚11 − 𝜚22)d12E(𝑡)− 𝑖~

1

2
𝛾𝜚12 − ~𝜔0𝜚12,

𝑖~
𝜕

𝜕𝑡
𝜚21 = (𝜚22 − 𝜚11)d21E(𝑡)− 𝑖~

1

2
𝛾𝜚21 + ~𝜔0𝜚21.

(38)

Let us extract rapidly oscillating multipliers in the
non-diagonal elements of the density matrix:

𝜚12 = 𝜎12𝑒
𝑖𝜔0𝑡, 𝜚21 = 𝜎21𝑒

−𝑖𝜔0𝑡. (39)
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For field (7) in the rotating wave approximation,
Eq. (38) yields

𝜕

𝜕𝑡
𝜚11 =

𝑖

2
𝜎12Ω0

4∑︁
𝑛=1

𝑒𝑖𝛿𝑛𝑡−(−1)𝑛𝑖𝑘𝑛𝑧 −

− 𝑖

2
𝜎21Ω0

4∑︁
𝑛=1

𝑒−𝑖𝛿𝑛𝑡+(−1)𝑛𝑖𝑘𝑛𝑧 + 𝛾𝜚22,

𝜕

𝜕𝑡
𝜎12 =

𝑖

2
(𝜚11 − 𝜚22)Ω0×

×
4∑︁

𝑛=1

𝑒−𝑖𝛿𝑛𝑡+(−1)𝑛𝑖𝑘𝑛𝑧 − 𝛾

2
𝜚22,

𝜎21 = 𝜎*
12, 𝜚11 + 𝜚22 = 1,

(40)

where the Rabi frequency Ω0 is defined by formula
(33). In the same approximation, the force of light
pressure is equal to

𝐹 = ~
4∑︁

𝑛=1

(−1)𝑛+1𝑘𝑛Ω0 Im𝜎12𝑒
𝑖𝛿𝑛𝑡−(−1)𝑛𝑖𝑘𝑛𝑧. (41)

In calculations, we consider that the condition [24]

~2𝑘2

2𝑚
≪ ~𝛾, (42)

is satisfied. It provides that the force of light pressure
is formed earlier than a variation of the atomic ve-
locity considerably affects its magnitude (the heavy
atom approximation).

Let us first calculate the force of light pressure on
very slow atoms (𝑘𝑣 ≪ 𝛾). Since the frequencies of
waves (1,2) and (3,4) are identical in pairs,

𝛿1 = 𝛿2 = 𝛿 + 𝑠, 𝛿3 = 𝛿4 = −𝛿 + 𝑠. (43)

Calculations to the fourth accuracy order of pertur-
bation theory in the field give the following force of
light pressure averaged over the coordinate (within
the limits Δ𝑧 ≪ 𝑐/Ω) and time:

𝐹4 = −
32~𝑘ΩΩ4

0𝛾
2
(︀
𝛾2 +Ω2 + 4𝑠2

)︀
sin 2Δ𝑘𝑧

[(Ω + 2𝑠)2 + 𝛾2]
2
[(Ω− 2𝑠)2 + 𝛾2]

2 . (44)

It is evident that the condition necessary for the for-
mation of a trap is satisfied: at a very low velocity of
the atom, the force of light pressure is directed to the
trap at any 𝑠.

The force of light pressure at an arbitrary velocity
of the atom will be determined in the case 𝑠 = 0. In

the fourth order of perturbation theory (the second
order in the field gives a zero contribution), we have

𝐹4 = −
32~𝑘ΩΩ4

0𝛾
2
[︀
𝛾2 +Ω2 − 4(𝑘𝑣)2

]︀
sinΔ𝑘𝑧

[(Ω + 2𝑘𝑣)2 + 𝛾2]
2
[(Ω− 2𝑘𝑣)2 + 𝛾2]

2 . (45)

From this expression, it follows that, until the velocity
of the atom remains to be within the interval −𝑣𝑐 <
< 𝑣 < 𝑣𝑐, where

𝑣𝑐 =
1

2𝑘

√︀
𝛾2 +Ω2, (46)

the force of light pressure on the atom is directed
toward the trap center. If atom’s velocity goes be-
yond the indicated limits (for example, if the velocity
fluctuates owing to random spontaneous radiation),
the force of light pressure pushes the atom out from
the trap.

The motion of the atom is periodic if only force
(45) is taken into account. However, it does not mean
that this force can hold an ensemble of atoms in the
trap. To simulate the motion of atoms in the light
field, the knowledge of a light pressure force is not
enough. This parameter allows one to calculate only
the acceleration of the center of mass of an ensemble
of atoms with identical initial conditions and its ve-
locity. The velocities and the coordinates of separate
atoms are different owing to the process of momentum
diffusion associated with the stochasticity of sponta-
neous radiation. In due time, the velocities of some
atoms will exceed 𝑣𝑐, and those atoms will leave the
trap. Hence, it is impossible to hold atoms in the trap
if 𝑠 = 0.

A factor that counteracts the diffusion process in
the momentum space can be a velocity-dependent
force that decelerates atoms. Let us analyze the com-
ponent of the second order in the force field of light
pressure,

𝐹2 =
~𝑘𝛾Ω2

0

(Ω + 2𝑘𝑣 + 2𝑠)2 + 𝛾2
− ~𝑘𝛾Ω2

0

(Ω− 2𝑘𝑣 + 2𝑠)2 + 𝛾2
+

+
~𝑘𝛾Ω2

0

(Ω−2𝑘𝑣−2𝑠)2+𝛾2
− ~𝑘𝛾Ω2

0

(Ω+2𝑘𝑣−2𝑠)2+𝛾2
. (47)

It is distinct from zero at 𝑠 ̸= 0 and 𝑣 ̸= 0.
At a low velocity of atom motion (𝑣 ≪ 𝛾/𝑘), the

force 𝐹2 linearly depends on the velocity:

𝐹2 = 𝜅𝑣, (48)
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where
𝜅 = − 8~𝑘2𝛾Ω2

0(Ω + 2𝑠)[︁
(Ω + 2𝑠)

2
+ 𝛾2

]︁2 +
8~𝑘2𝛾Ω2

0(Ω− 2𝑠)[︁
(Ω− 2𝑠)

2
+ 𝛾2

]︁2 . (49)

The friction force, which decelerates the atom, arises
if 𝜅 < 0. An example of the dependence 𝜅(𝑠) is shown
in Fig. 3. The value 𝑠 = −Ω/2 corresponds to the
resonance of the frequency of waves 1 and 2 with the
atomic transition frequency, and 𝑠 = Ω/2 to the cor-
responding resonance for the frequency of waves 3 and
4. The friction force arises, if −𝜛 < 𝑠 < 0 or 𝑠 > 𝜛,
where

𝜛 =
1

2

√︁
2Ω

√︀
Ω2 + 𝛾2 − Ω2 − 𝛾2. (50)

Making allowance for the components of the sec-
ond and fourth orders in the field, the force of light
pressure can be written in the form

𝐹 = 𝐹2 + 𝐹4. (51)

Here, the first term (of the second order in the field)
does not depend on the atomic coordinate and, at
properly chosen parameters of the interaction be-
tween the atom and the field, results in a deceleration
of the atom. The second term (of the fourth order in
the field) is responsible for a force that acts on slow
atoms in the direction toward the trap center.

6. Numerical Calculation Procedure

While simulating the motion of an atom, Eqs. (17)
and (18) for the force and Eqs. (34) and (32) for the
probability amplitudes of atomic states were solved
simultaneously. In addition, variations of the atomic
momentum in the course of spontaneous radiation, as
well as fluctuations of the absorption and the stimu-
lated radiation emission resulting in fluctuations of
the atomic momentum, were taken into considera-
tion. In our calculations, for the sake of simplicity,
we accepted that, in the course of spontaneous radi-
ation, the atomic momentum changes by ±~𝑘 with
an identical probability. When analyzing the Doppler
cooling, this model is known [28] to give the following
expression for the minimum temperature:

𝑇D = ~𝛾/2𝑘B, (52)

where 𝑘B is the Boltzmann constant.
Expressions (16) and (34) allow one to calculate

the force value averaged over the ensemble. For the
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Fig. 3. Dependence 𝜅(𝑠) for the interaction between the atom
and the field of two low-intensity standing waves in the case
Ω = 2𝛾

description of the atomic motion, it is also necessary
to consider the stochastic momentum variation that
arises owing to the momentum diffusion. In the case
of a low laser radiation intensity, when the occupation
number of the excited state is insignificant, the force
of light pressure and the momentum diffusion coeffi-
cient are equal to the sums of corresponding quanti-
ties for each of counter-propagating waves [29]. This
model was applied by us earlier [9] for the computer
simulation of the fluctuation-driven momentum vari-
ation at the interaction of atoms with the field of
counter-propagating low-intensity pulses.

Let us describe the momentum diffusion of an atom
in the field of a running monochromatic wave follow-
ing book [24]. Let the atomic momentum be equal to
p0 at the time moment 𝑡. Then, the momentum at
the time 𝑡+Δ𝑡 can be expressed by the formula

p = p0 + ~k(𝑁+ −𝑁−)−
∑︁
𝑠

~k𝑠. (53)

Here, the second term describes the momentum varia-
tion due to the absorption and stimulated radiation of
photons with the wave vector k. We consider the ra-
diation to propagate along the axis 𝑧. The quantities
𝑁+ and 𝑁− are the number of photons absorbed and
emitted at stimulated radiation, respectively, within
the time interval Δ𝑡. The third term in Eq. (53) is re-
sponsible for the variation of the atomic momentum
at spontaneous radiation of photons with the wave
vectors k𝑠.

Momentum (53) averaged over the ensemble equals

⟨p⟩ = ⟨p0⟩+ ~k(⟨𝑁+⟩ − ⟨𝑁−⟩), (54)

where ⟨p0⟩ is the average initial momentum, ⟨𝑁+⟩ the
average number of absorbed photons, and ⟨𝑁−⟩ the
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average number of photons emitted in the course of
stimulated radiation. Spontaneously emitted photons
do not change the momentum on the average. There-
fore,⟨∑︁

𝑠

k𝑠

⟩
= 0. (55)

The difference between Eqs. (53) and (54) gives the
momentum fluctuation,

Δp = p− ⟨p⟩ = (p − ⟨p0⟩) + ~kΔ𝑁𝑖 −
∑︁
𝑠

~k𝑠, (56)

where Δ𝑁𝑖 = 𝑁𝑖 − ⟨𝑁𝑖⟩ is a deviation of the num-
ber of photons 𝑁𝑖 = 𝑁+ − 𝑁− that are scattered at
stimulated atomic transitions from its average value
⟨𝑁𝑖⟩ = ⟨𝑁+⟩ − ⟨𝑁−⟩.

From Eq. (56), we can find the average square of
momentum fluctuations along the axis 𝑧:

⟨Δ𝑝2𝑧⟩ = ⟨Δ𝑝20𝑧⟩+ ~2𝑘2⟨(Δ𝑁𝑖)
2⟩+ ~2𝑘2⟨cos2 𝜃⟩⟨𝑁𝑠⟩.

(57)

Here, 𝜃 is the angle between the direction of spon-
taneous photon emission and the axis 𝑧, and ⟨𝑁𝑠⟩
the average number of spontaneously emitted pho-
tons. The first term on the right-hand side of Eq. (57)
is associated with the initial distribution of atoms
over their momenta, the second one with stimu-
lated absorption and radiation processes, and the
third one with the spontaneous radiation of pho-
tons. Expression (57) was obtained, by assuming
the statistical independence of stimulated radiation,
absorption, and spontaneous radiation. In addition,
the statistical independence of propagation directions
for spontaneously emitted photons was taken into
account.

The average squared fluctuation of the number of
photons scattered at stimulated atomic transitions,
⟨(Δ𝑁𝑖)

2⟩, will be evaluated by considering the pho-
ton scattering as a completely random process. In this
case, the probability 𝑝(𝑁𝑖) for 𝑁𝑖 photons to be scat-
tered at stimulated atomic transitions within the time
interval Δ𝑡 is described by the Poisson distribution

𝑝(𝑁𝑖) =
⟨𝑁𝑖⟩𝑁𝑖

𝑁𝑖!
𝑒−𝑁𝑖 . (58)

From whence, it follows that

⟨(Δ𝑁𝑖)
2⟩ = ⟨𝑁𝑖⟩. (59)

Taking into account that the difference between the
numbers of absorbed and stimulated emitted photons
is equal to the number of the spontaneously emitted
ones (⟨𝑁𝑖⟩ = ⟨𝑁𝑠⟩), we obtain

⟨Δ𝑝2𝑧⟩ = ⟨Δ𝑝20𝑧⟩+ ~2𝑘2⟨𝑁𝑠⟩+ ~2𝑘2⟨cos2 𝜃⟩⟨𝑁𝑠⟩. (60)

This equation forms a basis for the computer simu-
lation of the momentum diffusion process in the field
of a single running wave. According to it, one atomic
momentum variation by ±~𝑘 due to the stimulated
processes is accounted for every random change of
the atomic momentum occurring due to spontaneous
light radiation.

The described algorithm for the account of the mo-
mentum diffusion is valid, as was mentioned above, if
the field is weak, Ω0 . 𝛾. In the case of highly in-
tensive counter-propagating waves, which is required
to reduce the size of the atomic cloud in a trap, we
may consider the momentum diffusion in the stimu-
lated processes in a similar way, bearing in mind that
the results obtained have an estimation character. A
probable error can be associated with larger fluctua-
tions of the momentum change owing to stimulated
radiation processes in comparison with those occur-
ring owing to spontaneous radiation emission. As a
result, we can underestimate the atomic cloud size in
the trap and the atomic temperature.

Equations (17), (18), and (32) are integrated by
the Runge–Kutta method of the fourth order. After
every step, a check of whether a quantum jump took
place is made, and the wave function is normalized. If
the case of quantum jump, the velocity of the atom
changes by

Δ𝑣 = ~𝑘(𝜖1 − 0.5)/(𝑀 |𝜖1 − 0.5|)+

+ ~𝑘(𝜖2 − 0.5)/(𝑀 |𝜖2 − 0.5|), (61)

where 𝜖1,2 are random numbers uniformly distributed
over the interval [0,1]. One of the terms simulates the
momentum fluctuation at spontaneous photon radia-
tion, and the other the momentum fluctuation result-
ing from fluctuations of the stimulated absorption and
radiation processes.

7. Results of Numerical Simulation

The motion of the atom in a bichromatic field sub-
stantially depends on the field parameters and the
initial conditions (atomic velocity and coordinate).
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Among the whole set of parameters, we are interested
first of all in those that provide the motion of atoms
in a narrow interval of coordinates 𝑧 in a vicinity of
the trap center.

In Subsection 7.1, we simulate the motion of atoms
in a weak bichromatic field of counter-propagating
waves. The results obtained can be interpreted, by us-
ing the formulas for the force of light pressure quoted
in Section 5.

The growth of the intensity of counter-propagating
waves gives rise to an increase of the quasielastic force
acting on the atom toward the trap center. As a re-
sult, the volume occupied by atoms in the trap dimin-
ishes, and their concentration increases. Therefore,
we also simulate the motion of atoms in a strong
field, where Ω0 ≫ 𝛾. The results of simulation are
presented in Subsection 7.2.

Calculations were made for 23Na atoms, for which
a cyclic interaction with the field can be created [1].
The wavelength of the 32𝑆1/2−32𝑃3/2 transition 𝜆 =
= 589.16 nm, the rate of spontaneous radiation 𝛾 =
= 2𝜋 × 10 MHz, and the Doppler cooling limit for
sodium atoms 𝑇D = 240 𝜇K [1].

7.1. Low-intensity counter-propagating waves

Consider the motion of atoms in the fields of counter-
propagating waves, the intensities of which are close
to those saturating the transition, i.e. Ω0 = 𝛾. For
the interaction between the atom and both stand-
ing waves to be significant, let the difference between
their frequencies be close to 𝛾, i.e. Ω = 2𝛾. The de-
pendence of the friction coefficient 𝜅 on the param-
eter 𝑠, which is equal to the difference between the
transition frequency in the atom and the arithmetic
mean of the frequency of standing waves, is shown in
Fig. 3. The friction force emerges, if −0.993𝛾 < 𝑠 < 0
or 𝑠 > 0.993𝛾. This conclusion does not exclude the
possibility of a finite atomic motion beyond the indi-
cated intervals or at their limits, since the sign of 𝜅
at 𝑘𝑣 ≪ 𝛾 testifies only to the deceleration or accel-
eration of the atom.

If the frequency detunings of the standing waves
from the transition frequency in the atom were iden-
tical by magnitude but different by sign, i.e. at 𝑠 = 0,
and the momentum diffusion were absent, the atom
would move periodically. Figure 4 illustrates the real
motion of the atom (the solid curve) and its motion, if
momentum fluctuations (61) at the moment of spon-
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Fig. 4. Simulated time dependences of the velocity of 23Na

atom at its interaction with a weak field of bichromatic counter-
propagating waves. The initial velocity of the atom 𝑣0 = 2 m/s,
𝑠 = 0 (𝛿1 = 𝛿2 = 10 MHz and 𝛿3 = 𝛿4 = −10 MHz), the
Rabi frequencies of the waves are identical and equal Ω0 =

= 2𝜋 × 10 MHz. The process of momentum diffusion is taken
into account (the solid curve) or is switched-off (the dashed
curve)

taneous radiation have been artificially switched-off
(the dashed curve). A comparison of those depen-
dences testifies to a crucial influence of the momen-
tum diffusion on the character of atomic motion in the
field of light waves, which results in this case in a con-
siderable growth of the atomic velocity. The period of
atomic oscillations in the absence of the momentum
diffusion estimated from Fig. 4 (10.3 ms) agrees well
with a value of 7 ms obtained from formula (44) at
𝑠 = 0, in view of its validity at the limit of the appli-
cability of perturbation theory.

On the basis of the dependence of the friction co-
efficient 𝜅 on 𝑠, which is depicted in Fig. 3, one can
see that the finite motion of the atom at a low veloc-
ity near the trap center is impossible in the interval
0 < 𝑠 < 0.993𝛾 (0 < 𝑠 < 9.93 MHz). Really, the cal-
culations show that, at 𝑠 = 2 MHz, the atom mostly
moves at a velocity close to ±5 m/s with fluctuations
due to the momentum diffusion, and this is the ve-
locity, at which the atom crosses the trap center. As
is seen from Fig. 5, the atom changes the direction
of its motion some time after crossing the trap cen-
ter. This is partly promoted by the term 𝐹4, which is
approximately proportional to a deviation from the
center, in the light pressure force (51). As a result,
the pressure of light on the atom is directed to the
trap center.

Now, let us consider the influence of the coordinate-
independent component 𝐹2 of the light pressure
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Fig. 5. Simulated time dependences of the velocity (a) and the
coordinate (b) of 23Na atom at its interaction with a weak field
of bichromatic counter-propagating waves. The initial velocity
of the atom 𝑣0 = 2 m/s, its initial coordinate 𝑧0 = 0, 𝑠 =

= 2 MHz (𝛿1 = 𝛿2 = 12 MHz and 𝛿3 = 𝛿4 = −8 MHz), the
Rabi frequencies of the waves are identical and equal Ω0 =

= 2𝜋 × 10 MHz

force 𝐹 (51) on the atom motion (see Fig. 5). From
Eq. (47), it follows that, at small 𝑠 > 0, the force
component 𝐹2 accelerates the atom, if the velocity of
the latter |𝑣| < 𝜛/𝑘, where the frequency 𝜛 is de-
fined by expression (50). In the case |𝑣| > 𝜛/𝑘, this
component of the force acting on the atom deceler-
ates it. At the boundaries of the indicated 𝑣-interval,
𝐹2 = 0, and, beyond it, the acceleration of the atom
transforms into a deceleration. The action of the force
𝐹2 alone would stimulate the atom to move at a ve-
locity of 5.83 m/s, provided the other parameters are
the same as in Fig. 5.

One can see from Fig. 5 that the fluctuations of
the velocity are large, and sometimes the velocity can
change its sign. In this case, the atom is accelerated
to the velocity 𝜛/𝑘 in the opposite direction. Since
𝜛/𝑘 < 𝑣𝑐, the atom moving at the velocity 𝜛/𝑘 is
subjected to the action of the force 𝐹4 directed to-
ward the trap center, and this force grows as the

atom moves away from it. The simultaneous action
of both terms in Eq. (51) can explain the fact that
the velocity of an atom (averaged over fluctuations)
just after reaching the next coordinate maximum is
a little higher than before that: the components 𝐹2

and 𝐹4 act in the same direction in the former case
and oppositely to each other in the latter one.

It is known [25] that Monte Carlo calculations of
the wave function, after the averaging over the ensem-
ble, give the same result as the calculations using the
density matrix method. At the same time, the Monte
Carlo method makes it possible not only to find the
evolution of the coordinate and the velocity of the
center of mass of an atomic ensemble, but, by calcu-
lating the squared velocity and coordinate values av-
eraged over the ensemble, to estimate the root-mean-
square deviations of the coordinate and the velocity
from their average values.

In Fig. 6, we show the time dependences of the av-
erage velocity 𝑣 for 100 23Na atoms, the position 𝑧
of their center of mass, and the root-mean-square de-
viations of the coordinate, Δ𝑧, and the velocity, Δ𝑣,
from their average values calculated for the same field
parameters and initial conditions as in Fig. 5. At the
beginning, all atoms are in the same state. However,
as the time grows, the correlations between veloci-
ties and coordinates of atoms decrease owing to the
stochasticity inserted by spontaneous radiation. Just
this factor can explain the damping of oscillations of
the coordinate and the velocity of the center of mass
of atoms.

Let us consider the motion of atoms in the trap for
such detunings 𝑠, at which the confinement of atoms
in the trap and, simultaneously, their cooling can be
expected. When selecting the detuning, we proceed
from the fact that the friction force and the force
returning the atom back to the trap center should
be close to maximum. At low velocities, the friction
force 𝐹2 is maximum at 𝑠 = −0.72𝛾 and 1.27𝛾 (see
Fig. 3). The force 𝐹4 [Eq. (44)], which brings the atom
back to the coordinate origin and provides the trap
functioning, is maximum at 𝑠 = ±0.93𝛾. Since the
𝐹2- and 𝐹4-maxima do not coincide, the optimum de-
tunings 𝑠 that ensure the confinement and the cooling
of atoms in the trap at Ω = 2𝛾 fall within the intervals
−0.93𝛾 < 𝑠 < −0.72𝛾 and 0.93𝛾 < 𝑠 < 1.27𝛾.

In Fig. 7, the dependences 𝑣(𝑡) and 𝑧(𝑡) (panel a),
and Δ𝑣(𝑡) and Δ𝑧(𝑡) (panel b) are shown for a cer-
tain, close to the optimal, 𝑠-value from the interval
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0.93𝛾 < 𝑠 < 1.27𝛾. After the atoms have been braked
(approximately in 50 𝜇s), their velocity, owing to the
momentum diffusion, fluctuates with Δ𝑣 ≈ 0.55 m/s,
which corresponds to the ensemble temperature 𝑇 =
= 0.8 𝜇K. Rather a high temperature of atomic en-
semble in comparison with the Doppler limit of
240 𝜇K is associated with the violation of the condi-
tion Ω0 ≪ 𝛾 in order to achieve this limit. The behav-
ior of the dependence Δ𝑧(𝑡) brings us to a conclusion
that, in 300 ms after the interaction started, the size
of atomic clouds still continues to grow, which tes-
tifies to an insufficient compensation of the diffusive-
like motion of atoms by the light pressure force. In the
next section, we will demonstrate that, by increasing
the radiation intensity by two orders of magnitude,
we can reach the confinement of atomic clouds with
Δ𝑧 ∼ 0.1 mm already after 20-𝜇s interaction interval
with the field.
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Fig. 6. Simulated time dependences of the average velocity 𝑣,
coordinate 𝑧 of the center of mass, and root-mean-square devi-
ations of the velocities, Δ𝑣, and the coordinates, Δ𝑧, of atoms
from their average values for an ensemble of 100 23Na atoms
at their interaction with a weak field of bichromatic counter-
propagating waves. The initial conditions and parameters of
the interaction between the atom and the field are the same as
in Fig. 5
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Fig. 7. Simulated dependences 𝑣(𝑡), 𝑧(𝑡) (solid curves) and
Δ𝑣(𝑡), Δ𝑧(𝑡) (dashed curves) for an ensemble of 100 23Na

atoms in the field of bichromatic counter-propagating waves.
The initial velocity of the atom 𝑣0 = 2 m/s, its initial co-
ordinate 𝑧0 = 0, 𝑠 = 12 MHz (𝛿1 = 𝛿2 = 12 MHz and
𝛿3 = 𝛿4 = 2 MHz), the Rabi frequencies of the waves are
identical and equal Ω0 = 2𝜋 × 10 MHz

For checking the calculation accuracy of the tem-
perature, we calculated the average value of the ve-
locity for one standing wave with a low intensity
(Ω0 = 0.1𝛾) and at the optimum detuning from the
resonance 𝛾/2 [28] for 1000 sodium atoms. We ob-
tained Δ𝑣 = 30 ± 1 cm/s, which corresponds to the
temperature limits of 249 ± 17 𝜇K for the ensemble
of atoms. This interval includes the theoretical value
of Doppler temperature limit equal to 240 𝜇K.

Having studied the behavior of atoms in the field
of weak counter-propagating waves, let us proceed
to the case of strong light fields. It should be noted
that the Doppler temperature limit (52) was found
for the interaction of an atom with a monochro-
matic standing wave. For weak fields and in the case
where the frequency of either wave is close to that
of the transition in the atom (see Fig. 7), the atom
mainly interacts with this wave, and the inequality

ISSN 2071-0194. Ukr. J. Phys. 2016. Vol. 61, No. 4 319



V.I. Romanenko, A.V. Romanenko, L.P. Yatsenko

0 20 40 60 80 100

0

10

20

30

40

50

60

z̄
,
∆
z
(µ

m
)

t (ms)

(b)

0 20 40 60 80 100

0

1

2

3

4

5

v̄
,
∆
v
(m

/
s)

t (ms)

(a)

Fig. 8. Simulated dependences 𝑣(𝑡), 𝑧(𝑡) and Δ𝑣(𝑡), Δ𝑧(𝑡) for
an ensemble of 100 23Na atoms interacting with a strong field
of bichromatic counter-propagating waves. The initial velocity
of the atom 𝑣0 = 5 m/s, its initial coordinate 𝑧0 = 0, 𝑠 =

= 10 MHz (𝛿1 = 𝛿2 = 110 MHz and 𝛿3 = 𝛿4 = −90 MHz),
the Rabi frequencies of the waves are identical and equal Ω0 =

= 2𝜋 × 100 MHz, the frequency difference of standing waves
Ω = 2𝜋 × 200 MHz

Ω0 ≪ 𝛾 has to be obeyed in order to reach tem-
peratures close to (52). However, if Ω0 ≫ 𝛾 and
Ω ∼ Ω0, the atom strongly interacts with both stand-
ing waves. Therefore, estimate (52) obtained for the
limiting temperature in the case of a single wave is
incorrect. We will see that temperatures close to (52)
can be reached in the field of two standing waves and
at Ω0 ≫ 𝛾.

7.2. High-intensity counter-propagating waves

Now, let us consider the interaction of sodium atoms
with strong fields created by counter-propagating
waves, the intensity of which is by two orders of mag-
nitude higher than those chosen for the simulation in
the previous section. As is seen from Fig. 8, higher in-
tensities allow the atoms to be localized in a narrow
interval of coordinates of about 100 𝜇m. Owing to

the spatial dependence of the light pressure force, the
expansion of the atomic cloud terminates in approx-
imately 20 ms. Its size is governed by a competition
between the diffusion-like motion resulting from the
momentum diffusion, which is associated with fluctu-
ations of spontaneous and stimulated radiation, and
the motion under the action of the light pressure force
directed to the trap center and proportional to the
distance from the center. Atoms with the initial ve-
locity 𝑣0 = 5 m/s are braked by the field at a distance
of about 57 𝜇m; then, their center of mass shifts into
a region about ±10 𝜇m around the trap center, which
unambiguously evidences the action of the light pres-
sure force toward the latter. The braking of an atom
lasts for about 30 𝜇s; afterward, the velocity fluctu-
ates around zero with a root-mean-square deviation
of 27.5 cm/s. This velocity fluctuation corresponds
to a temperature of the atomic ensemble equal to
209 𝜇K, which is a little lower than the Doppler tem-
perature limit 240 𝜇K (52). Taking into consideration
that the number of atoms, over which the averag-
ing is performed, is relatively small, 𝑁𝑎 = 100, and
a typical relative accuracy of the average values ob-
tained by the Monte Carlo method, 𝑓rel ∼ 1/

√
𝑁𝑎,

we come to a conclusion that atoms can be confined
in a trap formed by the bichromatic field of counter-
propagating waves and simultaneously cooled down
to approximately the Doppler temperature limit. The
fact that the confinement and the cooling of atoms si-
multaneously in the trap is observed at such a value
of parameter 𝑠, at which the cooling is impossible in
the case of weak fields (see Fig. 3), has a simple ex-
planation: if the intensity of even one standing wave
exceeds the value, at which the absorption saturates,
the derivative of the light pressure force with respect
to the velocity calculated at the zero velocity value
can be both negative and positive [24].

Figure 9 illustrates the dependence of the tempera-
ture of an ensemble consisting of 100 atoms on the de-
tuning 𝑠 calculated by the Monte Carlo method. One
can see that, at a detuning of 15–20 MHz, a temper-
ature minimum of about 170 K is reached, which is a
little lower than 𝑇D described by Eq. (52).

The interval of atomic velocities, at which the atom
is captured and cooled by the field, depends on the
trap size. For the parameters of Fig. 9 and the detun-
ing 𝑠 = 2𝜋 × 20 MHz, which provides a temperature
of atoms in the trap that is close to the minimum,
the trap size should not be smaller than 0.2 mm for

320 ISSN 2071-0194. Ukr. J. Phys. 2016. Vol. 61, No. 4



An Optical Trap for Atoms

0 10 20 30 40 50
100

200

300

400

500

T
(µ

K
)

s/2π (MHz)

Fig. 9. Dependence of the temperature of 23Na atoms on
the detuning 𝑠 of the atomic transition frequency from the
average carrier frequency of counter-propagating bichromatic
waves. The Rabi frequencies of the waves are identical and
equal Ω0 = 2𝜋×100 MHz, the frequency difference of standing
waves Ω = 2𝜋 × 200 MHz, 𝑁𝑎 = 100. Circles denote the re-
sults of calculations, vertical bars mark the temperature limits
evaluated from the fluctuations of the mean square of atomic
velocities

the initial velocity 𝑣0 = 5 m/s, 1 mm for 𝑣0 = 9 m/s,
and tens of centimeters for 𝑣0 > 50 m/s. The rea-
son for such drastic growth of the necessary trap di-
mensions lies in the change of the atomic braking
scenario, when the velocity exceeds a certain value
(about 10 m/s for the indicated parameters). In par-
ticular, at low initial velocities, the velocity of an
atom almost monotonically decreases in time. On the
other hand, if the initial velocity is high, the velocity
of an atom changes in a wide interval between positive
and negative values until it almost vanishes, and the
atom is located at this moment near the trap center;
then the atom is decelerated (see Fig. 10). The time
needed for all that scenario to be realized is differ-
ent for different realizations of the atomic motion in
accordance with the fact that the atomic motion tra-
jectory considerably depends on the time distribution
of the moments of spontaneous photon emission. The
velocity of the atom changes approximately within
the limits of ±Ω/(2𝑘B), which corresponds to a vari-
ation of the force sign in the case where the atom in-
teracts with the bichromatic field at 𝑠 = 0 [10]. The
step-like temporal dependence of the velocity in the
interval from 35 to 37 ms may probably corresponds
to doppleron resonances [32].

The time dependences of the root-mean-square de-
viations from the average values of velocity and co-
ordinate, which are depicted in Fig. 8, allow one to
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Fig. 10. Simulated time dependences of the velocity (a) and
the coordinate (b) of 23Na atom at its interaction with a strong
field of bichromatic counter-propagating waves. The initial ve-
locity of the atom 𝑣0 = 70 m/s, its initial coordinate 𝑧0 = 0,
𝑠 = 20 MHz (𝛿1 = 𝛿2 = 120 MHz and 𝛿3 = 𝛿4 = −80 MHz),
the Rabi frequencies of the waves are identical and equal
Ω0 = 2𝜋×100 MHz, the frequency difference of standing waves
Ω = 2𝜋 × 200 MHz

estimate the size and the temperature of the atomic
cloud. A better understanding of the atomic distri-
bution over coordinates and velocities is given by its
presentation in the coordinate-velocity phase plane,
as is shown in Fig. 11. While simulating the motion
of atoms, we accepted all of them to be in the ex-
cited state at the initial moment, and all initial phases
were put equal to zero. Calculations were carried out
for 𝑠 = 2𝜋 × 20 MHz, which provides the cooling of
the atomic ensemble to a temperature that is close
to the minimum at the Ω0- and Ω-values indicated
in Fig. 11. The initial velocity of atoms was chosen
to equal zero in order to obtain a symmetric distribu-
tion of atoms with respect to the trap center from the
very beginning. The initial state of the atom, owing
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Fig. 11. Distribution of 25000 atoms in the phase plane
in 500 𝜇s after they started to move (a) and its scaled-
up region near the coordinate origin (b). The initial veloc-
ity of the atom 𝑣0 = 0 m/s, its initial coordinate 𝑧0 = 0,
𝑠 = 20 MHz (𝛿1 = 𝛿2 = 120 MHz and 𝛿3 = 𝛿4 = −80 MHz),
the Rabi frequencies of the waves are identical and equal
Ω0 = 2𝜋×100 MHz, the frequency difference of standing waves
Ω = 2𝜋×200 MHz. At 𝑡 = 0, all atoms are in the excited state,
and 𝜑1 = 𝜑2 = 𝜑3 = 𝜑4 = 0. Dashed lines mark distances mul-
tiple to 𝜆 and reckoned from the trap center

to multiple spontaneous radiation emissions, does not
affect the atomic distribution in the phase plane.

Figure 11, b demonstrates the phase diagram for
the atoms located in the central part of the trap. One
can clearly distinguish ellipse-like structures, which
testify to an oscillatory motion of atoms in vicinities
of the points

𝑧𝑛 = 𝜆(2𝑛+ 1)/4, (62)

where 𝑛 runs over the set of integers. The trap center
corresponds to the antinode of standing waves. The
presence of a small number of atoms between the el-
lipses indicates a change in the number of atoms os-
cillating around a certain 𝑧𝑛 due to the transition of
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Fig. 12. Time dependence of the velocity (a) and the coordi-
nate (b) of an atom from the distribution shown in the phase
plane in Fig. 11. Dashed lines mark distances multiple to 𝜆 and
reckoned from the trap center

some of them to other 𝑧𝑛 with different 𝑛. Note that
the similar calculations for 𝑠, which correspond to a
higher temperature of the atomic ensemble, e.g., for
𝑠 = 2𝜋 × 10 MHz, also result in ellipses in the phase
plane; however, they are less pronounced.

An example of the evolutions of the velocity and
the coordinate of one of the atoms in Fig. 11 is shown
in Fig. 12. For illustrative reasons and in order to
demonstrate the oscillatory motion, only the initial
time interval (≤100 𝜇s) is shown. One can see that
the atom oscillates in vicinities of 𝑧1 and 𝑧7.

8. Conclusions

In this work, a possibility to realize an atomic trap
proposed in work [12], which is formed by the bichro-
matic field of counter-propagating waves, is demon-
strated. At low intensities of counter-propagating
waves, lower than the absorption saturation inten-
sity in the atom, the motion of atoms in the trap
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can be interpreted on the basis of perturbation the-
ory for the force of light pressure developed to the
second and fourth orders in the field. The force of
the second order does not depend on the atomic co-
ordinate and results in the deceleration or accelera-
tion of the atom by the field, provided that the de-
tuning of the frequency of standing waves from the
atomic transition frequency is properly chosen, until
the atomic velocity reaches a value of ±Ω/2𝑘. The
force of the fourth order in the field depends on the
coordinate and is approximately proportional to a de-
viation of the atom from the trap center. The com-
bined action of both force components makes the
formation of a trap for atoms possible. Most of the
time, the atoms in the trap move at a velocity of
±Ω/2𝑘. Numerical simulations of the atomic mo-
tion in a strong field, Ω0 ≫ 𝛾, demonstrate the re-
alizability of the simultaneous confinement and cool-
ing of sodium atoms to temperatures of the Doppler
limit order and, probably, a little lower. The size of
the atomic cloud at a Rabi frequency of 100 MHz
amounts to approximately 0.1 mm, the temperature
is about 200 𝜇K, and the interval of velocities, at
which the braking of atoms and their confinement
in the trap are possible, is determined by the trap
size and ranges from 0 to 9 m/s for a trap 1 mm in
size. Atoms in the cloud oscillate around the points
𝑧𝑛 = 𝜆(2𝑛 + 1)/4 corresponding to the nodes of
a standing wave and transit from a vicinity of one
node to a vicinity of the other one. In such a way,
the atoms form a lattice in the space with the pe-
riod 𝜆/2.

The proposed mechanism of trap formation can
also be used to confine and cool molecules with the
matrix of Franck–Condon factors close to a diago-
nal one. In this case, an additional field is required to
bring the atoms that, owing to spontaneous radiation,
turn out on a level distinct from the ground one back
to a cyclic interaction with the cooling and confining
field, as was shown while observing light pressure on
SrF molecules [31].
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В.I. Романенко, О.В. Романенко, Л.П.Яценко

ОПТИЧНА ПАСТКА ДЛЯ АТОМIВ НА ОСНОВI
ЗУСТРIЧНИХ БIХРОМАТИЧНИХ СВIТЛОВИХ ХВИЛЬ

Р е з ю м е

Показано, що полем зустрiчних бiхроматичних свiтлових
хвиль можна сформувати одновимiрну пастку для атомiв.
Вибираючи належним чином вiдстроювання монохромати-
чних компонент хвиль вiд частоти переходу в атомi, можна
досягти одночасного утримання ансамблю атомiв у пастцi
i їх охолодження до температури, близької до допплерiв-
ської границi, без застосування додаткових полiв. Чисельне
моделювання проведено для атомiв натрiю. Обговорюється
можливiсть застосування подiбної пастки для утримання i
охолодження молекул з майже дiагональною матрицею фа-
кторiв Франка–Кондона.
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