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The decay of the correlation function 𝐶(𝑡) of an electron flow intensity near an instability
point for the process of resonant tunneling through a double barrier structure is considered. It
is supposed that the intensity of the incoming flow may fluctuate under the influence of an
external noise, both white and colored. The correlation function 𝐶(𝑡) behavior is analyzed, by
using methods leading to the single-exponential approximation such as the method of projection
operator and the method of mean relaxation time. Moreover, the method based on a combina-
tion of high- and low-frequency expansions of the Laplace transform of 𝐶(𝑡), which has allowed
the correlation function to be approximated by two decaying exponentials, is applied. The nu-
merical simulation has shown that the latter approach unlike the others gives correct results
near the instability point.
K e yw o r d s: resonant tunneling, intensity correlation function decay, instability point.

1. Introduction

One of the fundamental problems in the study of
nonequilibrium systems is their behavior under the
influence of noises near an instability point. To an-
alyze the behavior of such systems, the correlation
function in the nonequilibrium steady state and the
associated relaxation time are often used.

For the calculation of the correlation functions, the
method of projection operator leading to the expan-
sion in continued fractions has been proposed in [1,
2]. It gives good results, when the not very different
time scales are involved. In particular, the method
accurately describes the short-time behavior of the
correlation function.

Near instabilities, the processes evolve slower (the
critical slowing down). In this case, the approxima-
tion called the approximation of mean relaxation time
is used [3, 4] to describe the long-time behavior of
correlation functions. Both of these methods describe
the systems with essentially one time scale that allows
one to get the single-exponential approach for a cor-
relation function.

The methods mentioned above are approximations
of a lower order, as compared to the more general
approach, namely, the method of generalized moment
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expansion (or the method of double expansion (DE)),
which is based on the simultaneous expansion of the
correlation function in the regions of high and low
frequencies [5, 6, 7]. In this case, the correlation func-
tion is represented as a superposition of two decaying
exponentials. The description of the method will be
given briefly in Section 3.

In the non-Markovian case, the dependence of the
correlation function on noise parameters may have
some specific features, as compared to the Marko-
vian limit [2, 6, 7, 8]. The generalization of the DE
method to the case of a Gaussian colored noise in the
first approximation with respect to the noise corre-
lation time 𝜏 has been done in [2, 9]. In particular,
the connection between the non-Markovian correla-
tion function 𝐶(𝑡) and the effective Markovian corre-
lation function has been established. The behavior of
𝐶(𝑡) in the case of a colored noise has some character-
istic features. For instance, there appears the initial
plateau in the short-time regime. It is known from
the numerical simulation [10] that the colored noise
leads to a retardation of the process in the sense that
the relaxation time is monotonically increased as a
function of the noise correlation time 𝜏 .

In the present paper, we analyze the influence of
the external noise on the intensity correlation func-
tion decay in a model system that describes the res-
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onant tunneling of electrons through a double bar-
rier nanostructure. It is known that such systems can
enhance dramatically a transmittance coefficient un-
der the resonance condition that allows one to fabri-
cate diodes and transistors on their base with great
prospects of using them in electronic devices [11].
That is why the investigation of noise effects in such
systems in the instability region is very important.

In our model of tunneling process, the instability
takes place at the point of transition from the state
with low efficiency of tunneling to a state with high
efficiency. In [12, 13], we considered the influence of
a white noise on the dynamics of this system. In [14],
the influence of a colored noise on the mean first
passage time near the instability point was investi-
gated. The problem of the mutual influence of am-
plitude and phase noises in the incoming flow on the
intensity correlation function of the outgoing flow was
studied in [15]. In the present paper, we consider the
decay of the intensity correlation function 𝐶(𝑡) of the
outgoing electron flow, by using the DE method. The
results of this method are compared with those ob-
tained with the help of methods leading to a single-
exponential expansion on short- and long-time scales
and with the help of a numerical simulation of the
equations of motion.

The work is organized as follows. The model of
the stochastic tunneling process is presented in Sec-
tion 2. The methods of calculation of correlation func-
tions known from the literature and used in our work
are described in Section 3. In Section 4, the behavior
of the intensity correlation function near the insta-
bility point is analyzed, by using the methods men-
tioned in Section 3, and a comparison with the nu-
merical simulations is given. The conclusions are done
in Section 5.

2. The Model of the Stochastic
Tunneling Process

We consider the process of resonant tunneling, whose
model in the deterministic limit was given in [16],
and its stochastic model was developed in [13, 14]. In
the deterministic limit, the tunneling process can be
described by the following dimensionless equation for
the intensity 𝐼 of an electron flow outgoing from the
tunneling system:

𝑑𝐼

𝑑𝑡
= −𝐼 +

𝐼0
1 + (𝑧 − 𝐼)2

= 𝐹 (𝐼). (1)

Here, 𝐼0 is the dimensionless intensity of an incom-
ing electron flow, 𝑧 is a parameter proportional to
a shift of the working frequency from the resonant
value. When its value satisfies the inequality 𝑧 >

√
3,

the system exhibits the bistability as a function of the
parameter 𝐼0.

Solving Eq. (1) with the value of parameter 𝑧 that
guarantees the presence in the bistability region and
slowly changing the intensity 𝐼0 in the forward and
reverse directions, we get a hysteresis in the plot of
𝐼 vs 𝐼0. At the end point of the hysteresis loop 𝐼0𝐾
(the so-called marginal point), the transition from the
lower branch to the higher one takes place. The values
of outgoing electron flow intensity at the moment of
the transition from the lower state to a higher one,
𝐼𝐾 , and from the higher state to a lower one, 𝐼𝑘, are
determined by the expression [16],

𝐼𝐾,𝑘 =
1

3
(2𝑧 ±

√︀
𝑧2 − 3). (2)

The critical value of incoming intensity 𝐼0𝐾 , at which
the transition occurs, can be defined from the relation
[16]

𝐼0𝐾 = 𝐼𝐾 [1 + (𝑧 − 𝐼𝐾)2]. (3)

At 𝑧 = 3.5, the value of 𝐼0𝐾 equals 7.59. This value
for 𝑧 will be used in all the following calculations.

Let us consider the incoming electron flow inten-
sity 𝐼0 as a stochastic quantity, 𝐼0 = ⟨𝐼0⟩ + 𝑞(𝑡),
where ⟨𝐼0⟩ is the mean value of the incoming inten-
sity. Let 𝑞 model intensity fluctuations and be taken
to be a Gaussian noise with zero mean and corre-
lation ⟨𝑞*(𝑡)𝑞(𝑡)⟩ = 𝐷

𝜏 exp
(︁
− |𝑡−𝑡′|

𝜏

)︁
, where 𝐷 is the

noise intensity, and 𝜏 is its correlation time. Then we
get the following Langevin equation:

𝑑𝐼

𝑑𝑡
= 𝐹 (𝐼) + 𝑔(𝐼)𝑞(𝑡), (4)

where the function 𝐹 (𝐼) determines the dynamic be-
havior of the system in the deterministic limit (see
Eq. (1)), and 𝑔(𝐼) = 1

1+(𝐼−𝑧)2 is the term multiplying
the noise.

We are interested in the behavior of the correla-
tion function in the neighborhood of the marginal
point 𝐼𝐾 . To get analytical expressions for the cor-
relation functions, the probability density of the pro-
cess should be calculated. To ensure that the prob-
ability maximum is in a proximity of the marginal
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point 𝐼𝐾 , we expand the function 𝐹 (𝐼) in a series
near this point:

𝐹 (𝐼) = 𝐹 (𝐼𝐾) + 𝐹 ′(𝐼 − 𝐼𝐾)+

+
𝐹 ′′(𝐼𝐾)

2!
(𝐼 − 𝐼𝐾)2 +𝑂(𝐼 − 𝐼𝐾)3. (5)

We also introduce the change of variables: 𝛽 = 𝐼0 −
− 𝐼0𝐾 and 𝑥 = 𝐼 − 𝐼𝐾 . At the marginal point 𝐼𝐾 ,
the first derivative of 𝐹 (𝐼) with respect to 𝐼 equals
zero. Then we get the following approximate equa-
tion:

𝑓(𝑥, 𝛽) = −𝛼(𝑥, 𝛽)𝑥2 − 𝑝(𝑥)𝛽, (6)

where 𝛼(𝑥, 𝛽) and 𝑝(𝑥) are coefficients, whose values
can be obtained from Eqs. (2) and (3). They are, re-
spectively,

𝛼(𝑥, 𝛽) =
0.2[1− 3(𝑥+ 𝐼𝐾 − 𝑧)2](𝑥+ 𝐼𝐾)3

(𝐼0𝐾 + 𝛽)2
,

𝑝(𝑥) = (𝑥+ 𝐼𝐾)/𝐼0𝐾 .

With account of noise 𝑞(𝑡), the dynamics of the con-
sidered tunneling system near the marginal point 𝐼𝐾
is defined by the equation:

�̇� = 𝑓(𝑥, 𝛽) + 𝑘(𝑥)𝑞(𝑡). (7)

In the case of intensity fluctuations with a finite
small correlation time 𝜏 , the Fokker–Planck equation
for the probability density 𝑃 (𝑥, 𝑡) connected with the
Langevin equation (7) will be given by the following
expression [8, 10]:

𝜕

𝜕𝑡
𝑃 (𝑥, 𝑡)=− 𝜕

𝜕𝑥
𝑓(𝑥)𝑃 (𝑥, 𝑡)+

𝜕

𝜕𝑥
𝑘(𝑥)

𝜕

𝜕𝑥
𝐻(𝑥)𝑃 (𝑥, 𝑡),

(8)

where

𝐻(𝑥) = 𝑘(𝑥)− 𝜏 [𝑓(𝑥, 𝛽)𝑘′(𝑥)− 𝑓 ′(𝑥, 𝛽)𝑘(𝑥)]. (9)

We assume, for simplicity, that the coefficient mul-
tiplying the noise term equals unity, 𝑘(𝑥) = 1. This
means that the noise is considered to be of additive
character. Such an approximation has a sense at the
transition points, where the process of transition is
determined mostly by an additive noise (see [18]).

In the case of a small correlation time 𝜏 of the noise,
the next expression for the steady probability density
was obtained [10]:

𝑃st(𝑥, 𝛽, 𝜏) =
𝑁

𝐷1(𝑥, 𝜏)
exp

⎡⎣ 𝑥∫︁
𝑓(𝑥′, 𝛽)

𝐷1(𝑥′, 𝜏)
𝑑𝑥′

⎤⎦, (10)

where the diffusion coefficient 𝐷1(𝑥, 𝜏) has been

defined by the formula 𝐷1(𝑥, 𝜏) =
(︁

𝐷
1+𝑓 ′(𝑥,𝛽)𝜏

)︁1/2
,

and 𝑁 is the normalization coefficient, 𝑁−1 =
=

∫︀ 𝑥

0
𝑃st(𝑥, 𝛽, 𝜏)𝑑𝑥.

In our work, we are interested how the decay of the
correlation function 𝐶(𝑡) defined by the expression [2]

𝐶(𝑡) =
⟨𝛿𝑥(𝑡+ 𝑡′)𝛿𝑥(𝑡′)⟩st

⟨(𝛿𝑥)2⟩st
(11)

with 𝛿𝑥(𝑡) = 𝑥(𝑡)−⟨𝑥(𝑡)⟩ is dependent on the shift 𝛽
from the bifurcation point, the noise strength 𝐷, and
the noise correlation time 𝜏 .

3. Methods of Calculation
of the Correlation Function

In this section, we consider the main available meth-
ods of calculation of the correlation function. The cal-
culation of the steady correlation function (11) begins
usually with the Laplace transformation of this func-
tion [2, 3, 4],

𝐶(𝑤) =

∞∫︁
0

exp(−𝑤𝑡)𝐶(𝑡)𝑑𝑡. (12)

In [2, 3, 4] with the use of a projection-operation
method that leads to the expansion in continued frac-
tions, the following expression for 𝐶(𝑤) has been ob-
tained in the first order:

𝐶(𝑤) = 𝐶0[𝑤 + 𝛾𝑠 −𝐾(𝑤)]−1,

where 𝐶0 = 1, which follows from the normalization
condition. Here,

𝛾𝑠 = −(𝑑/𝑑𝑡)|𝑡=0𝐶(𝑡)/𝐶(0)

is the relaxation rate in the short-time regime. It is
defined by the formula [2]

𝛾𝑠 =
⟨𝐷1(𝑥, 𝜏⟩st
⟨(𝛿𝑥)2⟩st

. (13)
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The term 𝐾(𝑤) is responsible for the memory ef-
fects. Neglecting the memory effects leads to a single-
exponential approach to 𝐶(𝑡) [2]:

𝐶(𝑡) ≈ 𝐶0 exp(−𝛾𝑠𝑡). (14)

As was shown in [2], such an approximation gives
satisfactory results in many cases. However in some
cases, in particular, near instabilities, the corrections
due to the memory term 𝐾(𝑤) are essential and must
be included in order to achieve the correct behavior
of the correlation functions at large times.

In [3], it was shown that, in the long-time regime,
the single-exponential approximation can be used
with the relaxation rate 𝛾𝑙 (the long-time relaxation)
defined by the expression

𝛾𝑙 = 𝑇−1
0 , (15)

𝑇0 =
−1

⟨𝑥2⟩ − ⟨𝑥⟩2

∞∫︁
0

𝐺2
0(𝑥)𝑑𝑥

𝐷1(𝑥, 𝜏)2𝐻(𝑥)𝑃st(𝑥, 𝛽, 𝜏)
. (16)

Here, 𝐺0(𝑥) = −
∫︀ 𝑥

0
(𝑥′ − ⟨𝑥′⟩)𝑃st(𝑥, 𝛽, 𝜏)𝑑𝑥, 𝐻(𝑥) is

defined by Eq. (9), and 𝑃st(𝑥, 𝛽, 𝜏) is the steady prob-
ability density of the process.

Thus, 𝛾𝑠 defines fast processes, and 𝛾𝑙 does slow
ones. When the relaxation processes evolve on the
same time scales, 𝛾𝑠 and 𝛾𝑙 will have similar val-
ues, and the single-exponential approach with any
of these relaxation rates gives a satisfactory descrip-
tion of the correlation function behavior. However, if
the relaxation process evolves on different time scales
with equal weights, as is often takes place near insta-
bilities, then 𝛾𝑠 gives the correct behavior at small
times and incorrect at large times, while 𝛾𝑙 correctly
describes the behavior at large times.

The method of double expansion (DE) [3–6] has
allowed one to describe satisfactorily the behavior
of the correlation function near instabilities for the
complete time regime. The method is based on the
combination of the low- and high-frequency expan-
sion of the Laplace transform of 𝐶(𝑡). Coefficients of
these expansions are derivatives and the so-called re-
laxation moments, respectively.

The expansion of the Laplace transform 𝐶(𝑤) for
high frequencies takes the form

𝐶(𝑤) =

∞∑︁
𝑘=0

𝜇𝑘(1/𝑤)
𝑘, (17)

and, for low frequencies,

𝐶(𝑤) =

∞∑︁
𝑘=0

𝜇−𝑘−1(−𝑤)𝑘, (18)

where the coefficients of the expansion, 𝜇𝑘, are the
derivatives at 𝑡 = 0,

𝜇𝑘 =
𝑑𝑘𝐶(𝑡)

𝑑𝑡𝑘
|𝑡=0

and 𝜇−𝑘−1 ≡ 𝑇𝑘 are the relaxation moments,

𝑇𝑘 =

∞∫︁
0

𝑡𝑘𝐶(𝑡)𝑑𝑡.

The relaxation moment of zero order, 𝑇0, is defined
by expression (16) and is the usual relaxation time
that contains information on the long-time scale and
relates to the area under the curve of 𝐶(𝑡). Equation
(17) describes the behavior of 𝐶(𝑡) on the short-time
scale. This expansion was also used in the method of
expansion in continued fractions.

The aim of the DE method is to get such an ex-
pression for 𝐶(𝑡) that contains information of both
the short- and long-time regimes simultaneously. For
the Markovian case, this problem was solved in [5, 6],
where the expression for 𝐶(𝑡) was given in the form
of a superposition of 𝑁 exponentials:

𝐶(𝑡) =

𝑁∑︁
𝑛

𝑎𝑛 exp(−𝛾𝑛𝑡).

In the approximation where 𝑁 = 2, the expression
for 𝐶(𝑡) is written as

𝐶(𝑡) = 𝑎1 exp(−𝛾1𝑡) + 𝑎2 exp(−𝛾2𝑡). (19)

The expression for the calculation of the correlation
function of the non-Markovian process was obtained
in [8, 9]. In the short-time regime, it has the form

𝐶(𝑡) = 𝑒−𝛾𝑠𝑡 + 𝜏𝛾𝑠(1− 𝑒−𝑡/𝜏))𝑒−𝛾𝑠𝑡. (20)

The non-Markovian correlation function in the DE
approximation is given by the expression [8, 9]

𝐶(𝑡) = 𝑎1 exp(𝛾1𝑡)+𝑎2 exp(𝛾2𝑡)+𝜏𝛾𝑠(1−𝑒−𝑡/𝜏))𝑒−𝛾𝑠𝑡.

(21)
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Fig. 1. Relaxation rates 𝛾𝑠 (dashed curves) and 𝛾𝑙 (solid
curves) as functions of the deviation 𝛽 for various noise inten-
sities (𝐷 = 0.1 – curves with number 1, 𝐷 = 0.2 – curves with
number 2, 𝐷 = 0.3 – curves with number 3)

In these formulas, the relaxation rates are deter-
mined by expressions

𝛾1,2 =

=
𝑇0−𝜇1𝑇1 ±

√︀
(𝑇0−𝜇1𝑇1)2 − 4(𝑇 2

0 − 𝑇1)(1−𝜇1𝑇1)

2(𝑇 2
0 −𝑇1)

,

(22)
and the coefficients of the expansion are

𝑎1 =
𝜇1 − 𝛾2
𝛾1 − 𝛾2

, 𝑎2 = 1− 𝑎1.

The quantities in (22) have the following meaning:
∙ 𝜇1 = 𝛾𝑠 defines the relaxation rate at short times

and is described by formula (13).
∙ 𝑇0 ≡ 𝜇−1 defines the mean relaxation time, which

is given by formula (16).
∙ 𝑇1 ≡ 𝜇−2 is defined by the expression

𝑇1 =
−1

⟨𝑥2⟩ − ⟨𝑥⟩2

𝑥∫︁
0

𝐺2
0(𝑥)𝐺1(𝑥)𝑑𝑥

𝐷𝑔(𝑥)𝐻(𝑥)𝑃st(𝑥, 𝛽, 𝜏)
.

Here, 𝐺1(𝑥) can be calculated by the formula

𝐺1(𝑡) =

𝑥∫︁
0

𝑃st(𝑥, 𝛽, 𝜏)

[︃ 𝑥′∫︁
0

𝐺0(𝑥
′′)

𝐷(𝑥′′)𝑃st(𝑥′′, 𝛽, 𝜏)
𝑑𝑥′′−

−

⟨ 𝑥∫︁
0

𝐺0(𝑥
′)

𝐷(𝑥′)𝑃st(𝑥′, 𝛽, 𝜏)
𝑑𝑥′

⟩]︃
𝑑𝑥′.

4. The Decay of the Intensity
Correlation Function for the Model
of Resonant Tunneling

At first, we analyze the behavior of the intensity cor-
relation function of an electron flow passing through a
tunneling system in the Markovian limit. The results
of calculation of the correlation function within the
DE method with the use of formula (19) will be com-
pared with those based on the projection operator
procedure (formula (14)) and on the mean relaxation
time method (formula (15)).

The results of the analytical calculations will be
compared with those obtained by a numerical simu-
lation of the Langevin equation (4) for the considered
tunneling process, which was carried out with the use
of the procedure described in [10]. The correlation
function was obtained by averaging of 1000 trajec-
tories along 15000 steps of integration in each trajec-
tory. To be sure in reaching the stationary state, the
first 2500 steps were excluded. The step of integration
was Δ = 0.005.

At first, the relaxation rates in the short- and
long-time regimes in dependence on the deviation 𝛽
and the noise strength 𝐷 were calculated and com-
pared. Figure 1 shows the dependences of the short-
time relaxation rates 𝛾𝑠 (dashed curves) and the long-
time relaxation rates 𝛾𝑙 (solid curves) as functions
of the deviation 𝛽 of the mean incoming intensity
⟨𝐼0⟩ from the value 𝐼0𝐾 , at which the transition from
one state to the other occurs in the deterministic
limit. The numbers on the curves determine various
noise intensities 𝐷 (1 – 𝐷 = 0.1; 2 – 𝐷 = 0.2; 3 –
𝐷 = 0.3). It can be seen in the figure that the coinci-
dence of the relaxation rates takes place at the con-
siderable removal from the instability point (𝛽 = 0),
either toward higher or lower values. What is more, in
these regions, the dependence on the noise intensity
is not observed either.

For our problem, we are interested in the behav-
ior of these rates in the close neighborhood of the
instability point, where their values differ significant-
ly. The decrease of the relaxation rates near the in-
stability point indicates a critical slowing down. Mo-
reover, as can be expected, this decrease is more sig-
nificant for 𝛾𝑙, i.e. in the long-time regime. We note
that an increase in the noise intensity leads to a shift
of the minimum values of relaxation rates to the side
of increasing the control parameter 𝐼0. This is the ev-
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1), 𝐷 = 0.2 – curves with number 2). b – Correlation functions 𝐶(𝑡) obtained by a numerical simulation with
𝐼0 = 7.46 and 𝐷 = 0.1 (curve 1), 𝐷 = 0.2 (curve 2)
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Fig. 3. a – Correlation functions 𝐶(𝑡) for 𝛽 = −0.05 obtained by the one-exponential approach with relaxation
rates 𝛾𝑠 and 𝛾𝑙, and by the DE method (curves with symbol 𝛾) with different values of 𝐷 (𝐷 = 0.1 – curves with
number 1), 𝐷 = 0.2 – curves with number 2). b – Correlation functions 𝐶(𝑡) obtained by the numerical simulation
with 𝐼0 = 7.57 and 𝐷 = 0.05 (the curve 1), 𝐷 = 0.1 (curve 2)

idence that the transition will begin later than in the
deterministic case, i.e., the stability domain increases.

To analyze the dependence of the correlation func-
tion decay on the noise intensity 𝐷, it is convenient
to divide the region near the instability point into
three intervals according to the values of 𝛽: interval
I (𝛽 = −0.17÷−0.1), II (𝛽 = −0.1÷0.01), and III
(𝛽 = 0.01÷0.15) (see Fig. 1).

In interval I, the values of rates at small times 𝛾𝑠
(dashed curves) almost do not depend both on the
value of 𝛽 and on the noise intensity 𝐷. At the same
time, the rates at large times 𝛾𝑙 (solid curves) de-
crease with increasing 𝐷. This means that the be-
havior of the correlation function in the dependence

on 𝐷 is dominated in this interval by the rate 𝛾𝑙. The
results of calculations of the correlation functions in
this interval obtained with the use of different meth-
ods are shown in Fig. 2, a for 𝛽 = −0.14 and var-
ious noise intensities 𝐷. The curves in Fig. 2, a are
marked by two symbols. The first symbol is number 1
or 2 that defines the noise strength (1 – 𝐷 = 0.1; 2 –
𝐷 = 0.2). The second symbol determines the method,
with which the function was obtained. The correla-
tion function 𝐶(𝑡) obtained with the use of the single-
exponentional approximation is marked by the sym-
bol 𝛾𝑠 for the relaxation rate 𝛾𝑠 and by the symbol
𝛾𝑙 for the relaxation rate 𝛾𝑙. The correlation function
calculated by means of the DE method is marked as
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a b
Fig. 4. a – Correlation functions 𝐶(𝑡) for 𝛽 = 0.115 obtained by one-exponential approach with relaxation rates 𝛾𝑠
and 𝛾𝑙, and by the DE method (curves with symbol 𝛾) with different values of 𝐷 (𝐷 = 0.1 –curves with number 1),
𝐷 = 0.2 – curves with number 2). b – Correlation functions 𝐶(𝑡) obtained by numerical simulation with 𝐼0 = 7.7

and 𝐷 = 0.1 (curve 1), 𝐷 = 0.25 (curve 2)

a b
Fig. 5. a – Correlation functions 𝐶(𝑡) for 𝛽 = −0.1 and 𝐷 = 0.1 obtained by the one-exponential approach with
relaxation rates 𝛾𝑠 and 𝛾𝑙, and by the DE method (curves with symbol 𝛾) with various values of 𝜏 (𝜏 = 0.01 – the
curves with number 1, 𝜏 = 0.1 – with number 2, 𝜏 = 0.8 – with number 3). b – Correlation functions 𝐶(𝑡) obtained
by a numerical simulation with 𝐼0 = 7.55, 𝐷 = 0.1, and 𝜏 = 0.01 (curve 1), 𝜏 = 0.5 (curve 2), 𝜏 = 1 (curve 3)

𝛾. We can see that when the noise intensity is small
the use of all methods gives the same decay of the cor-
relation functions (the curves with number 1). With
the growth of the noise intensity up to 𝐷 = 0.2, the
relaxation rate 𝛾𝑠 is practically unchanged, and the
correlation function marked 2− 𝛾𝑠 coincides with the
correlation function 1−𝛾𝑠 with 𝐷 = 0.1. At the same
time, the value of 𝛾𝑙 is decreased, which leads to the
slowing of the decay of the correlation function (curve
2 − 𝛾𝑙). The calculation with the DE method gives
curve 2− 𝛾.

Fig. 2, b shows the correlation functions obtained
by the numerical simulation of Eq. (4) in the param-
eter region that corresponds to interval I (𝐼0 = 7.46

and 𝐷 = 0.1 – curve 1, 𝐷 = 0.2 – curve 2). The main
objective in the selection of parameters for numerical
calculations was to obtain a typical behavior of the
correlation functions in this interval. It is seen in this
figure that, as 𝐷 increases, the decay of the correla-
tion function slows down. Such a behavior coincides
with the result of analytical calculations with the use
of DE method (compare with the curves 1 − 𝛾 and
2− 𝛾 in Fig. 2, a).

In interval II, the values of relaxation rates with
increasing 𝐷 may not decrease but, on the con-
trary, may increase (see Fig. 1). The behavior of the
correlation functions for various noise strengths 𝐷
(𝐷 = 0.1 – the curves with number 1, 𝐷 = 0.2 –
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the curves with number 2) in the pre-threshold re-
gion (𝛽 = −0.05) obtained with the use of analytical
calculations is shown in Fig. 3, a. These results are
compared with those of numerical calculations shown
in Fig. 3, b (with 𝐼0 = 7.57 and 𝐷 = 0.05 – curve 1,
𝐷 = 0.1 – curve 2). In Fig. 3, b, we can see the non-
standard behavior of the correlation function in the
dependence on the noise strength, namely, the growth
of 𝐷 leads to a faster decay (curve 2). It can be seen
in Fig. 3, a that such a behavior is reproduced quali-
tatively by the DE method, as follows from the com-
parison of the curves 1−𝛾 and 2−𝛾. The agreement is
rather rough, but we show here only the possibility of
such a behavior and the fact that it can be described
by the DE method.

The correlation function behavior for various noise
strengths 𝐷 in the region above the threshold (in-
terval III, 𝛽 = 0.11) is shown in Fig. 4, a (analyti-
cal calculations) and in Fig. 4, b (numerical calcula-
tions with 𝐼0 = 7.7). When the noise intensity is small
(𝐷 = 0.1 – the curves with number 1), the correla-
tion function falls abruptly, and its time dependences
obtained with the use of different approaches are sim-
ilar. When the noise intensity increases (𝐷 = 0.2 –
curves with number 2), the relaxation rates decrease,
and its decreasing is more significant in the long-
time regime, than in the short-time regime (compare
curves 2 − 𝛾𝑙 and 2 − 𝛾𝑠). The calculation with the
DE method gives curve 2 − 𝛾, which tends to the
asymptote at large times. The numerical calculation
(Fig. 4, b) gives a similar behavior (curve 2).

In the non-Markovian case, we analyze the depen-
dence of the correlation function on the noise cor-
relation time 𝜏 . For analytical calculations, formulas
(20) and (21) were used. Calculations reported in
the literature, both numerical [10, 14] and analytical
[1, 2, 10] ones, and carried out for different models
that describe stochastic processes at some distance
from the instability point show that an increase of
the noise correlation time leads to slowing the cor-
relation function decay, i.e. to the growth of the re-
laxation time. At the same time, it can be expected
that, in the pre-threshold region in a near proximity
of the transition point, the behavior will be differ-
ent. In Fig. 5, a, we show the time dependence of
the correlation functions obtained with 𝛽 = −0.1 and
𝐷 = 0.1 for several noise correlation times (𝜏 = 0.01 –
the curves with number 1; 𝜏 = 0.1 – with number 2;
𝜏 = 0.8 – with number 3), by using different methods

marked, as earlier, by the symbol 𝛾 with correspond-
ing indices. The growth of the noise correlation time
from 𝜏 = 0.01 to 𝜏 = 0.1 leads to a standard slow-
ing of the correlation function decay (compare curves
1−𝛾 and 2−𝛾). However, the further increase of the
correlation time up to 𝜏 = 0.8 leads, on the contrary,
to the decay acceleration at large times (see curve
3− 𝛾). Such a behavior qualitatively agrees with the
numerical simulations with 𝐼0 = 7.55, 𝐷 = 0.1, and
𝜏 = 0.01 (curve 1), 𝜏 = 0.5 (curve 2), 𝜏 = 1 (curve 3)
(Fig. 5, b).

5. Conclusions

We have analyzed the decay of the intensity corre-
lation function in the neighborhood of the transition
from the state with low tunneling efficiency to a state
with high efficiency. This transition takes place at the
marginal point of the hysteresis cycle. The analytical
expressions for the correlation functions in a vicin-
ity of the instability point are obtained with the use
of the approximated equation of the process, which
ensures that the system is very near this point. The
results are compared with the results of numerical
simulations of the model tunneling process operating
in the neighborhood of the transition point.

The calculations of the correlation functions carried
out with the use of different methods allow us to con-
clude that, in a neighborhood of the instability point,
the results achieved with the use of the DE method
qualitatively agree with those of a numerical simu-
lation. Outside the region of instability, the single-
exponential approximation can be used. Directly in
the instability region, the abnormal behavior of the
correlation functions is observed both in the depen-
dence on the noise intensity (acceleration of the corre-
lation function decay with increase of 𝐷) and on the
noise correlation time (acceleration of the correlation
function decay with increase of 𝜏).
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РЕЛАКСАЦIЯ КОРЕЛЯЦIЙНОЇ
ФУНКЦIЇ IНТЕНСИВНОСТI ПОБЛИЗУ ТОЧКИ
НЕСТАБIЛЬНОСТI ДЛЯ ПРОЦЕСУ
РЕЗОНАНСНОГО ТУНЕЛЮВАННЯ

Р е з ю м е

Дослiджувалася релаксацiя кореляцiйної функцiї iнтенсив-
ностi 𝐶(𝑡) потоку електронiв у точцi нестабiльностi для про-
цесу резонансного тунелювання електронiв крiзь двобар’єр-
ну нанометрову структуру. Передбачалося, що iнтенсив-
нiсть падаючого потоку може флуктуювати пiд дiєю зов-
нiшнього шуму, як бiлого, так i кольорового. Поведiнка ко-
реляцiйної функцiї 𝐶(𝑡) аналiзувалася як за допомогою ме-
тодiв, що приводять до одноекспоненцiйного наближення,
таких як метод проекцiйного оператора й метод середньо-
го часу релаксацiї, так i методу, заснованого на комбiнацiї
високо- i низькочастотного розкладання перетворення Ла-
пласа для 𝐶(𝑡), при якому кореляцiйна функцiя апроксиму-
валася суперпозицiєю двох спадаючих експонент. Чисельна
симуляцiя показала, що останнiй пiдхiд на вiдмiну вiд iн-
ших дає правильнi результати в областi нестабiльностi.
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