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We investigate entanglement properties of infinite one- and two-dimensional spin-1/2 quan-
tum Ising and XXZ models. Tensor network methods (TI MPS with single-site update and
TEBD for MPS, TERG and CTMRG with “simple update” for PEPS) are used to model the
ground states of the studied models. Different entanglement measures, such as the one-site
entanglement entropy, one-tangle, concurrence of formation and assistance, negativity and
entanglement per bond are compared with respect to their ability to exhibit “structures” in the
phase diagram of the models (e.g., phase transitions). We study the connection between sym-
metries and the entanglement of ground states and analyze short- and long-range entanglement
through the entanglement monogamy.
K e yw o r d s: quantum phase transitions, quantum entanglement, tensor networks.

1. Introduction

Matter comes in different phases, and usually one
can switch between them by changing the tempera-
ture. Close to zero temperature, thermal fluctuations
disappear, and quantum fluctuations dominate. In
this case, by changing an appropriate control pa-
rameter, one can induce quantum phase transitions
(QPTs) between the different phases of quantum sys-
tems. QPTs occur in many different physical systems,
and they attract a lot of attention in condensed-
matter physics [1].

The reason for the recent surge of interest in QPTs
are new and exotic quantum phases and critical
points, which cannot be described within Landau’s
theory of phase transitions, i.e. they cannot be char-
acterized by an order parameter. Examples are topo-
logically ordered phases [2], quantum spin liquids [3],
or deconfined quantum critical points [4].

At and close to critical points, different parts of
the system are quantum mechanically strongly cor-
related, and various correlation functions may show
singular behavior [5]. For decades, quantum many-
body systems were studied in terms of such correla-
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tion functions within Landau’s theory. Several years
ago, in quantum information theory, it was suggested
that quantum phases and QPTs, as well as other
properties of many-body systems, can be charac-
terized and distinguished in terms of the quantum
entanglement [6, 7]. Simple entanglement quantifiers
may reveal the essential structure of many-body sys-
tems, and the present work starts from this point of
view.

We study entanglement properties of the ground
states of one- (1D) and two-dimensional (2D) spin-
1/2 models using different entanglement quanti-
fiers. The ground states are generated, by using
tensor-network techniques. Moreover, a study of
the Coffman–Kundu–Wootters (CKW) inequality [8]
enables some judgment on the entanglement distribu-
tion within the many-body wave function [9].

Numerous different entanglement quantifiers have
been proposed [10]. Those which are studied here [5,
11–14] are listed in the Appendix. Studies of the
entanglement properties of the many-body systems
mainly use the entanglement entropy, the one-tangle,
the concurrence, and the fidelity [5]. There are also
investigations of the multipartite entanglement prop-
erties of the states (e.g., tripartite entanglement [15]
and global entanglement [14]).
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In the present paper, we focus on ground states
of the quantum Ising model and of the anisotropic
XXZ model in 1D and 2D. We will analyze how a
broken symmetry reveals itself in the entanglement
quantifiers. Investigations in this direction were done
in [16, 17] based on the concurrence of formation,
and we extend this analysis with numerical tools to
other measures. We show analytically and numeri-
cally that – in contrast to the concurrence of for-
mation – the concurrence of assistance shows U(1)-
symmetry breaking and confirm this with numerical
results. An analysis of the entanglement monogamy
enables us to analyze the entanglement distribution
on the basis of the CKW inequality. We obtain that,
close to some critical points, the most entanglement
is not contained in the nearest neighbour entangle-
ment. We compare our results with those based on
other techniques [11–13] whenever possible.

In order to simulate the ground states of 1D and
2D spin models we use a tensor network (TN) ap-
proach [18, 19]. TN methods became very popular in
recent years for the simulation of strongly correlated
systems. They proved to be rather flexible in vari-
ous aspects: one can study a variety of systems in
different dimensions; of finite or infinite size; with
different boundary conditions, symmetries; systems
of bosons, fermions and (frustrated) spins. For a re-
cent review, see Ref. [20]. The basic idea of TN meth-
ods is to represent the wave function of a many-body
quantum system by a network of interconnected ten-
sors. Matrix product states (MPS) are the most fa-
mous among the TN states [19]. Powerful algorithms
such as the Density Matrix Renormalization Group
(DMRG) [21] or Time-Evolving Block Decimation
(TEBD) [22] can be formulated in terms of MPS. The
two-dimensional generalization of the matrix prod-
uct states is called projected entangled pair states
(PEPS) [23]. Details about the PEPS and the MPS
can be found in Refs. [24–27].

We use techniques, which are able to treat mod-
els in the thermodynamic limit: MPS [27] in
1D and the Tensor-Entanglement Renormalization
Group (TERG) [28], the Corner Transfer Matrix Re-
normalization Group (CTMRG) [29, 30] for PEPS
in 2D. More specifically, we use the imaginary-time
evolution (the TI MPS with one-site update [31, 32],
the TEBD for MPS [33] in 1D, and the “simple up-
date” scheme [25] for PEPS in 2D) to find the ap-
proximate ground states for the models under investi-

gation. Exploiting the translational invariance of the
ground states enables algorithms with reasonable re-
quirements for computational resources [28, 34].

This paper is organized as follows. In Section 2,
we briefly describe numerical algorithms we use and
give appropriate references. Section 3 presents nu-
merical results and their interpretations for the quan-
tum Ising and XXZ models. Conclusions are made in
Section 4. Various entanglement measures are briefly
listed and discussed in the Appendix.

2. Ground State Calculation

In our studies, we use four different tensor network
algorithms: TI MPS and TEBD for MPS in one di-
mension and TERG and CTMRG with “simple up-
date” in two dimenions. These methods are well es-
tablished, and we do not present details here, but
refer the reader to the literature cited in Introduc-
tion. Two-dimensional models are investigated on a
square lattice. Both 1D and 2D simulations are per-
formed for periodic boundary conditions.

The MPS representation of a wave function |Ψ⟩ for
𝑁 spins

|Ψ⟩ = tTr
{︁
𝐴𝜎𝑖

𝑘𝑖𝑙𝑖
𝐴

𝜎𝑗

𝑘𝑗 𝑙𝑗
...|𝜎𝑖𝜎𝑗 ...⟩

}︁
. (1)

is written in terms of rank-3 tensors (𝐴𝜎
𝑘𝑙) with phys-

ical (spin) index 𝜎 of size two (since we consider spin-
1/2 systems only) and virtual dimensions 𝑘, 𝑙 of size
𝑚. The tensor trace tTr includes the summation over
all spin configurations and over all bond indices.

All our methods utilize the imaginary-time evolu-
tion based on a Trotter expansion [35] of the evolu-
tion operator for finding the ground-state wave func-
tions [36]. Probably, the best known algorithm for the
1D imaginary-time evolution is the TEBD algorithm
proposed by Vidal [33]. The TEBD algorithm natu-
rally leads to a ground state in the canonical form
of MPS [22, 37]. In this form, besides the tensors 𝐴
at each site, one also has bond vectors 𝜆 at each
bond of the tensor network. Within the given canon-
ical MPS, the bond states (bond vectors) can be re-
garded as renormalized bases of the physical degrees
of freedom of the many-body system (e.g. “effective”
spins). It is known that TEBD breaks the transla-
tional symmetry and leads to a bipartition of the
tensor network into two sublattices. The TI MPS
method [38] maintains the translational invariance ex-
actly, i.e. quantum states are represented by an MPS
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with identical matrices 𝐴𝜎 at each lattice site. In their
simplest form, both TEBD and TI MPS algorithms
do not preserve symmetries of the Hamiltonian.

Projected entangled pair states (PEPS) are 2D gen-
eralizations of the MPS. A random wave function |𝜓⟩
PEPS representation is constructed from a product
of equal rank-5 tensors 𝐴 at the lattice sites 𝑖, 𝑗, ...,

|Ψ⟩ = tTr
{︁
𝐴𝜎𝑖

𝑘𝑖𝑙𝑖𝑚𝑖𝑛𝑖
𝐴

𝜎𝑗

𝑘𝑗 𝑙𝑗𝑚𝑗𝑛𝑗
...|𝜎𝑖𝜎𝑗 ...⟩

}︁
. (2)

The size of each physical (spin) index 𝜎 is two, since
we consider spin-1/2 systems only. The size of each
virtual bond 𝑘, 𝑙,𝑚, 𝑛 is 𝐷. The tensor trace tTr in-
cludes the summation over all spin configurations and
over all bond indices.

Generalization of the TEBD algorithm to two
dimensions leads to the so-called “simple update”
scheme [25, 39] for the imaginary-time evolution. Un-
fortunately, no exact canonical form for PEPS exists,
but the “simple update” algorithm for the imaginary-
time evolution leads to a ground state in the approx-
imate canonical form of PEPS.

TERG is based on the tensor renormalization group
(TRG) method introduced by Levin and Nave [34] for
classical systems. It was modified for quantum sys-
tems in Ref. [28] with the use of the concept of “im-
purity” tensors. In its original formulation, TERG en-
ables to calculate two-site and one-site observables for
a given PEPS. In our implementation, we modified
the TERG algorithm in order to determine four-site
reduced density matrices for a given PEPS. The ac-
curacy of the TERG is controlled by a cutting param-
eter 𝐷𝑐, which defines the size of the tensors during
the renormalization procedure.

The corner transfer matrix renormalization group
(CTMRG) was first introduced by Baxter [40]. It was
further developed and applied to classical statistical
systems by Nishino and Okunishi [41, 42]. More re-
cently, it was adapted to the contraction of tensor
networks by Orus [30, 43]. From a given PEPS, the
CTMRG determines the “environment tensor” of a
block of the four sites. The locations of these four sites
correspond to the locations of the “impurity sites” in
TERG. With the “environment tensor,” it is easy to
obtain the four-spin reduced density matrix.

Almost all entanglement characteristics we calcu-
late are obtained from one-site and two-site reduced
density matrices. Only the bipartite entanglement
per bond is obtained directly from the tensor network

representation of the state. The definitions and cor-
responding formulas for the entanglement quantifiers
are briefly presented in the Appendix.

Numerical results obtained with the TEBD al-
gorithm typically agree with TI MPS results, and
TERG results agree with CTMRG calculations, if the
parameters of calculations are properly controlled.

3. Entanglement Quantifiers and
Entanglement Distribution: Numerical
Results and Physical Interpretation

In this section, we use the methods mentioned in the
previous section to analyze 1D and 2D spin-1/2 sys-
tems: the quantum Ising model in a transverse mag-
netic field and the XXZ model. We calculate vari-
ous entanglement measures for these systems such as
the one-site entanglement entropy, one-tangle, con-
currence of formation and negativity. Furthermore,
we determine bounds on the localizable entanglement
in terms of the concurrence of assistance and max-
imal two-point correlation functions, local entangle-
ment, and entanglement per bond. We compare these
quantities and discuss their ability to identify critical
points and distinguish between different phases. The
mentioned entanglement measures are briefly defined
in the Appendix.

An interesting characteristic we analyze using the
calculated entanglement measures is the monogamy
of entanglement [8] or – more precisely – the entan-
glement distribution between different parties. Some-
what naively, the entanglement monogamy may be
expressed as follows: if two parties are maximally en-
tangled, they cannot be entangled at all with a third
party. Expressions for the distribution of entangle-
ment in the form of monogamy relations for multi-
qubit systems, based on the concurrence of formation
𝐶𝐹 and the concurrence of assistance 𝐶𝐴 have been
obtained in Refs. [44, 45]. Thus, among the different
entanglement measures we calculate in the present
work, the concurrences of formation and assistance
are of primary interest. For the models studied in
the present paper, a naive entanglement monogamy
analysis was done in Ref. [11], by using Monte-Carlo
methods for the calculation of 𝐶𝐹 . Here, we provide
a more comprehensive analysis based on monogamy
relations for 𝐶𝐹 and 𝐶𝐴.

Entanglement monogamy relations for 𝑁 -qubit
systems are obtained from the Coffman–Kundu–
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Wootters (CKW) [8] inequality

[𝐶𝐹 ]
2
𝐴|𝐵1𝐵2...𝐵𝑁−1

≥ [𝐶𝐹 ]
2
𝐴𝐵1

+

+ [𝐶𝐹 ]
2
𝐴𝐵2

+ ...+ [𝐶𝐹 ]
2
𝐴𝐵𝑁−1

, (3)

where [𝐶𝐹 ]𝐴𝐵𝑖 = [𝐶𝐹 ](𝜌𝐴𝐵𝑖) is the concurrence of the
reduced density matrix 𝜌𝐴𝐵𝑖

and [𝐶𝐹 ]𝐴|𝐵1𝐵2...𝐵𝑁−1
=

= 𝐶(|𝜓⟩𝐴|𝐵1𝐵2...𝐵𝑁−1
) the concurrence of the pure

state |𝜓⟩ as defined in Ref. [46]. For pure 𝑁 -qubit
states, 𝐶2

𝐴|𝐵1𝐵2...𝐵𝑁−1
can be obtained from the one-

site reduced density matrix, and it is equal to the
one-tangle 𝜏1: [𝐶𝐹 ]

2
𝐴|𝐵1𝐵2...𝐵𝑁−1

= 4det 𝜌𝐴 = 𝜏1 [46].
In our analysis, we use two main assumptions con-

cerning the entanglement structure of the ground
states of the models we study. The first is that only
the nearest neighbor concurrences give major con-
tributions to the sum of the right-hand side of (3).
The larger the separation between two particles, the
smaller is the concurrence between them. The sec-
ond assumption is a consequence of the translational
symmetry of the ground states. As a consequence, all
nearest neighbor concurrences are equal.

Taking these two features of the systems under con-
sideration into account allows us to rewrite inequality
(3) for 1D and 2D models. For 1D systems, one ob-
tains

𝜏1D
1 ≥ 2

[︀
𝐶1D

𝐹

]︀2
NN

+ 𝛿1D𝐹 , (4)

where
[︀
𝐶1D

𝐹

]︀2
NN

is the nearest neighbor (NN) concur-
rence of formation, and the quantity 𝛿1D𝐹 contains all
other bipartite concurrences. Analogously in 2D, one
finds

𝜏2D
1 ≥ 4

[︀
𝐶2D

𝐹

]︀2
NN

+ 𝛿2D𝐹 . (5)

Using this inequality, we check the consistency of
our numerical data. Of course, the total sum of all
two-particle entanglement approaches 𝜏1 only in spe-
cial circumstances. It is known that the many-qubit
CKW inequality can be sharpened by adding three-
way entanglement terms (as, e.g., in Ref. [47]). In gen-
eral, the sharpening of the inequality would require
taking many other many-way entanglement terms
into account.

Using the concept of “sharpened” CKW inequal-
ity, we analyze the entanglement distribution in the
state. In our analysis, we treat the NN two-particle
entanglement terms as a short-range entanglement

and all various possible other terms (contained in
𝛿𝐹 ) as the sum of many-way and long-range entan-
glements. Thus, the difference between 𝜏1 and NN
entanglements can be related to either many-way
and/or long-range entanglement in the entanglement
distribution. The value 𝜏1 we call total entanglement
to underline its role in the entanglement distribution
analysis.

Note that an entanglement measure called two-
tangle 𝜏2 exists [48]. Two-tangle is related to the
concurrence of formation: 𝜏2 = 𝐶2

𝐹 . The entangle-
ment distribution analysis based on the compari-
son of 𝜏1 and 𝜏2 was already done for various one-
dimensional models [9,49,50] and is less presented for
two-dimensional quantum models [51, 52]. Our work
aims to contribute in this direction, in particular,
in the monogamy analysis of two-dimensional quan-
tum models, but we analyze one-dimensional models
either.

The inequality dual to the CKW one yields the
following relation which involves the concurrence of
assistance 𝐶𝐴 on the right-hand side [44, 45]

[𝐶𝐹 ]
2
𝐴|𝐵1𝐵2...𝐵𝑁−1

≤ [𝐶𝐴]
2
𝐴𝐵1

+

+[𝐶𝐴]
2
𝐴𝐵2

+ ...+ [𝐶𝐴]
2
𝐴𝐵𝑁−1

. (6)

Again, we introduce the quantity 𝛿1D𝐴 ,

𝜏1D
1 ≤ 2

[︀
𝐶1D

𝐴

]︀2
NN

+ 𝛿1D𝐴 , (7)

where
[︀
𝐶1D

𝐴

]︀2
NN

contains the nearest neighbor terms
and 𝛿𝐴 the longer-ranged bipartite concurrences. In
2D, we have

𝜏2D
1 ≤ 4

[︀
𝐶2D

𝐴

]︀2
NN

+ 𝛿2D𝐴 . (8)

The comparison of 𝜏1 and the entanglement covered
by 𝐶𝐴 is another way of the gaining of information
about the entanglement structure of the state.

3.1. Quantum Ising model
in a transverse field

The spin- 12 Ising model in a transverse magnetic field
ℎ is given by the Hamiltonian

𝐻Ising = 𝐽
∑︁
⟨𝑖,𝑗⟩

𝜎𝑧
𝑖 ⊗ 𝜎𝑧

𝑗 + ℎ
∑︁
𝑖

𝜎𝑥
𝑖 , (9)
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where 𝜎𝛼
𝑖 (𝛼 = 𝑥, 𝑦, 𝑧) are the standard Pauli

spin operators. This model is 𝑍2 symmetric (spin-flip
symmetric).

The sign of the coupling constant 𝐽 determines the
type of the interaction between spins: antiferromag-
netic for 𝐽 > 0 and ferromagnetic for 𝐽 < 0. The
calculated physical quantities are symmetric with re-
spect to 𝐽 = 0. Quantities like the magnetization 𝑚𝑥

(𝐽 < 0) are mapped to their staggered counterparts
(𝐽 > 0). In the present paper, we choose the energy
scale by setting 𝐽 = −1.

In 1D, this model can be solved analytically us-
ing a Jordan–Wigner transformation [53]. It is well
known that, at the critical points ℎ = ±1, this model
shows quantum phase transitions separating a mag-
netically ordered phase (−1 < ℎ < 1) from para-
magnetic phases (ℎ < −1 and ℎ > 1). In the or-
dered phases, the 𝑍2 symmetry is spontaneously bro-
ken. At the critical points and in the thermodynamic
limit, the ground state energy per site is given by
𝐸0 = −4/𝜋.

The 2D quantum Ising model cannot be solved an-
alytically, and various methods are applied to solve it
numerically, notably rather resource-intensive Monte-
Carlo (MC) methods. Such calculations find a tran-
sition between a ferromagnetic and a paramagnetic
phase at a critical point ℎcr = 3.044 [54]. The tensor
network implementation we use here produces numer-
ical results significantly faster than MC calculations,
however, with less precision: our implementation de-
termines a critical point at ℎcr ≈ 3.28, which is de-
termined from a singular point of the second deriva-
tive of the ground-state energy as a function of ℎ. Of
course, significantly more precise results could be ob-
tained with more elaborate tensor network imple-
mentations and larger bond sizes [20]. However, it is
our goal to investigate correlations and entanglement
properties, by using small numerical cost. In practice,
we study positive ℎ only and obtain results for neg-
ative ℎ by a reflection at ℎ = 0. In order to compare
numerical results for one- and two-dimensional sys-
tems, we rescale the magnetic field dependence ℎ/ℎcr
such that phase transitions always occur at ℎ/ℎcr = 1.

For ℎ ≪ ℎcr, the system (both in 1D and 2D) is a
classical Ising model with a doubly degenerate ground
state (in the thermodynamic limit). In experimental
situations, this degeneracy is broken, and this is done
intrinsically in our MPS and PEPS implementations
as well. For ℎ ≫ ℎcr, the magnetic field dominates,

Fig. 1. One-site entanglement entropy 𝑆1 and one-tangle 𝜏1 as
a function of the magnetic field ℎ/ℎcr for the 1D and 2D quan-
tum Ising models. 2D results are multiplied by a factor of 2.
Parameters for the 1D MPS calculation: 𝑚 = 20. Parameters
for the 2D TERG calculation: 𝐷 = 4, 𝐷𝑐 = 20

Fig. 2. Concurrence of formation 𝐶𝐹 and negativity 𝑁 as a
function of the magnetic field ℎ/ℎcr for 1D and 2D quantum
Ising models. 2D results are multiplied by a factor of 2. Pa-
rameters for the 1D MPS calculation: 𝑚 = 20. Parameters for
the 2D TERG calculation: 𝐷 = 4, 𝐷𝑐 = 20

and the ground state corresponds to free spins ori-
ented according to the magnetic field.

In Fig. 1, we show the entanglement measures cal-
culated from the single-spin density matrix: one-site
entanglement entropy 𝑆1 and one-tangle 𝜏1 for the
one- and two-dimensional Ising models. It is clearly
seen that all these measures nicely peak in cusps at
the critical point. All 2D results are multiplied by a
factor of 2 for easier comparison.

In Figs. 2 and 3, we show entanglement measures
calculated from the two-spin density matrix as a func-
tion of the magnetic field: the concurrence of forma-
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Fig. 3. Comparison of local entanglement 𝑆loc dependence on
the magnetic field ℎ for the 1D and 2D quantum Ising mod-
els. Entanglement per bond 𝑆PB dependence for the 2D Ising
model. Results are renormalized to the ℎ/ℎcr dependence. Re-
sults for the 2D model are multiplied by a factor of 2. Param-
eters for the 1D MPS calculation: 𝑚 = 20. Parameters for the
2D TERG calculation: 𝐷 = 4, 𝐷𝑐 = 20

Fig. 4. Upper and lower bounds of the localizable entangle-
ment as a function of the magnetic field ℎ/ℎcr for the 1D and
2D quantum Ising models; 2D results are multiplied by a fac-
tor of 2. The shaded areas between 𝐶𝐴 and 𝑄max for 1D and
2D results correspond to possible values of the localizable en-
tanglement. Parameters for the 1D MPS calculation: 𝑚 = 20.
Parameters for the 2D TERG calculation: 𝐷 = 4, 𝐷𝑐 = 20

tion 𝐶𝐹 and negativity 𝑁 . Our TN results are in a
very good agreement with the Monte-Carlo results
by Syljuasen [11]. Of course, calculations close to the
critical point in 2D are difficult both for TN and
MC methods, but, clearly, the cusp at the critical
point can be better resolved with the TN method
used here. Close to the critical point, the MC results
of Ref. [11] are very noisy. The concurrence of forma-

tion for 1D does not peak at the critical point, but
shows an inflection. This is in agreement with the an-
alytical results presented in Ref. [7].

The negativity shows similar characteristics as the
concurrence of formation both in 1D and 2D. Concur-
rence of formation and negativity reach their maxi-
mum at the same value for the magnetic field.

The local entanglement 𝑆loc shown in Fig. 3 is
the simplest form of a block-block entanglement,
the entanglement between two neighboring spins and
their environment. We see that, both in 1D and 2D,
this measure has a peak with a cusp at the critical
point. Not surprisingly, the absolute value of 𝑆loc at
the critical point is the largest among other entangle-
ment measures we calculate from the two-site reduced
density matrix. This is due to the fact that 𝑆loc corre-
sponds to the entanglement between two neighboring
spins as one party with all other spins as another
party in contrast to the entanglement between just
two neighbor spins in the case of 𝐶𝐹 , 𝑁 , 𝐶𝐴. Similar
to the one-site entanglement entropy, 𝑆loc is small in
the ferromagnetic phase (ℎ < ℎcr), increases sharply
close to the critical point, and then decreases slowly
in the paramagnetic phase (ℎ > ℎcr).

Figure 3 also demonstrates that the bipartite en-
tanglement per bond identifies the critical point hav-
ing a peak with cusp there. This measure exemplifies
one useful advantage of the translationally invariant
TN methods in 2D: the possibility to extract informa-
tion about the state right from the TN representation,
i.e. one does not need to calculate expectation values
at potentially high numerical cost.

In Fig. 4, we compare the upper bound (concur-
rence of assistance 𝐶𝐴) and lower bound (maximal
two-site correlation function 𝑄max) of the localizable
entanglement as a function of the magnetic field. Our
results show cusps at the critical point and are in
a good agreement with those obtained within other
methods [11, 55]. Note that our MPS and PEPS im-
plementations intrinsically break the 𝑍2 symmetry,
thus leading to product states for small and large
magnetic fields.

All entanglement measures discussed above are
able to identify the critical point of the system both
in 1D and 2D. The fastest and easiest way to identify
the critical point is obtained from the entanglement
per bond. This measure explicitly requires a tensor
network representation and cannot be obtained using
other methods. As expected, all entanglement mea-
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sures approach zero for small and large transverse
magnetic fields, which indicates product states for
these limits.

In Fig. 5, we show the NN entanglement given in
terms of the concurrence of assistance 2

[︀
𝐶1D

𝐴

]︀2
NN

, the
one-tangle 𝜏1D

1 , and the NN entanglement given as a
function of the concurrence of formation 2

[︀
𝐶1D

𝐹

]︀2
NN

for the 1D quantum Ising model. By comparing 𝜏1D
1

and 2
[︀
𝐶1D

𝐹

]︀2
NN

, we see that the CKW inequality (3) is
fulfilled, and the nearest-neighbor two-particle entan-
glement corresponds to only about 25% of the total
entanglement in the critical region given by 𝜏1. At the
same time, we relate the residual 75% of entanglement
to long-range and many-way entanglement. This be-
havior is a quantitative evidence that the phase tran-
sition is characterized by the presence of a compli-
cated entanglement structure in the state. Further-
more, outside of the critical region, 2

[︀
𝐶1D

𝐹

]︀2
NN

nearly
exhausts the CKW inequality. Comparing 𝜏1D

1 and
2
[︀
𝐶1D

𝐴

]︀2
NN

, we conclude that already the nearest
neighbor entanglement contributions are larger than
the lower bound 𝜏1D

1 of how much entanglement can
be created by assistance.

Figure 6 displays the entanglement monogamy
analysis for the 2D quantum Ising model. Here, we
compare 4

[︀
𝐶2D

𝐴

]︀2
NN

, 𝜏2D
1 and 4

[︀
𝐶2D

𝐹

]︀2
NN

. The CKW
inequality is fulfilled, and the nearest-neighbor entan-
glement in the critical region corresponds to about
50% of the total entanglement. In comparison to the
1D result, we observe that the 2D nearest-neighbor
entanglement has bigger weight in the entanglement
distribution, which can be explained by the pres-
ence of a larger number of nearest neighbors of each
site. Again, similar to the 1D case, 4

[︀
𝐶1D

𝐹

]︀2
NN

nearly
exhausts the CKW inequality outside of the criti-
cal region. Again, comparing 𝜏2D

1 and 4
[︀
𝐶1D

𝐴

]︀2
NN

, we
see that the nearest-neighbor entanglement terms in
2D in general are also already larger than the lower
bound 𝜏2D

1 on how much entanglement can be created
by assistance.

3.2. XXZ model

Next, we study the spin- 12 XXZ (anisotropic Heisen-
berg) model,

𝐻XXZ =
∑︁
⟨𝑖,𝑗⟩

{︀
𝜎𝑥
𝑖 ⊗ 𝜎𝑥

𝑗 + 𝜎𝑦
𝑖 ⊗ 𝜎𝑦

𝑗 +Δ𝜎𝑧
𝑖 ⊗ 𝜎𝑧

𝑗

}︀
(10)

Fig. 5. Entanglement monogamy analysis for the 1D quantum
Ising model: comparison of the concurrence of formation 𝐶𝐹 ,
the concurrence of assistance 𝐶𝐴 and the 1-tangle 𝜏1. For
details, see the discussion in the main text. Parameters for the
1D MPS calculation: 𝑚 = 20

Fig. 6. Entanglement monogamy analysis for the 2D quantum
Ising model: comparison of the concurrence of formation 𝐶𝐹 ,
the concurrence of assistance 𝐶𝐴 and the 1-tangle 𝜏1. For
details, see the discussion in the main text. Parameters for the
2D TERG calculation: 𝐷 = 4, 𝐷𝑐 = 20. Critical value of the
magnetic field is ℎcr ≈ 3.28

as a function of the anisotropy parameter Δ. The Ha-
miltonian of this model is U(1)-symmetric (corres-
ponding to an invariance under a U(1) rotation about
the spin 𝑧 axis), as well as 𝑍2-symmetric (correspond-
ing to an invariance under a 𝜋 rotation about the spin
𝑥 or 𝑦 axis). It is SU(2)-symmetric at the Heisenberg
point Δ = 1. The ground state of the XXZ model in
different phases preserves these symmetries not de-
pending on the space dimension [16]. The 𝑍2 symme-
try implies that ⟨𝜎𝑧

𝑖 ⟩ = 0 and ⟨𝜎𝑥
𝑖 𝜎

𝑧
𝑗 ⟩ = ⟨𝜎𝑦

𝑖 𝜎
𝑧
𝑗 ⟩ = 0.
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Fig. 7. Comparison of the one-site entanglement entropy 𝑆1

and the one-tangle 𝜏1 dependence on Δ for the 1D and 2D XXZ
models. Results for 2D model are multiplied by a factor of 2.
Parameters for the 1D MPS calculation: 𝑚 = 20. Parameters
for the 2D TERG calculation: 𝐷 = 4, 𝐷𝑐 = 20

The U(1) symmetry implies that ⟨𝜎𝑥
𝑖 ⟩ = ⟨𝜎𝑦

𝑖 ⟩ = 0,
⟨𝜎𝑥

𝑖 𝜎
𝑥
𝑗 ⟩ = ⟨𝜎𝑦

𝑖 𝜎
𝑦
𝑗 ⟩, ⟨𝜎𝑥

𝑖 𝜎
𝑦
𝑗 ⟩ = 0.

The XXZ model has a richer phase structure than
the Ising model: the 1D XXZ model shows three
phases [56]. For Δ > 1, the system is in a gapped an-
tiferromagnetic phase (in particular, it corresponds
to a classical Ising antiferromagnet for large posi-
tive Δ). At Δ = 1, there is a critical point, where
an infinite-order Kosterlitz–Thouless quantum phase
transition occurs from the antiferromagnetic phase
to the XY phase. The system is equivalent here to
the spin-12 Heisenberg antiferromagnet with a gapless
ground state. In the XY phase (|Δ| < 1), the system
is gapless, and the correlation functions decay polyno-
mially. At Δ = −1, the system undergoes a first-order
quantum phase transition to a ferromagnetic gapped
phase for Δ < −1. For large negative Δ, the system
resembles an Ising ferromagnet.

In the thermodynamic limit, the spontaneous
𝑍2 symmetry breaking occurs in the ferromagnetic
(Δ < −1) and antiferromagnetic phases (Δ > 1), but
𝑍2 symmetry is preserved in the XY phase. The con-
tinuous U(1) symmetry remains unbroken in all three
phases of the 1D XXZ model at zero temperature, as
is required by the Mermin–Wagner theorem [57].

The two-dimensional XXZ model shows three dif-
ferent phases, as well [58, 59]: an antiferromagnetic
phase for Δ > 1, an XY phase for |Δ| < 1, and
a ferromagnetic phase for Δ < −1. It undergoes a
second-order phase transition at Δ = 1 [60] and a

first-order phase transition at Δ = −1 [61]. Just as
in 1D, the 𝑍2 symmetry is spontaneously broken in
the ferromagnetic (Δ < −1) and antiferromagnetic
phases (Δ > 1) and remains unbroken in the XY
phase. However, unlike in the 1D case, the continu-
ous U(1) symmetry can be broken in the XY phase
of the 2D XXZ model at zero temperature.

Numerical results for the magnetization (not pre-
sented in the text) show the U(1) symmetry breaking
in the XY phase not only for the 2D model, as ex-
pected, but also for the 1D model. We observed that
this U(1) symmetry breaking in 1D is dependent on
the chosen 𝑚 and gets slightly smaller with increasing
𝑚. It appears that one needs to use a code, which im-
plements the U(1) symmetry of the states from the
outset in order to get more precise results. We will
do this in a future project. This nonphysical break-
ing of the U(1) symmetry will be seen as well later in
various calculated entanglement measures. Note that
the translationally invariant MPS algorithm nicely
obtains the antiferromagnetic phase, despite the fact
that it uses equal tensors at each site.

In Fig. 7, we show the one-site entanglement mea-
sures: one-site entanglement entropy 𝑆1 and one-
tangle 𝜏1 for the one- and two-dimensional XXZ mo-
dels. All these measures peak in cusps at the critical
point Δ = 1 and are zero for the Δ < −1. At the
Heisenberg point in the 1D model, the ground state
is SU(2)-symmetric, and the one-site measures 𝑆1 and
𝜏1 approach their maximal possible values. Theoreti-
cally, it is expected that these quantities are equal to
1 throughout the XY phase in 1D, but, due to the
U(1) symmetry breaking present in the algorithms
(as was mentioned) above, these quantities decrease
while approaching the Δ = −1 critical point. Again
in 1D, we would obtain better results for larger 𝑚 or
by using a code, which respects the U(1) symmetry
from the outset.

In Fig. 8, we show the two-site entanglement mea-
sures: concurrence of formation 𝐶𝐹 and negativity 𝑁
for the one- and two-dimensional XXZ models. The
concurrence of formation for the 1D and 2D XXZ
models was studied in Refs. [11, 12, 16], and our re-
sults are in a very good agreement. The figure nicely
shows that 𝐶𝐹 and 𝑁 in one and two dimensions
have maxima exactly at the critical point Δ = 1. It
is known that 𝐶𝐹 is related to the ground-state en-
ergy [62], and our results correspond to the fact dis-
cussed in Ref. [59] that the ground-state energy of

620 ISSN 2071-0194. Ukr. J. Phys. 2016. Vol. 61, No. 7



Numerical Studies of Entanglement Properties

Fig. 8. Concurrence of formation 𝐶𝐹 and negativity 𝑁 as a
function of Δ for the 1D and 2D XXZ models. Results for the
2D model are multiplied by a factor of 2. Parameters for the
1D MPS calculation: 𝑚 = 20. Parameters for the 2D TERG
calculation: 𝐷 = 4, 𝐷𝑐 = 20

the XXZ model in two and three dimensions shows a
cusp at the transition point, thus leading to a cusp
in the concurrence of formation. The 1D 𝐶𝐹 and 𝑁
just have maxima at the critical point Δ = 1 without
cusps.

Negativity for the XXZ model was previously stud-
ied for a two-qubit chain [63] and for infinite tree
tensor network states [64]. Our results extend such
studies to infinite chains and infinite square-lattice
systems. Similarly to the quantum Ising model, we
find that the negativities for the 1D and 2D XXZ
models have a similar behavior as the concurrence of
formation in 1D and 2D. The 2D negativity peaks in
a cusp, and the 1D negativity just shows maximum
at the critical point Δ = 1.

In Fig. 9, we present the local entanglement 𝑆loc

for the one- and two-dimensional XXZ models. The
entanglement per bond 𝑆PB for the XXZ model is also
shown. Local entanglement for the 2D XXZ model
was studied in [13]. However, 𝑆loc requires comment:
for Δ ≫ 1, we observe that the local entanglement
reported here approaches zero, while it approaches 1
in Ref. [13]. The reason for this difference is the fact
that the ground state we consider here has broken
𝑍2 symmetry, while the authors of Ref. [13] assume
that the ground state is 𝑍2-symmetric. We see that
the local entanglements for 1D and 2D have similar
behavior as the one-site entanglement entropy 𝑆1. In
both 1D and 2D, 𝑆loc vanishes at Δ = −1 and peaks
in a cusp at Δ = 1.

Fig. 9. Local entanglement 𝑆loc and entanglement per bond
𝑆PB as a function of Δ for 1D and 2D XXZ models. Results
for 2D model are multiplied by a factor of 2. Parameters for
MPS calculation: 𝑚 = 20. Parameters for TERG calculation:
𝐷 = 4, 𝐷𝑐 = 20

Fig. 10. Bounds on the localizable entanglement as a function
of Δ for the 1D and 2D XXZ models. Results for the 2D model
are multiplied by a factor of 2. The shaded areas between 𝐶𝐴

and 𝑄max for 1D and 2D results correspond to the possible
values of localizable entanglement. Parameters for the 1D MPS
calculation: 𝑚 = 20. Parameters for the 2D TERG calculation:
𝐷 = 4, 𝐷𝑐 = 20

Entanglement per bond for the 2D XXZ model was
analyzed in [14], but the authors discuss the 𝑆PB de-
pendence on an external magnetic field with some
fixed Δ. In our studies, we have no external magnetic
field and vary the anisotropy parameter Δ. Similarly
to the quantum Ising model, 𝑆PB shows its ability to
determine critical points by vanishing at Δ = −1 and
having a peak with a cusp at Δ = 1.

In Fig. 10, we show the upper bound (concurrence
of assistance 𝐶𝐴) and lower bound (maximal two-site
correlation function 𝑄max) on the localizable entan-
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Fig. 11. Entanglement monogamy analysis for the 1D XXZ
model: comparison of the concurrence of formation 𝐶𝐹 , the
concurrence of assistance 𝐶𝐴, and the 1-tangle 𝜏1. For details,
see the discussion in the main text. Parameters for the 1D
MPS calculation: 𝑚 = 20

Fig. 12. Entanglement monogamy analysis for the 2D XXZ
model: comparison of the concurrence of formation 𝐶𝐹 , the
concurrence of assistance 𝐶𝐴, and the 1-tangle 𝜏1. For details,
see the discussion in the main text. Parameters for the 2D
TERG calculation: 𝐷 = 4, 𝐷𝑐 = 20

glement for the one- and two-dimensional XXZ mod-
els. These bounds in the two-dimensional case were
also studied in Ref. [11].

We observe that, for |Δ| < 1, the concurrence of
assistance 𝐶𝐴 and the two-point correlation function
𝑄max decrease for smaller Δ, while 𝐶𝐴 = 1 through-
out the XY phase, and 𝑄max does not drop to zero
at one of the critical points in Ref. [11]. This differ-
ence between our results and those of Ref. [11] can
be explained as follows: it was shown in Ref. [16]
that the concurrence of formation 𝐶𝐹 is unaffected
by the spontaneous U(1) symmetry breaking for the

zero-field XXZ-model. Let us consider also the con-
currence of assistance 𝐶𝐴. The formula for 𝐶𝐴 for
maintained U(1) symmetry and broken 𝑍2 symmetry
was introduced in [11, 17]:

𝐶𝐴 =
1

2

√︁
(1 + ⟨𝜎𝑧

𝑖 ⊗ 𝜎𝑧
𝑗 ⟩)2 − ⟨𝜎𝑧

𝑖 + 𝜎𝑧
𝑗 ⟩2 +

+
1

2

√︁
(1− ⟨𝜎𝑧

𝑖 ⊗ 𝜎𝑧
𝑗 ⟩)2 − ⟨𝜎𝑧

𝑖 − 𝜎𝑧
𝑗 ⟩2. (11)

Following Ref. [16], we find 𝐶𝐴 for broken U(1) sym-
metry and maintained 𝑍2 symmetry:

𝐶𝐴 =

=
1

2

(︁√︁
(1 + ⟨𝜎𝑥

𝑖 ⊗ 𝜎𝑥
𝑗 ⟩)2 − 4⟨𝜎𝑥

𝑖 ⟩2 + 1− ⟨𝜎𝑥
𝑖 ⊗ 𝜎𝑥

𝑗 ⟩
)︁
.

(12)

Obviously, 𝐶𝐴 (unlike 𝐶𝐹 ) is affected by the U(1)
symmetry breaking, as it contains ⟨𝜎𝑥

𝑖 ⟩.
When U(1) and 𝑍2 symmetries are obeyed, 𝐶𝐴 =

= 1. This should hold, e.g., for the Heisenberg point
Δ = 1. We see from our 1D results that, indeed,
𝐶𝐴(Δ = 1) ≈ 1. At the same time, our 2D results for
𝐶𝐴 for Δ = 1 do not reach the value 𝐶𝐴 = 1. This can
be explained by the fact that it is numerically hard to
converge to the point, where both ⟨𝜎𝑥

𝑖 ⟩ and ⟨𝜎𝑧
𝑖 ⟩ are

zero, thus giving 𝐶𝐴 = 1 from both equations (11)
and (12).

The discrepancy of our result for 𝑄max and the cor-
responding result from Ref. [11] can be explained by
the U(1) symmetry breaking, resulting in a nonzero
⟨𝜎𝑥

𝑖 ⟩. While ⟨𝜎𝑥
𝑖 ⟩ increases, the function 𝑄𝑥𝑥 =

= ⟨𝜎𝑥
𝑖 𝜎

𝑥
𝑗 ⟩ − ⟨𝜎𝑥

𝑖 ⟩⟨𝜎𝑥
𝑗 ⟩ (which is larger than 𝑄𝑦𝑦 and

𝑄𝑧𝑧 in the XY phase) decreases to zero.
Thus, we see that all entanglement measures dis-

cussed above are zero for Δ < −1 and also approach
zero for large positive Δ, indicating a product state
in this limit.

For the monogamy analysis in Fig. 11, we represent
the nearest neighbor entanglement, given in terms of
the concurrence of assistance 2

[︀
𝐶1D

𝐴

]︀2
NN

, one-tangle
𝜏1D
1 , and nearest neighbor entanglement given by the

concurrence of formation 2
[︀
𝐶1D

𝐹

]︀2
NN

. For XXZ model,
we are interested in two regions: the region to the
right of Δ = −1 and the region around Δ = 1. Com-
paring 𝜏1D

1 and 2
[︀
𝐶1D

𝐹

]︀2
NN

, we see that the CKW
inequality is fulfilled for all values of anisotropy pa-
rameter Δ.
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The inset in Fig. 11 shows that the NN entan-
glement 2

[︀
𝐶1D

𝐹

]︀2
NN

to the right of Δ = −1 is very
small in comparison to the 𝜏1 value. We suggest that
the long-range and many-way entanglement plays the
major role in the entanglement distribution in this re-
gion. In the critical region around Δ = 1, the nearest
neighbor two-particle entanglement 2

[︀
𝐶1D

𝐹

]︀2
NN

con-
tributes about 1/3 of the total entanglement 𝜏1D

1 . For
large Δ ≫ 1, the nearest neighbor two-particle en-
tanglement approaches 𝜏1D

1 , by signaling that the
many-way and long-range entanglement significantly
decreases.

Thus, our results can be treated as a quantita-
tive evidence that the phase transitions are charac-
terized by the presence of a complicated, including
long-range and many-way, entanglement structure of
the states.

By comparing 𝜏1D
1 and 2

[︀
𝐶1D

𝐴

]︀2
NN

, we see that the
nearest neighbor entanglement in general is larger
than the lower bound 𝜏1D

1 on how much entanglement
can be created by assistance. Only in the XY phase
in the region close to Δ = −1, the nearest neighbor
entanglement does not exceed the 𝜏1D

1 . This feature
is shown in the inset in Fig. 11.

Figure 12 shows the entanglement monogamy anal-
ysis for the 2D XXZ model. In this case, we compare
4
[︀
𝐶2D

𝐴

]︀2
NN

, 𝜏2D
1 and 4

[︀
𝐶2D

𝐹

]︀2
NN

. Again, by comparing
𝜏1D
1 and 2

[︀
𝐶1D

𝐹

]︀2
NN

, we see that the CKW inequal-
ity is fulfilled for all values of anisotropy parameter
Δ. This indicates the consistency of our numerical
data.

The inset in Fig. 12 shows that the NN entangle-
ment 2

[︀
𝐶1D

𝐹

]︀2
NN

in the region to the right of Δ = −1
contributes about 50% to 𝜏1, by signaling that the
short-range entanglement is rather large in compar-
ison to the 1D model. In the critical region around
Δ = 1, the nearest neighbor two-particle entangle-
ment 2

[︀
𝐶1D

𝐹

]︀2
NN

contributes about 1/3 of the total
entanglement 𝜏1D

1 . Similar to the 1D case, for large
Δ ≫ 1, the nearest neighbor two-particle entangle-
ment approaches 𝜏2D

1 .
Again, our results suggest that the phase transi-

tions are characterized by the presence of a compli-
cated entanglement structure of the states, including
long-range and many-way.

By comparing 𝜏2D
1 and 4

[︀
𝐶1D

𝐴

]︀2
NN

, we see that the
nearest neighbor entanglement in general is larger

than the lower bound 𝜏2D
1 on how much entangle-

ment can be created by assistance. Again, only in the
XY phase in the region close to Δ = −1, the nearest
neighbor entanglement does not exceed 𝜏1D

1 , which is
shown in the inset in Fig. 12.

4. Conclusions

We have investigated the entanglement properties of
infinite 1D and 2D spin-1/2 systems, by using tensor
network methods: the Ising model in transverse field
and the anisotropic XXZ model.

Our analysis aimed at the understanding of quan-
tum phases and QPTs in many-body systems, by us-
ing quantum information tools. This is based on the
notion that every state (or phase) of a many-body
system is characterized by a particular entanglement
structure, which may have short-range, long-range,
two-way (bipartite), three-way (tripartite), ..., mul-
tipartite constituents in different proportions. Some
quantum phases may be characterized by an ex-
tremely complicated entanglement structure, while
others just are product states (classical phases).

Different bipartite entanglement quantifiers such
as the one-site entanglement entropy and the one-
tangle, the concurrence of formation and the negativ-
ity, the bounds on localizable entanglement (the con-
currence of assistance and the two-point correlation
function), the local entanglement, and the bipartite
entanglement per bond are calculated and used in the
analysis.

An interesting aspect we analyzed is the depen-
dence of the entanglement structure on the partic-
ular symmetry in the ground state. Some measures
appear to be invariant under symmetry breaking in
the ground state and others not. We presented an an-
alytical analysis for the concurrence of assistance, as
similarly done in Ref. [16] for the concurrence of for-
mation. We showed analytically that the concurrence
of assistance depends on the U(1)-symmetry breaking
and confirmed this numerically.

Our simulations for the 2D models confirm the
observation [14] that the bipartite entanglement per
bond can determine critical points successfully. This
measure is unique for tensor network methods, be-
cause it is obtained not from the reduced density ma-
trix, as other entanglement measures we use, but di-
rectly from the tensor network representation of the
ground-state wave function.

ISSN 2071-0194. Ukr. J. Phys. 2016. Vol. 61, No. 7 623



B. Braiorr-Orrs, M. Weyrauch, M. V. Rakov

An intriguing analysis using a combination of two
types of bipartite entanglement quantifiers, namely
one-tangle and the concurrence of formation (or two-
tangle), was made. The numerical results obtained for
both models and dimensions fulfill the Coffman–Kun-
du–Wootters inequality for many spins. Through the
entanglement monogamy property formulated within
the Coffman–Kundu–Wootters inequality, we con-
clude that the obtained entanglement distribution in-
dicateds the presence of a relatively large weight of
either long-range or many-way entanglement in the
critical region for both Ising and XXZ models in both
dimensions. Our results are in a good agreement with
ideas obtained via a similar analysis, but based on
different analytical and numerical methods [9, 52].

We used TI MPS and TEBD for MPS in 1D,
TERG and CTMRG with “simple update” for PEPS
in 2D in order to model the ground states of the
chosen models. Most of our results are in a good
agreement with those obtained within theoretical pre-
dictions or other numerical methods, so we confirm
the capability of the methods to model ground state
wave functions. However, we observed that the TI
MPS algorithm and the TEBD algorithm lead to a
U(1) symmetry breaking in the XY phase for the
1D XXZ model, as soon as no symmetry conditions
are imposed in our implementations from the out-
set. Therefore, our results are at variance with those
assuming U(1) symmetry [56, 65].

Our work may be extended into several directions:
for a more complete entanglement characterization of
the models, it is important to consider other entan-
glement quantifiers and characteristics such as the fi-
delity [5], global entanglement [14], and tripartite en-
tanglement [15]. An analysis of the quantum correla-
tions beyond entanglement, e.g. the quantum discord
[66], can be even more interesting.

A natural way to extend the monogamy analy-
sis is to consider explicitly the long-ranged two-
particle entanglement terms and, moreover, to use
the sharpened Coffman–Kundu–Wootters inequali-
ties [47], e.g. by taking three-tangle terms into ac-
count [8]. Obtaining the three-tangle quantifier for a
random mixed state is a nontrivial task, and special
methods are needed for its calculation.

Mykhailo V. Rakov thanks Physikalisch-Technische
Bundesanstalt for the financial support during short
visits to Braunschweig.

APPENDIX
Entanglement Measures

In this appendix, we briefly review well-known definitions for
various bipartite entanglement measures.

The first two are the one-site entanglement entropy 𝑆1 and
one-tangle 𝜏1, which are obtained directly from the single-site
reduced density matrix. The entanglement entropy [67] for bi-
partite pure states |𝜓12⟩ is the von Neumann entropy of the
reduced density matrix

𝑆(|𝜓12⟩) = 𝒮(𝜌1) = 𝒮(𝜌2), (13)

with the reduced density matrices 𝜌1 = Tr2(𝜌12) and 𝜌2 =

Tr1(𝜌12); 𝜌12 = |𝜓12⟩⟨𝜓12|, and Tr𝑖 indicates a trace over the
subsystem 𝑖. The von Neumann entropy 𝑆 of a density matrix
𝜌 is calculated from its eigenvalues 𝜆𝑖 [67]:

𝑆(𝜌) = −𝜌 log2 𝜌 = −
∑︁
𝑖

𝜆𝑖 log2 𝜆𝑖. (14)

In the main text, we use 𝑆1 = 𝑆(𝜌1). The one-tangle [8] is
also calculated from the one-site reduced density matrix:

𝜏1(𝜌1) = 4 det 𝜌1. (15)

Next, we mention measures obtained from the two-site re-
duced density matrix 𝜌12. A simple measure of the bipartite
entanglement in a mixed state is the entanglement of forma-
tion, 𝐸𝐹 [68]. It counts the minimum number of maximally en-
tangled states (Bell states) needed to construct a given state,
by using only local operations and classical communication
(LOCC) (for details, see [67, 68]). The entanglement of for-
mation can be calculated from the concurrence of formation
𝐶𝐹 [69, 70]:

𝐸𝐹 = ℎ

⎛⎜⎝1

2
+

√︁
1− 𝐶2

𝐹

2

⎞⎟⎠, (16)

where ℎ(𝑥) denotes the binary entropy function. The concur-
rence of formation [70] is an entanglement measure for mixed
states of two qubits defined as

𝐶𝐹 (𝜌) = max(0, 𝜆1 − 𝜆2 − 𝜆3 − 𝜆4), (17)

where 𝜆1, 𝜆2, 𝜆3, 𝜆4 (in decreasing order) are the eigenvalues of
the Hermitian matrix

𝑅 =
√︁√

𝜌12𝜌12
√
𝜌12 (18)

with 𝜌12 = (𝜎𝑦 ⊗ 𝜎𝑦)𝜌*12(𝜎𝑦 ⊗ 𝜎𝑦). Here, 𝜌*12 is the complex
conjugate of the two-site density matrix 𝜌12. Alternatively, 𝜆𝑖
are the square roots of the eigenvalues of the non-Hermitian
matrix 𝜌12𝜌12. The concurrence is zero for a product state and
one for a maximally entangled state.

Another type of concurrence, the concurrence of assistance
𝐶𝐴, was introduced in connection with the entanglement of
assistance 𝐸𝐴 [71]. 𝐶𝐴 is obtained from [72]:

𝐶𝐴 = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4. (19)
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The entanglement of assistance measures the maximal bipar-
tite entanglement which can be obtained, while doing mea-
surements on the rest of spins. The idea of the entanglement
of assistance originates from the analysis of tripartite systems
described by a state |𝜓123⟩. By varying the measurement on
party 3, the “helper” 3 is able to influence the mixed state
of parties 1 and 2 [73]. In order to use 𝐸𝐴 in practice, one
must be able to perform a maximization over all different mea-
surement strategies, thus this measure is difficult to be calcu-
lated. However, the following easily calculable bounds on 𝐸𝐴

exist: the upper bounds on 𝐸𝐴 are the entropic bound, fidelity
bound, and concurrence bound 𝐶𝐴 [71]. The latter is used in
the present publication.

The localizable entanglement 𝐸𝐿 [55] is defined as the maxi-
mal amount of entanglement that can be localized (on average)
between two spins, while doing only local measurements on the
rest of spins in the environment. 𝐸𝐿 cannot be obtained from
the reduced density matrix alone, thus it is able to describe
characteristics of the wave function that are not captured by
two-point correlation functions, e.g. exotic phases like topolog-
ical orders. The calculation of 𝐸𝐿 is not a trivial task, since one
needs to optimize over all possible local measurement strate-
gies. Nevertheless, it is possible to obtain bounds on 𝐸𝐿, by
using only two-point correlation functions [55].

The upper bound for 𝐸𝐿 is the concurrence of assistance 𝐶𝐴,
and the lower bound is obtained from the maximal two-point
correlation function,

max(|𝑄𝑥𝑥
12 |, |𝑄

𝑦𝑦
12 |, |𝑄

𝑧𝑧
12 |) ≤ 𝐸𝐿 ≤ 𝐶𝐴, (20)

where 𝑄𝛼𝛽
12 (|𝜓⟩⟨𝜓|) = ⟨𝜓|𝜎𝛼

1 ⊗ 𝜎𝛽
2 |𝜓⟩ − ⟨𝜓|𝜎𝛼

1 ⊗ 12|𝜓⟩⟨𝜓|11 ⊗
𝜎𝛽
2 |𝜓⟩, and 𝜎𝛼 are the Pauli spin matrices.
The negativity [74] is an “easy-to-compute” measure defined

as

𝒩 (𝜌12) =
||𝜌Γ1 ||1 − 1

2
, (21)

where 𝜌Γ1
12 is the partially transposed density matrix 𝜌12 with

respect to subsystem 1, ||𝜌12||1 = Tr

√︁
𝜌†12𝜌12 is the trace norm,

and ||𝜌12||1 is calculated as a sum of the singular values of 𝜌12.
A simple form of the bipartite entanglement is the entan-

glement between two neighboring spins and the other spins of
the system. This measure is called local entanglement [13]. The
two-site local entanglement 𝑆loc is obtained by tracing out all
spin degrees of freedom of the system except the two nearest-
neighbour spins and then calculating the von Neumann entropy
of the resulting reduced density matrix 𝜌12,

𝑆loc = 𝑆(𝜌12). (22)

Another entanglement measure, which can be used if we
have a tensor network representation of the state available in
the conventional form, is the bipartite entanglement per bond
𝑆PB [14]. It is obtained from the bond vectors [22] connecting
two neighboring sites. The bond vectors contain essential en-
tanglement information about the system. The entanglement
per bond 𝑆PB is given by

𝑆PB = −
∑︁
𝑖

𝜆2𝑖 log2 𝜆
2
𝑖 . (23)

where the components of the bond vectors are normalized so
that

∑︀
𝑖 𝜆

2
𝑖 = 1.

Other entanglement measures like the fidelity [75], global en-
tanglement [14], and entanglement spectrum [76] with Schmidt
gap exist, which also can be used to analyze the entanglement
in many-body systems. These measures are not considered in
the present text.
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ЧИСЕЛЬНI ДОСЛIДЖЕННЯ
ВЛАСТИВОСТЕЙ ЗАПЛУТАНОСТI
В КВАНТОВИХ МОДЕЛЯХ IЗIНГА ТА XXZ

Р е з ю м е

Дослiджуються властивостi заплутаностi в нескiнченних
одно- i двовимiрних квантових моделях Iзiнга та XXZ зi
спiном 1/2. Для моделювання основних станiв моделей, що
розглядаються, використовуються методи з тензорними ме-
режами (матричнодобутковi стани (МДС) з трансляцiйною
iнварiантнiстю та прорiджування блокiв з еволюцiєю ча-
су (ПБЕЧ) для МДС, ренормгрупа тензорної заплутаностi
(РГТЗ) та ренормгрупа кутових трансферних матриць (РГ-
КТМ) з “простим корегуванням” для проецiйованих попар-
но заплутаних станiв (ППЗС)). Рiзнi мiри заплутаностi, як-
от: одночастинкова ентропiя заплутаностi, one-tangle, узго-
дження формування та пiдтримки, негативнiсть та заплу-
танiсть на один зв’язок, порiвнюються на предмет їхньої
здатностi вiдображати “структуру” фазових дiаграм моде-
лей (наприклад, фазовi переходи). Вивчається зв’язок мiж
симетрiєю основних станiв та їхньою заплутанiстю, а також
через моногамнiсть заплутаностi аналiзується заплутанiсть
короткої та далекої дiї.
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