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The processes of change of a surface morphology and formation of a stationary pattern at
the ion sputtering are considered. A linear stability analysis was carried out, and the range
of parameters, at which the patterning is possible, is determined. Assuming the existence of
a stabilization parameter that involves the redistribution of knocked-out atoms, all evolution
scenarios for the surface are obtained numerically. The dynamics of defects is numerically
analyzed for every structure type, and the corresponding time dependences are plotted.
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1. Introduction

The study of modifications of the surface morphol-
ogy in a material sputtered by high-energy particles
is a challenging task for modern statistical physics
and materials science. Sputtering is one of the most
widespread methods applied to the fabrication of thin
films and semiconductors and the etching of speci-
mens at the manufacture of integrated circuits and
packing devices. It is widely used in micro- and na-
noelectronics. It was shown experimentally and theo-
retically that, under certain conditions, nanostruc-
tures can emerge on the surface in the course of
sputtering [1–10]. Numerous experimental researches
made it possible to establish the key parameters that
govern the behavior of a specimen at the sputter-
ing. These are the ion beam flux, energy of incident
ions, sputtering angle, and temperature. The exper-
imental researches of the self-organization processes
on the surfaces of metals and semiconductors showed
that, depending on the energy of an incident particle
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flux, some stationary patterns can emerge at sput-
tering. At ion energies of 102–105 eV, these are the
waves or ripples characterized by a certain orienta-
tion. Whereas, at ion energies below 102 eV, these
are isotropic patterns of the nanodot or nanohole
type [11–17]. The height of obtained surface patterns
changes from 0.1 to 1 𝜇m. The characteristic dimen-
sions of wave patterns vary from 3.5 to 25 nm, and
those of nanoholes from 35 to 250 Å [17].

The main theoretical approaches to the study of
modifications in the surface morphology are based
on the Kardar–Parisi–Zhang model [18]. It was de-
veloped by Wolf and Villain [19] and generalized by
Kuramoto and Sivashinsky [20]. The described model
was applied for the first time by Bradley and Harper,
while studying the growth of surface structures at
the sputtering [3]. More detailed researches were per-
formed by Cuerno, Barabasi, and Makeev [4, 5]. It
was shown that the processes of pattern formation in
such systems can be satisfactorily described by the
Kuramoto–Sivashinsky equation for the height field
on the irradiated surface. The introduction of fluctu-
ations for the surface height field in the form of an ad-
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ditive Langevin source with the intensity proportional
to the particle flux allows the statistical origin of sur-
face effects to be studied and the main driving pro-
cesses of morphological instabilities to be determined
for various evolution stages. In the general case, the
noise source can also be multiplicative and responsi-
ble, e.g., for the sputtering angle spread [21]. In the
simplest case, the generalized Bradley–Harper model
predicts the formation of only three types of surface
patterns. However, if the nonlinearity and anisotropy
are taken into account, the spectrum of possible pat-
tern types becomes wider [22].

It is worth noting that the standard solution of the
Kuramoto–Sivashinsky equation, which describes the
surface profile in the irradiated system and the corre-
sponding patterns, does not predict the formation of
a plane surface and the formation of stable patterns
that do not change in time. However, this opportu-
nity can be obtained by introducing a component that
governs the surface relaxation [23, 24]. In the case
of sputtering, this component makes allowance for
a possible redistribution of some knocked out atoms
over the surface. The evolution of this system in the
isotropic case was considered earlier in [25].

The issue concerning the study of possible types of
stationary patterns and their properties in case where
the dynamics of surface heights at the sputtering is
described by the nonlinear anisotropic Kuramoto–
Sivashinsky equation with an additive noise, which
simulates the fluctuations of the surface height field,
remains open. The corresponding anisotropy is a re-
sult of the different values of surface tension coef-
ficient. Below, we will analyze the dynamics, types,
and conditions of formation of stationary patterns on
the surface, as well as the specific features in the in-
fluence of the surface dissipation on the created pat-
terns. In addition, we will study the evolution of sur-
face defects.

The work consists of six sections. In Section 2, a
model of the system used for the study of variations
in the surface morphology taking relaxation processes
into account is described. In Section 3, the linear
analysis of the stability is carried out. In addition, the
phase diagrams, which determine the regions, where
the plane and structured surfaces are realized, and
the conditions for the stationary pattern formation
are obtained. The results of numerical simulation and
the diagrams of parameters of the system for various
types of structures are presented in Section 4. The

evolution of structural defects is analyzed in Section
5. Section 6 contains conclusions.

2. Model

Let us consider a two-dimensional substrate, every
point of which at the time moment 𝑡 is given by the
height field ℎ(r, 𝑡), where the vector r determines the
coordinates of a point on the surface. Let us assume
that this surface is sputtered by heavy ions of inert
gases. In this case, there occurs a series of collisions,
so that some atoms are knocked out from their posi-
tions and quit the material. As a result, the surface
morphology changes, which can result in the forma-
tion of patterns. Below, we assume that the surface
is located in the plane 𝑥 − 𝑦, and the ion flux prop-
agates in the plane 𝑥 − 𝑧, with the incidence angle
𝜃 ∈ [0, 𝜋/2] reckoned from the normal to the uneroded
surface. Then, as was shown in work [26], the energy
obtained by the surface in the bulk at its bombard-
ment at a certain point characterized by the coordi-
nates 𝑟(𝑥, 𝑦) is described by the Gaussian distribu-
tion:

𝐸(r) = (𝜖/(2𝜋)3/2𝜎𝜇2) exp(−𝑧2/2𝜎2−(𝑥2+𝑦2)/2𝜇2),

(1)

where 𝜖 is the kinetic energy of an incident ion, and
𝜎 and 𝜇 are the distribution widths in parallel and
perpendicularly, respectively, to the sputtering flux.

Expression (1) determines the energy of one inci-
dent ion. Actually, the surface is bombarded by a uni-
form flux 𝐽 of ions that simultaneously reach the sur-
face. Therefore, the rate of surface erosion depends on
the total energy of an incident flux, being determined
by the expression

𝑣 = 𝑝

∫︁
ℛ

drΦ(r)𝐸(r), (2)

with the summation carried out over the energy dis-
tributions for all ions. In expression (2), Φ(𝑥, 𝑦, ℎ) de-
scribes the corrections for local surface slopes in the
case of a uniform flux 𝐽 and looks like Φ(𝑥, 𝑦, ℎ) =

= 𝐽 cos
(︁
arctan

[︁√︀
(∇𝑥ℎ)2 + (∇𝑦ℎ)2

]︁)︁
, and 𝑝 is a

proportionality coefficient depending on the target
material properties [26, 27]. Hence, the dynamic
equation for the height field ℎ(𝑥, 𝑦, 𝑡) looks like 𝜕𝑡ℎ ≃
≃ −𝑣(𝜃)

√︀
1 + (∇ℎ)2, where 0 < 𝜃 < 𝜋/2. In the lin-

ear approximation, we obtain
𝜕𝑡ℎ = −𝑣0 + 𝛾∇𝑥ℎ+ 𝜈𝑥∇2

𝑥𝑥ℎ+ 𝜈𝑦∇2
𝑦𝑦ℎ, (3)
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where the quantity 𝑣0 is the rate constant for surface
erosion, 𝛾 = 𝛾(𝜃) describes the dependence of the
erosion on the inclination angle of a bombarding ion
flux, and 𝜈𝑥,𝑦 = 𝜈𝑥,𝑦(𝜃) are the effective coefficients
of surface tension induced by the erosion processes
along each direction. The anisotropy of the obtained
system is determined by different values of erosion
propagation coefficients 𝜈𝑥 and 𝜈𝑦 along the directions
𝑥 and 𝑦, respectively.

Equation (3) has to be generalized by introducing
the surface flux into consideration. This parameter is
given by the expression 𝑗𝑠 = 𝐾∇(∇2ℎ), where 𝐾 > 0
is the temperature-dependent constant of the surface
diffusion. The account for the first nonlinear terms
in the series expansion of the rate 𝑣 in the height
gradient allows the dynamic equation for the height
field ℎ′ = ℎ+ 𝑣0𝑡 [3, 4] to be obtained in the form

𝜕ℎ

𝜕𝑡
= 𝛾

𝜕ℎ

𝜕𝑥
+ 𝜈𝑥

𝜕2ℎ

𝜕𝑥2
+ 𝜈𝑦

𝜕2ℎ

𝜕𝑦2
+

+
𝜆𝑥

2

(︂
𝜕ℎ

𝜕𝑥

)︂2
+

𝜆𝑦

2

(︂
𝜕ℎ

𝜕𝑦

)︂2
−𝐾∇4ℎ+ 𝜉(𝑥, 𝑦, 𝑡), (4)

where, for convenience, the prime sign is omitted, and
the additive noise 𝜉 is introduced. We suppose that
the Langevin noise source in Eq. (4) has the Gaussian-
like properties, i.e.

⟨𝜉(r, 𝑡)⟩ = 0,

⟨𝜉(r, 𝑡)𝜉(r′, 𝑡)⟩ = 2Σ𝛿(r− r′)𝛿(𝑡− 𝑡′),
(5)

where Σ determines the intensity of surface height
fluctuations. As was shown in work [5], the coeffi-
cients in Eq. (4) look like

𝛾 = 𝐹0
𝑠

𝑓2

(︀
𝑎2𝜎𝑎

2
𝜇𝑐

2(𝑎2𝜎 − 1)− 𝑎4𝜎𝑠
2
)︀
, (6)

𝜈𝑥 = 𝐹0
𝑎2𝜎
2𝑓3

(︀
2𝑎4𝜎𝑠

4 − 𝑎4𝜎𝑎
2
𝜇𝑠

2𝑐2 + 𝑎2𝜎𝑎
2
𝜇𝑠

2𝑐2 − 𝑎4𝜇𝑐
4
)︀
,

(7)

𝜈𝑦 = −𝐹0
𝑐2𝑎2𝜎
2𝑓

, (8)

𝜆𝑥 = 𝐹0
𝑐

2𝑓4

(︂
𝑎8𝜎𝑎

2
𝜇𝑠

4(3 + 2𝑐2)+

+4𝑎6𝜎𝑎
4
𝜇𝑐

4𝑠2 − 𝑎4𝜎𝑎
6
𝜇𝑐

4(1 + 2𝑠2)−

− 𝑓2(2𝑎4𝜎𝑠
2 − 𝑎2𝜎𝑎

2
𝜇(1 + 2𝑠2))− 𝑎8𝜎𝑎

4
𝜇𝑠

2𝑐2 − 𝑓4

)︂
, (9)

𝜆𝑦 = −𝐹0
𝑐

2𝑓2

(︀
𝑎4𝜎𝑠

2 + 𝑎2𝜎𝑎
2
𝜇𝑐

2 − 𝑎4𝜎𝑎
2
𝜇𝑐

2 − 𝑓2
)︀
. (10)

In expressions (6)–(10), the quantity 𝐹0 is defined
as follows:

𝐹0 ≡ 𝐽𝜀𝑝𝑎

𝜎𝜇
√
2𝜋𝑓

exp

(︃
−𝑎2𝜎𝑎

2
𝜇𝑐

2

2𝑓

)︃
.

The other quantities are 𝑎𝜎 ≡ 𝑎
𝜎 , 𝑎𝜇 ≡ 𝑎

𝜇 , 𝑠 = sin 𝜃,
𝑐 = cos 𝜃, and 𝑓 = 𝑎2𝜎𝑠

2 + 𝑎2𝜇𝑐
2.

The Kuramoto–Sivashinsky equation written in the
form (4) has no solutions that would characterize
a plane surface and describe the formation of sta-
tionary patterns. As a rule, the surface height and
the pattern arrangement permanently and chaotically
change, although the dimensions and the number of
patterns remain constant [28]. However, the station-
ary state can be reached by introducing a linear term
−𝛼ℎ into the equation, which will govern the pro-
cesses of height relaxation on the irradiated surface
owing to the redistribution of atoms knocked out from
it [29]. Hence, the stationary anisotropic Kuramoto–
Sivashinsky equation reads

𝜕ℎ

𝜕𝑡
= −𝛼ℎ+ 𝛾

𝜕ℎ

𝜕𝑥
+ 𝜈𝑥

𝜕2ℎ

𝜕𝑥2
+ 𝜈𝑦

𝜕2ℎ

𝜕𝑦2
+

+
𝜆𝑥

2

(︂
𝜕ℎ

𝜕𝑥

)︂2
+

𝜆𝑦

2

(︂
𝜕ℎ

𝜕𝑦

)︂2
−𝐾∇4ℎ+ 𝜉(𝑥, 𝑦, 𝑡). (11)

All parameters are determined by the target mate-
rial and irradiation conditions, namely, the ion pene-
tration depth 𝑎, angle of sputtering flux incidence 𝜃,
flux 𝐽 , and kinetic energy of ions 𝜀.

3. Linear Analysis of Stability

Let us perform a linear analysis of stability to de-
termine the ranges of parameters, in which either the
plane surface is formed or the pattern formation takes
place. For this purpose, we should average Eq. (11)
over the noise. As a result, we obtain an equation for
the first statistical moment in the form

𝜕

𝜕𝑡
⟨ℎ⟩ = −𝛼⟨ℎ⟩+ 𝛾

𝜕

𝜕𝑥
⟨ℎ⟩+ 𝜈𝑥

𝜕2

𝜕𝑥2
⟨ℎ⟩+ 𝜈𝑦

𝜕2

𝜕𝑦2
⟨ℎ⟩+

+
𝜆𝑥

2

⟨(︂
𝜕ℎ

𝜕𝑥

)︂2⟩
+

𝜆𝑦

2

⟨(︂
𝜕ℎ

𝜕𝑦

)︂2⟩
−𝐾∇4⟨ℎ⟩, (12)

where the properties of noise (5) are taken into ac-
count.
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Let us consider the stability of a linearized system.
In this case, all nonlinear terms are neglected, and we
obtain

𝜕

𝜕𝑡
⟨ℎ⟩ = −𝛼⟨ℎ⟩+ 𝛾

𝜕

𝜕𝑥
⟨ℎ⟩+ 𝜈𝑥

𝜕2

𝜕𝑥2
⟨ℎ⟩+

+ 𝜈𝑦
𝜕2

𝜕𝑦2
⟨ℎ⟩ −𝐾∇4⟨ℎ⟩. (13)

In the deterministic case or in the presence of an
additive white noise, the linearized equation is known
to allow a solution in the form

⟨ℎ(𝑥, 𝑦, 𝑡)⟩ = 𝐴 exp[𝑖(𝑘𝑥𝑥+ 𝑘𝑦𝑦 − 𝜔𝑡) + 𝑟𝑡].

Substituting it into Eq. (13), we find the following
expressions for the frequency 𝜔 and the stability pa-
rameter 𝑟:

𝜔 = −𝛾(𝜃)𝑘𝑥,

𝑟 = −𝛼− 𝜈𝑥𝑘
2
𝑥 − 𝜈𝑦𝑘

2
𝑦 −𝐾(𝑘2𝑥 + 𝑘2𝑦)

2.
(14)

As was shown in work [29], the stabilization param-
eter 𝛼 has a certain critical value 𝛼𝑐, at which sta-
tionary patterns can be formed in the system con-
cerned. Hence, the surface becomes plane at 𝛼 >
𝛼𝑐; otherwise, the spatial patterns become unsta-
ble. The analysis of the corresponding dependences
𝛼(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) demonstrates that the number of unsta-
ble modes substantially decreases, when 𝛼 tends to its
critical value 𝛼𝑐. The realization of a plane surface ev-
idently corresponds to etching processes. In the gen-
eral case, the quantity 𝛼𝑐 depends on the energy of
incident ions, incidence angle, and temperature of the
irradiated surface.

The corresponding dependences of 𝛼𝑐 on the main
parameters of the system are depicted in Fig. 1. The
parameter regions, in which the formation of spatially
modulated patterns is possible, are located below the
plotted surfaces. In the regions above the surfaces, we
obtain a plane homogeneous surface. From Fig. 1, a,
one can see that, provided the ratio between the pen-
etration depth and the transverse width of the spread
is fixed, the behavior of the critical value 𝛼𝑐 on the
sputtering angle is not monotonic, so that 𝛼𝑐 has
a maximum. From the monotonically decreasing de-
pendence 𝛼𝑐(𝜃, 𝑎𝜇) exhibited in Fig. 1, b, it follows
that, when the incidence angle and the quantity 𝑎𝜇
grow at a fixed spread width 𝜎, the stationary pat-
terns are realized at small 𝛼𝑐-values.

4. Numerical Simulation

Let us consider the behavior of the anisotropic non-
linear model (11) in the cases 𝜆𝑥 ̸= 0 and 𝜆𝑦 ̸= 0 by
setting 𝛾 = 0.

The change of signs of the parameters 𝜈𝑥, 𝜈𝑦, and
𝜆𝑥 is known to result in a variation of the created
surface patterns. The parameter 𝜈𝑦 is always negative
(𝜈𝑦 < 0), as is seen from expression (10), whereas the
other parameters can change their sign. The corre-
sponding phase diagrams are depicted in Fig. 2. Let
us consider the diagram exhibited in Fig. 2, a, which
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Fig. 1. Phase diagrams for the linear analysis of the stability
of the system at 𝑎𝜇 = 1.0 (a) and 0.1 (b). For all panels, 𝐹0 =

= 1, 𝐾 = 2
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Fig. 2. Phase diagrams for the nonlinear anisotropic system
at 𝑎𝜇 = 0.25 (a), 𝑎𝜎 = 1.0 (b), and 𝜃 = 0.2 (c). For all panels,
𝐹0 = 1, 𝐾 = 2, and Σ = 1

was plotted for 𝑎𝜇 = 0.25. One can see that the
(𝑎𝜎, 𝜃)-plane is divided into seven regions, in which
patterns with different morphologies are realized. The
solid curve marks the change of the 𝜈𝑥-sign, the
dashed one corresponds to the change of the 𝜆𝑥-sign,
and the dotted one was calculated at 𝜆𝑦 = 0. The
dash-dotted curve that separates the regions at the
diagram bottom was determined from the condi-
tion of the simultaneous change of the 𝜆𝑥- and 𝜆𝑦-
signs. According to the diagram shown in Fig. 2, b
plotted at 𝑎𝜎 = 1.0, one can observe the variation
of the existence domains for the patterns of various
types. The dependences of the dimensionless lengths
at a fixed sputtering angle, which determine the
change of the corresponding pattern types and the
domains of their existence, can be seen in Fig. 2, c. It
is worth noting that if 𝑎𝜎 ≤ 𝑎𝜇, only the first three
regions–𝐴, 𝐵, and 𝐶–are realized [21, 25].

Let us analyze the surface dynamics in the obtained
regions of the phase diagrams shown in Fig. 2. Using a
numerical simulation, we intend to solve Eq. (11) on a
discrete 𝑁 ×𝑁 lattice, where 𝑁 = 256, with periodic
boundary conditions. The lattice period ℓ = 1, and
the step of integration over the time Δ𝑡 = 0.005.

4.1. Behavior of the System
in Regions A, B, and C

Let us analyze the behavior of the system in regions
𝐴, 𝐵, and 𝐶, for which 𝑎𝜎 ≤ 𝑎𝜇. The surface evolu-
tion, when the value of the parameter 𝛼 is close to
the critical point, is shown in Fig. 3. Here, the dark
regions correspond to smaller height field values, and
the light regions to larger ones. One can see that the
stationary patterns are developed in time in the re-
gion 𝐴 (𝜈𝑥 < 0, 𝜆𝑥 < 0, and 𝜆𝑦 < 0). They look
like holes confined by walls and have the hexagonal
symmetry slightly violated by point defects. The re-
gion of parameters 𝐵 (𝜈𝑥 < 0, 𝜆𝑥 > 0, and 𝜆𝑦 < 0) is
characterized by the formation of a linear surface pat-
tern with defects. In region 𝐶 (𝜈𝑥 > 0, 𝜆𝑥 > 0, and
𝜆𝑦 < 0), we obtain similar linear surface patterns, but
with a shorter period and the absence of defects. The
width of the corresponding interface region (Fig. 4)
grows most rapidly for region 𝐶 and most slowly for
region 𝐵.

Let us consider the influence of the parameter
𝛼, which governs the redistribution of knocked-out
atoms, on the behavior of the anisotropic nonlinear
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t=0 t=100 t=500t=250
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C

Fig. 3. Evolution of the anisotropic nonlinear system in a
vicinity of the critical stabilization parameter 𝛼𝑐 in regions
𝐴, 𝐵, and 𝐶. The dimensions of each region equal 𝑁 × 𝑁 =

= 256× 256

system in more details. For this purpose, let us com-
pare the surface evolution at 𝛼 = 0 and 𝛼 ̸= 0. The
created surface patterns for those regions in the ab-
sence of the stabilization parameter 𝛼 were analyzed
earlier in works [3–5, 21]. The left panels in Fig. 5
demonstrate the known solution of Eq. (11) obtained
at 𝛼 = 0. The obtained patterns are unstable, and the
surface height permanently changes. However, the ac-
count of surface relaxation processes allows the sta-
tionary state to be obtained in a vicinity of the critical
point 𝛼𝑐 (right panels in Fig. 5).

4.2. Behavior of the System
in Regions D, E, F, and G

Now, let us consider the behavior of the nonlinear
anisotropic system in regions 𝐷, 𝐸, 𝐹 , and 𝐺 at
𝛼 ̸= 0. As one can see from Fig. 6, in a vicinity of the
critical point 𝛼𝑐, linear patterns are formed on the
surface in all examined regions. The difference con-
sists in the period of created surface patterns and
the presence of surface defects. In region 𝐷 (𝜈𝑥 > 0,
𝜆𝑥 > 0, and 𝜆𝑦 > 0), patterns with the shortest pe-
riod and the lowest linear defect presence are formed,
which persist in time. A similar pattern with defects,
but with a longer pattern period is formed in region
𝐹 (𝜈𝑥 < 0, 𝜆𝑥 < 0, and 𝜆𝑦 > 0). Regions 𝐸 (𝜈𝑥 > 0,
𝜆𝑥 < 0, and 𝜆𝑦 > 0) and 𝐺 (𝜈𝑥 < 0, 𝜆𝑥 > 0, and
𝜆𝑦 > 0) are characterized by the total absence of any
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Fig. 4. Dynamics of the interface width for regions of param-
eters 𝐴, 𝐵, and 𝐶

Fig. 5. Comparison of the evolution of the system at 𝛼 = 0

and in a vicinity of the critical point 𝛼𝑐 in regions 𝐴, 𝐵, and 𝐶

linear defects on the linearly structured stationary
surface; but the pattern period is longer in region 𝐸.

5. Research of Defects on the Surface

Let us analyze the evolution of the defect number. For
this purpose, let us consider the defect concentration
𝑁def/𝑁

2, where 𝑁def is the total number of surface
defects at every time moment, and 𝑁 the discrete
lattice size (in our case, 𝑁 = 256).

If the patterns formed on the surface have the
hexagonal symmetry (region 𝐴), the number of sur-
face defects was determined, by using an algorithm
developed for the analysis of two-dimensional systems
obtained by the molecular dynamics method [30]. In
this case, the patterns can be represented as atoms,
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D

t=0 t=200 t=3000t=1000

E

F

G

Fig. 6. Evolution of the anisotropic nonlinear system in a
vicinity of the critical stabilization parameter 𝛼𝑐 in regions 𝐷,
𝐸, 𝐹 , and 𝐺. The dimensions of each region equal 𝑁 × 𝑁 =

= 256× 256

and the local crystalline order is given by the ori-
entation of hexagons, the vertices of which give the
pattern positions. As was shown in work [30], the ori-
entation angle of the 𝑗-th atom, 𝜑𝑗 ∈ [0, 𝜋/3], can be
determined from the formula

Ψ𝑗 =
∑︁

𝑘∈𝑛𝑛(𝑗)

exp[6𝑖𝜃𝑗𝑘] = |Ψ𝑗 | exp6𝑖𝜑𝑗 .

Two atoms are considered to be neighbors, if
|𝑟𝑗 − 𝑟𝑘| < 1.25𝑣, where 𝑣 is the position of the first
peak in the two-particle correlation function, and 𝜃𝑗
is the angle between the vector r𝑗 − r𝑘 and the axis
𝑥. To determine the number of defects, analogously
to the search for atoms with packing defects, the dis-
order degrees are calculated for every atom using the
formula

𝐷𝑗 = 2
∑︁

𝑘∈𝑛𝑛(𝑗)

[1− cos 6(𝜑𝑗 − 𝜑𝑘)].

While studying the linear defects, let us apply the
approach developed for the search for dislocations
and disclinations in nematics [31]. For this purpose,
we have to define such order criteria as the director
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Fig. 7. Evolution of the surface defect concentration at the
ion sputtering for regions 𝐴, 𝐵, and 𝐶 (a) and 𝐷, 𝐸, 𝐹 , and
𝐺 of parameters (b)

field �̂�(r) = ∇ℎ(r)
|∇ℎ(r)| and the corresponding nematic or-

der parameter 𝑄𝛼𝛽 = 𝑄0

[︀
�̂�𝛼�̂�𝛽 − 1

2𝛿𝛼𝛽
]︀
. It is known

that, in the case of two-dimensional systems, the role
of order parameter is played by the quantity cos 2𝜃,
where �̂� = (cos 𝜃, sin 𝜃). In other words, there ex-
ists a certain vector order parameter B̂ defined by
the expressions �̂�𝑥 = �̂�2

𝑥 − �̂�2
𝑦 and �̂�𝑦 = 2�̂�𝑥�̂�𝑦.

It is known that all defects are formed from ± 1
2 -

disclinations in the field of the director �̂�, which
transforms into the ±1-charge perturbation for the
field B̂. The perturbation is determined by the for-
mula 𝐴 =

∑︀
𝛼,𝛽(∇𝛼𝐵𝛽)

2. The expression for 𝐴 can
be written in another form,

𝐴 =
∑︁
𝛼,𝛽

(∇𝛼𝑛𝛽)
2 = (∇𝛼𝜙)

2,
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where 𝜙(r, 𝑡) = 2𝜃(r, 𝑡) and 𝜃(r) = arctan
(︁

�̂�𝑦(r)
�̂�𝑥(r)

)︁
.

The nematic order parameter 𝑄𝛼𝛽 is completely de-
termined by the angle 𝜙(r) = 2𝜃(r). Thus, knowing
the derivative ∇𝜙(r), we can determine the quantity
𝐴(r) = |∇𝜙(r)|2. Near a defect, the value of B̂ dras-
tically changes. Therefore, in the region far from de-
fects, we have 𝐴(r) ≈ 0. The value of 𝐴(𝑟) drastically
grows near a defect location place. So, if the quantity
𝐴(𝑟) becomes rather large at a certain point r, this
is a point where a defect is located.

The described algorithm helps us to detect the re-
gions where the director field considerably changes
and register the corresponding points. However, those
points still have to be grouped into patterns. The el-
ements of the same pattern are located very close to
one another, but not obligatorily in neighbor cells.
Therefore, it is expedient to introduce a filter param-
eter 𝑎0, which gives a distance between the points. If
the distance between the points is shorter than 𝑎0,
they are considered to belong to the same pattern. To
distinguish between such point clusters, the Hoshen–
Kopelman method was used [32].

The obtained time dependences for the defect con-
centration in various 𝐴 to 𝐹 regions are shown in
Fig. 7. One can see that, in regions 𝐴, 𝐵, 𝐷, and 𝐹 ,
the defect concentration decreases in time, but the
defect number does not vanish. At the same time,
in regions 𝐸 and 𝐺, the defect concentration falls
down to zero, when the surface reaches the station-
ary regime. In region 𝐶, the defect concentration does
not decrease in time, because it always equals zero. It
is worth noting that defects of only one characteristic
type, dislocations, were identified for linear patterns,
whereas disclinations and grain boundaries were not
observed at the ion sputtering.

6. Conclusions

The behavior of a surface subjected to the ion sput-
tering under conditions where stationary surface pat-
terns are formed has been studied, by using the non-
linear anisotropic Kuramoto–Sivashinsky equation.
To reach the stationary regime in the behavior of the
irradiated surface, relaxation processes taking place
owing to the redistribution of knocked-out atoms are
made allowance for. The linear analysis of the sta-
bility of this system is carried out, and the corre-
sponding phase diagrams were plotted. They divide
the region of main control parameters into sections,

in which either the plane surface is realized or sur-
face patterns emerge. The phase diagrams determin-
ing the change of pattern morphology on the surface
are obtained within the nonlinear model. It is found
that at most seven different regions of parameters
may exist for the nonlinear anisotropic system.

On the basis of this information and using a nu-
merical simulation, the Kuramoto–Sivashinsky equa-
tion is solved on a square discrete lattice with peri-
odic boundary conditions, and the types of stationary
patterns are determined for all regions in the phase
diagram. It is found that two types of stationary pat-
terns can be formed on the surface: hexagonal and
linear ones. The linear surface formations in different
regions differ by their dimensions and defect concen-
tration. Using two types of algorithms for each pat-
tern type, the dynamics of defects on the surface is
analyzed. It is found that the concentration of defects
decreases in time and, under certain conditions, van-
ishes. It is also found that there exists a region of
parameters, in which the defect-free pattern may be
formed.

The results of this work can be useful for study-
ing the structuring processes at the ion sputtering of
materials and to manufacture devices, in which the
structures of a given geometry are used.
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ФОРМУВАННЯ СТIЙКИХ ПОВЕРХНЕВИХ
СТРУКТУР ПРИ IОННОМУ РОЗПОРОШЕННI
В РАМКАХ АНIЗОТРОПНОЇ МОДЕЛI
КУРАМОТО–СIВАШИНСЬКОГО

Р е з ю м е

Розглянуто процеси змiни морфологiї поверхнi з утворе-
нням стацiонарних структур при iонному розпорошеннi.
Проведено лiнiйний аналiз на стiйкiсть та визначено обла-
стi параметрiв, у яких можливе структуроутворення. Чи-
сельно отримано всi можливi картини поведiнки поверхнi
за умови наявностi параметра стабiлiзацiї, що враховує пе-
рерозподiл вибитих атомiв. Методами числового аналiзу ви-
конано аналiз динамiки дефектiв для кожного типу поверх-
невих структур та побудовано вiдповiднi часовi залежностi.

596 ISSN 2071-0194. Ukr. J. Phys. 2016. Vol. 61, No. 7


