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CHOICE OF THE WAVE FUNCTION
FOR THE HELIUM GROUND STATE FOR PRECISION
CALCULATIONS OF QUASISTATIONARY
STATE PARAMETERSPACS 32.10 Hg, 32.80 Aa

In the problems of ionization of atoms by photons and electrons, the necessity of choosing the
multiparametric wave functions for the description of an atom in the ground state has been
substantiated. The helium atom is taken as an example. The energies, widths, and partial
widths of the lowest 1𝑃 autoionizing state of helium, located above the excited ions formation
threshold, are calculated. The results obtained with the use of different ground state wave func-
tions are compared. It is shown that, contrary to the total widths of autoionizing states, the
partial widths are substantially different for different ground-state wave functions.
K e yw o r d s: autoionizing states, quasistationary states, overlapping configurations, multi-
parametric wave functions.

1. Introduction

In modern calculations of the cross-sections of atomic
ionization by photons, electrons, or other particles,
the wave function of the initial state is selected, as
a rule, in the same approximation as the wave func-
tion of the final state, as was shown in Burke’s [1]
and Luke’s [2] articles. In paper [3], Fano plausibly
proved that, when analyzing the processes of excita-
tion of two-particle states for a considerable number
of atoms of chemical elements in the ground state,
it is necessary, first of all, to consider multielectron
correlations of the type 𝑛ℓ2. This circumstance is re-
lated to the fact that if there are only two electrons in
a single atomic shell, the correlations in the ground
state become important.
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In the case where the ionization cross-sections are
calculated for two-electron systems (e.g., for a he-
lium atom above the excited ions formation threshold,
namely, He+ (𝑁 = 2)) this problem has a principal
meaning. It is so because, in this problem, together
with the one-particle channel 1𝑠𝜀ℓ, the interaction
with double-excited channels 2𝑠𝜀𝐿, 2𝑝𝜀(𝐿 − 1), and
2𝑝𝜀(𝐿+1) has to be taken into consideration. The ex-
citation amplitudes for those channels are determined
by both their coupling with channel 1𝑠𝜀ℓ in the final
state and the multielectron correlations in the ground
state.

The problem of the ground-state wave function cal-
culation for the model system considered here, which
is described by the projection of the Hamiltonian onto
the subspace of the 1𝑠, 2𝑠, and 2𝑝 states of He+ ion,
corresponds to the solution of the problem of the cou-
pling of three closed channels. In this case, the sys-
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tem of equations of the coordinate representation of
closed coupled channels method transforms into the
Hartree–Fock equations in the multiconfiguration ap-
proach [4]. The solution of this system of equations
within the method of interacting configurations cor-
responds to the problem of finding the eigenvalues
for the matrix of an infinite rank real symmetric op-
erator. In the case of two-electron systems, this task
corresponds to the solving of the multiconfiguration
problem with regard for account the 𝑛ℓ2 configura-
tions for the corresponding atom.

2. Role of the Wave Function
Choice for the Ground State of an Atom
in the Atomic Ionization Problem. Choice
of a Wave Function for the Ground
State of He Atom

In the problems of atomic ionization, the choice of a
function for the ground state of an atom is very im-
portant. A criterion for the choice of that or another
wave function for the ground state is the energy value
for the atom in the ground state, which is obtained,
by using the corresponding wave function. The coin-
cidence between the calculated value of the ground
state energy and its experimental value is not a per-
manent occasion. In the case of precision calculations
of autoionizing state parameters, this factor will have
a principal importance. Therefore, while carrying out
such calculations, a wave function such that exactly
reproduces the experimental value of the ground-state
energy should be selected.

The most known class of functions used for the
ground states of helium-like systems contains the
wave functions presented in Hylleraas’ papers [5, 6],

Ψ0 =
∑︁
𝑛,ℓ,𝑚

𝐶𝑛ℓ𝑚𝜓𝑛ℓ𝑚, 𝜓𝑛ℓ𝑚 =
𝑒−𝑠/2𝑠𝑛𝑡ℓ𝑢𝑚

(𝑛+ ℓ+𝑚+ 2)!
. (1)

Here, ℓ = 0, 2, 4, ... . A detailed description of the
parameters and their choice can be found in works
[5, 6]. These functions describe well the energy of
He atom in the ground state. However, their appli-
cation in ionization problems is complicated, to a
great extent, owing to the amplitude calculation pro-
cedure. For the most part, the relevant difficulties are
associated with finding the integrals containing a mul-
tiplier of the type |r1 − r2|𝑚 in the integrand. In the
case where the coordinate representation is used in
the framework of closed coupled channels method,

the amplitudes are calculated once at every energy
point.

A detailed analysis of the parameter calculation
procedure following Hylleraas’ technique was carried
out in work [7], where Fock’s modification [8] was
taken into account. In work [7], it was shown that,
already in the sixth approximation, we have

Ψ6 = Ψ4 +
[︀
𝑐5𝑢

5𝑟−2 + 𝑐6(5𝑠+ 𝑡2/𝑠)𝑟3
]︀
𝑒−𝑧𝑆, (2)

where

Ψ4 = 𝑒−𝑧𝑆
{︀
1 + 𝑢/2 +𝐴+ 𝑐4𝑢

2𝑅1𝑟
−3
}︀
, (3)

and

𝐴 ≡ (1 + 𝑢/2)𝑅1

[︀
𝑐1𝑟

−1 + 𝑐2 + 𝑐3𝑟
]︀
.

This ground-state function gives the energy value
that is close to the experimental one, namely, 𝐸 =
= 2.903557 a.u.

As a rule, these are the Hylleraas multiparameter
wave functions that are used in calculations (in partic-
ular, 6-, 8-, or even 56-parameter functions). Unlike
this type of variational functions, the wave functions
obtained in the Hartree–Fock multiconfiguration ap-
proximation do not reproduce ground-state energies
that would be close to the experimental value for He
(see, e.g., works [4, 9] and references therein). We
consider the works by Pekeris (see, e.g., work [10]
and references therein) as the most exact analysis
of multiparameter variational wave functions for He
atom. However, the application of those functions in
large-scale calculations is extremely difficult and cum-
bersome.

In another approach, the wave functions of the
ground state for two-electron systems are analyzed in
the framework of the Monte Carlo method. For ex-
ample, in work [11], this was done for a function that
looks like

Ψ49 = (1 + 𝑃12) exp

(︂∑︀
𝑘=0 𝑎𝑘𝑟

𝑛
1 𝑟

ℓ
2𝑟

𝑚
12∑︀

𝑘=0 𝑏𝑘𝑟
𝑛
1 𝑟

ℓ
2𝑟

𝑚
12

+𝐵

)︂
, (4)

where

𝐵 ≡ 𝑐(𝑟21 + 𝑟22 − 𝑟212) ln[𝑟
2
1 + 𝑟22]− 𝛼𝑟1 − 𝛽𝑟2.

In this approximation, the exact value of energy for
the ground state of helium was obtained. However, let
us return to the approaches that are closer to ours.

It is more convenient to seek a solution of the
Schrödinger equation for the ground state of He in the
class of functions with separable variables. Among
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them, the most known functions describing the He
ground state are the analytic Hartree–Fock wave
function in the one-configuration approximation,

𝜒(𝑟) = 𝑁𝑟

(︀
𝑒−𝜉𝑟 + 0, 6𝑒−𝜁𝑟

)︀
, (5)

where the meaning of the parameters 𝜉 and 𝜁 are
explained in works [12,13], and the Eckart correlation
function

𝜒(𝛼𝑟) = 𝑁𝛼𝑒
−𝛼𝑟, 𝛼 = 2/𝑎0, (6)

where 𝑎0 is the Bohr radius. The coefficients 𝑁𝑟 and
𝑁𝛼 in these functions are determined by normalizing
the wave function Ψ0(r1, r2) to 1. However, the func-
tions of this type are used only for rough estimations.

According to work [14], the wave function of the
ground state has the form

Ψ0(r1, r2) =
∑︁
ℓ

𝐵ℓ𝑌
00
ℓ (r12)𝐹ℓ(𝑟1, 𝑟2), (7)

where 𝑌 00
ℓ can be presented as follows:

𝑌 00
ℓ =

∑︁
𝜇

𝑌ℓ𝜇(𝜃1, 𝜙1)𝐶
00
ℓ𝜇ℓ−𝜇𝑌ℓ𝜇(𝜃2, 𝜙2). (8)

In formulas (7) and (8), the following notations are
used: 𝐵ℓ is the expansion coefficient, r𝑖 is the ra-
dius vector of the 𝑖-th electron, 𝑟𝑖 is its magnitude,
𝐶𝐿𝑀

ℓ𝜇ℓ−𝜇 ≡ ⟨ℓ𝜇ℓ− 𝜇|𝐿𝑀⟩ are the coefficients of vector
summation, and 𝐹ℓ(𝑟1, 𝑟2) are radial functions that
describe the contributions of 𝑛ℓ2 configurations to the
ground state. In the general case, the trial functions
𝐹ℓ(𝑟1, 𝑟2) can be chosen arbitrarily. The only require-
ments consist in the linear independence of the func-
tions in the chosen set and in a correct asymptotics
of the solution. In this case, the functions 𝐹ℓ(𝑟1, 𝑟2)
can be written as follows:

𝐹ℓ(𝑟1, 𝑟2) =

=
∑︁
𝑚,𝑛

𝐴ℓ
𝑚𝑛

[︀
𝜒𝛼
𝑚(𝑟1)𝜒

𝛽
𝑛(𝑟2) + 𝜒𝛼

𝑛(𝑟2)𝜒
𝛽
𝑚(𝑟1)

]︀
, (9)

where 𝜒𝛼
𝑛 are arbitrary continuous functions of one

variable, and 𝛼 and 𝛽 are parameters that are
determined on the basis of the variational princi-
ple. Generally speaking, when calculating the func-
tions 𝐹ℓ(𝑟1, 𝑟2), the variational principle can be omit-
ted, and the functions 𝜒𝛼

𝑛 can be taken in the form of

a Coulomb basis. But, in this case, a series expansion
of types (7) and (9) converges very slowly, so that a
large number of terms should be involved in order to
achieve the required accuracy.

At the same time, the application of the varia-
tional principle for the choice of parameters 𝛼 and 𝛽
considerably accelerates the convergence of expansion
(9). In work [14], Tweed formulated a one-parameter
variational problem for the expansion of type (7). He
suggested to seek the functions 𝜒𝛼

𝑛(𝑟) in the form

𝜒𝛼
𝑛(𝑟) = 𝑟𝑛 exp

(︁
−𝛼
2
𝑟
)︁
, 𝛼 = 𝛽, (10)

where 𝛼 is determined from the condition that the
ground-state energy has to be minimum. The coeffi-
cients 𝐴ℓ

𝑚𝑛 are calculated by diagonalizing the ma-
trix of the corresponding Hamiltonian. Depending on
the number of multipoles that are taken into account
in expansion (7), the class of Tweed wave functions
includes 21-, 31-, and 41-parameter functions. They
contain (𝑛𝑝)2, (𝑛𝑑)2, and (𝑛𝑓)2 configurations, re-
spectively. For the calculation procedure, we used the
formula

𝐹ℓ(𝑟1, 𝑟2) =

=
∑︁
𝑚,𝑛

𝐴ℓ𝑚𝑛(𝑟
𝑚
1 𝑟

𝑛
2 + 𝑟𝑛1 𝑟

𝑚
2 ) exp

[︂
−1

2
𝑘(𝑟1 + 𝑟2)

]︂
, (11)

which was proposed in Tweed’s work [14].

3. Calculation Technique

The diagonalization approximation makes it possi-
ble to trace how, i.e., into which channels and with
which ratios, the autoionizing states with the energy
exceeding the threshold for the formation of excited
He+ ions decay. This possibility is especially actual,
because it allows one to reveal the resonances that
practically decay into a single (arbitrary) channel,
so that the coupling of channels can be neglected
in this case. The method can also reveal the reso-
nances that decay into several channels, so that the
account for the channel coupling for them is manda-
tory. Generally speaking, the relevant information
can be obtained from the data analysis, by comparing
the positions and the widths of resonances obtained in
various approximations. However, the absence of the
data for partial decay widths makes this information
incomplete.
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In order to calculate the oscillator strength of the
transition (or the ionization cross-sections), it is nec-
essary to determine the ionization amplitude, which
can be written, in the general case, in the form

𝑇|0⟩→|𝜆𝐸⟩ =
√︀
𝐶(𝐸)

⟨
Ψ

𝐸(−)
𝜆

⃒⃒
𝑡
⃒⃒
0
⟩
, (12)

where |0⟩ = |𝑛0𝐿0𝑆0⟩ means the wave function of the
initial atomic state, and 𝐶(𝐸) is a kinematic multi-
plier. Let the wave functions |𝜆𝐸⟩ satisfy the corre-
sponding asymptotic conditions [15]. Then the wave
function Ψ

𝐸(−)
𝜆 (r1, r2) can be written as follows:⃒⃒⃒

Ψ
𝐸(−)
𝜆 (r1, r2)

⟩
= |𝜆𝐸⟩+

+
∑︁
𝑚

𝑉𝑚𝜆(𝐸)

𝐸 − 𝐸𝑚(𝐸) + 𝑖Γ𝑚(𝐸)/2

(︁
Φ̃𝐸

𝑚

⟩
− 𝑖

⃒⃒
𝜒𝐸
𝑚

⟩︀)︁
, (13)

where⃒⃒⃒
Φ̃𝐸

𝑚

⟩
= |𝜙𝑐

𝑚⟩+ 1

𝜋

∞∫︁
0

⃒⃒⃒
𝜒𝐸′

𝑚

⟩
𝐸 − 𝐸′𝑑𝐸′,⃒⃒

𝜒𝐸
𝑚

⟩︀
= 𝜋

∑︀
𝜆 𝑉𝑚𝜆(𝐸)

⃒⃒
𝜒𝐸
𝑚

⟩︀
,

(14)

and the subscript 𝜆 stands for a set of quantum num-
bers that is determined by a relation for the asymp-
totics (see work [16]).

Substituting expressions (13) and (14) into
Eq. (12), we determine the partial amplitudes of the
resonant ionization in the form:

𝑇|0⟩→|𝜆𝐸⟩ = 𝑡dir𝜆 (𝐸) +
∑︁
𝑚

𝐻𝑚𝜆(𝐸)

𝜀𝑚(𝐸) + 1
, (15)

where

𝜀𝑚(𝐸) =
2[𝐸 − 𝐸𝑚(�̃�𝑚)]

Γ𝑚(�̃�𝑚)
,

and Γ𝑚(�̃�𝑚) are the widths of autoionizing states.
Expression (15) divides the amplitude into two terms.
They describe the contributions made by the direct
and resonant processes, respectively. The quantities
in formula (15) are defined by the following relations:

𝑡dir𝜆 (𝐸) =
√︀
𝐶(𝐸)

⟨︀
𝜆𝐸

⃒⃒
𝑡
⃒⃒
0
⟩︀
,

𝐻𝑚𝜆(𝐸) = 2𝑉𝑚𝜆(𝐸) [𝑡𝑚(𝐸)− 𝑖𝜏𝑚(𝐸)] Γ−1
𝑚 (𝐸),

𝑡𝑚(𝐸) =
√︀
𝐶(𝐸)

⟨
Φ̃𝐸

𝑚

⃒⃒
𝑡
⃒⃒
0
⟩
,

𝜏𝑚(𝐸) =
√︀
𝐶(𝐸)

⟨︀
𝜒𝐸
𝑚

⃒⃒
𝑡
⃒⃒
0
⟩︀
.

(16)

The partial differential oscillator strength for the
transition into the ionization channel 𝜆 is propor-
tional to the squared absolute value of expression
(15). The total ionization cross-section is calculated,
by summing all partial contributions over the super-
script 𝜆.

The states of helium in the continuous spectral in-
terval, where autoionizing states converging to the
third threshold are located, were described by a wave
function [15] that involves all interactions between a
finite number of basic configurations corresponding
to two-electron excitations in the region between the
second and third thresholds (closed channels) and an
electron with the positive energies in the ground and
first excited states of He+ ion (open channels). In cal-
culations, the states with the total momentum 𝐿 ≤ 3
of He atom were taken into account.

For each momentum 𝐿, the subspace of closed
channels was filled with 20 configurations. The Cou-
lomb wave functions with the charge 𝑧 = 2 were used
as basis functions for their description. Then the sub-
space of those states was preliminarily diagonalized.
The subspace of open channels included three confi-
gurations for 𝐿 = 0 and four configurations for other
momenta 𝐿, which corresponds to the inclusion of
channels corresponding to the ground and first ex-
cited states of He+ ion: 1𝑠𝜀𝐿, 2𝑠𝜀𝐿, 2𝑝𝜀(𝐿− 1), and
2𝑝𝜀(𝐿+ 1).

When calculating the differential characteristics of
the autoionizing state excitation, it is often required
to determine the partial widths of the decay of a qua-
sistationary state into several channels. Let us intro-
duce the partial width similarly to how this is done
in the diagonalization approximation, i.e., in terms of
the decay matrix element:

Γ̃𝑚(𝐸) = 2𝜋
∑︁
𝜆

⃒⃒⃒⟨
𝑚

⃒⃒⃒
𝑉
⃒⃒⃒
𝜆𝜀
⟩⃒⃒⃒ 2

, 𝜆 ∈ 𝛼. (17)

The total width corresponds to 𝛼 = Δ(Γ̃𝑚(𝐸)) =
= ΓΔ𝑚(𝐸). Note that the total width of a quasis-
tationary state and the ionization cross-section are
calculated by summing all partial contributions over
the subscript 𝜆. In this case, 𝛼 determines a selected
group of channels from all the channels that were
taken into account in the given problem.

In the case of interacting quasistationary states, the
partial widths are introduced analogously:

Γ̃𝑗(𝐸) = 2𝜋
∑︁
𝜆

𝑉𝑚𝛼(𝐸)𝑉 *
𝑚𝜆(𝐸), (18)
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Parameters of the lowest 1𝑃 autoionizing state of He
in the energy interval above the threshold for the formation of excited ions

𝐸, eV Γ, eV 1𝑠𝑒𝑠, eV 2𝑠𝑒𝑝, eV 2𝑝𝑒𝑝, eV 2𝑝𝑒𝑑, eV

Work [17], 6-parameter Hylleraas function 69.89 0.150 0.893(−3) 0.918(−1) 0.313(−1) 0.257(−1)
41-parameter Tweed function 69.92 0.165 0.312(−3) 0.945(−1) 0.320(−1) 0.389(−1)
6-parameter Hylleraas function 69.90 0.154 0.871(−3) 0.814(−1) 0.315(−1) 0.407(−1)
8-parameter Hylleraas function 69.81 0.158 0.852(−3) 0.836(−1) 0.310(−1) 0.425(−1)
Work [11], Monte Carlo function 69.91 0.159 0.476(−3) 0.991(−1) 0.235(−1) 0.359(−1)

where 𝑗 is the index of partial channel. However, the
total width Γ𝑚(𝐸) determined from the diagonaliza-
tion of the complex matrix does not coincide with the
sum of partial widths, as was in case (17).

4. Results of Calculations

To describe the ground state of He atom, one of the
coauthors of this paper and our colleagues in works
[15, 16] used the 41-parameter Tweed wave function
[14]. They obtained exact values for the parameters
of those autoionizing states of He atom that are lo-
cated above the excited ions formation threshold. The
analysis of how the choice of the ground state func-
tion affects the partial characteristics of autoionizing
states is of interest.

The partial widths of autoionizing states were cal-
culated in work [17] in the framework of the problem
of helium photoionization. The calculations were car-
ried out with the use of the 6-parameter Hylleraas
function in the diagonalization approximation.

The method of interacting configurations in the
complex-number representation was used in works
[15, 16], besides the diagonalization approxima-
tions. The results obtained in all approximations that
followed from it were presented. However, the au-
thors used the 41-parameter Tweed function [14] in
all calculations as the ground state function for He
atom. On the other hand, the concept of partial
width has a meaning only in the diagonalization ap-
proximation. Therefore, the results of calculations in
the diagonalization approximation [15, 16] are also
quoted. However, in so doing, we used various wave
functions for the ground state of He atom.

The table contains parameters for the lowest
1𝑃 state in the problem of photoionization of He
atom above the corresponding excited ions formation
threshold. The performed analysis testifies that the

parameters of quasistationary states depend on the
choice of the wave function of the ground state.

5. Conclusions

1. Theoretical calculations of resonant cross-sections
in photoionization problems and the analysis of res-
onance profiles provide the information concerning
a structure of atomic systems and allow theoretical
models to be selected more adequately. The choice
of the wave function for the ground state affects the
values of corresponding resonance parameters.

2. Researches in the excitation energy interval
above the second ionization threshold or above the
threshold for the formation of excited He+ ions are
similar in many aspects to earlier researches, which
were carried out in the energy interval between the
first and second ionization thresholds. However, now
the research possibilities are more ample. In par-
ticular, the spectrum of examined characteristics is
richer. This fact is a result of a capability to fill
both the ground and excited states of residual ions
with photons and electrons in the course of the di-
rect and resonant ionization processes. Later, those
ions transit into the ground state, by emitting a pho-
ton. Hence, there appears a possibility to study the
profiles of resonances that converge to the thresh-
old 𝑁 = 3 of He atom both in the total and par-
tial ionization cross-sections, by considering that the
account for the channel coupling in these processes
is obligatory. The choice of a wave function for the
ground state affects directly the values of correspond-
ing matrix elements in the expression for the ioniza-
tion cross-section.

3. The results of calculations show that, contrary
to the total widths of autoionizing states, the partial
widths are substantially different for different wave
functions selected for the ground state. From Table 1,
one can see that the total widths are also different,
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if they are calculated on the basis of different wave
functions, although in the framework of the same ap-
proach. However, the partial widths turn out to differ
even more strongly at that. This fact is explained by
the channel coupling, whose account can be differ-
ent. In order to elucidate the corresponding causes,
the further research is required.

The authors are grateful to the Referee for the
remarks, whose account allowed us to improve the
paper.
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В.М.Симулик, Т.М. Заяць, Р.В.Тимчик

ВИБIР ХВИЛЬОВОЇ ФУНКЦIЇ ОСНОВНОГО
СТАНУ Не ДЛЯ ПРЕЦИЗIЙНИХ ОБЧИСЛЕНЬ
ПАРАМЕТРIВ КВАЗIСТАЦIОНАРНИХ СТАНIВ

Р е з ю м е

На прикладi атома Не обґрунтовано необхiднiсть вибору
багатопараметричних хвильових функцiй для опису основ-
ного стану атома в задачах iонiзацiїї атомiв фотонами та
електронами. Обчислюються енергiї, ширини i парцiаль-
нi ширини найнижчого 1𝑃 автоiонiзацiйного стану Не, що
знаходиться вище порога утворення збуджених iонiв. По-
рiвнюються результати, отриманi при використаннi рiзних
хвильових функцiй основного стану. Показано, що на вiд-
мiну вiд повних ширин автоiонiзацiйних станiв, парцiальнi
ширини є суттєво рiзними для рiзних хвильових функцiй
основного стану.
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