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A special case where the Lippmann–Schwinger integral equation for the partial wave two-body
Coulomb transition matrix for likely charged particles with a negative energy has an analytical
solution has been considered. Analytical expressions for the partial 𝑠-, 𝑝-, and 𝑑-wave Coulomb
transition matrices for repulsively interacting particles at the ground-state energy have been
derived, by using the Fock method of stereographic projection of the momentum space onto a
four-dimensional unit sphere.
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1. Introduction

The Coulomb transition matrix (𝑡-matrix) character-
izes all properties of a two-body system with the
Coulomb interaction. In the momentum space, it is
a scalar function of three variables: the initial and fi-
nal momenta, and the energy. The presence of bound
states for a system with opposite charges results
in the appearance of energy poles in the 𝑡-matrix,
whose residuals are connected with wave functions
of the system in those states. In the case of repul-
sive Coulomb interaction between two charges of the
same sign, the corresponding 𝑡-matrix has no energy
poles. At positive energies, the analytical properties
of the Coulomb 𝑡-matrix–in the case of short-range
interaction potentials, they manifest themselves as a
singular branch point with a cut along the positive
energy axis–and the corresponding unitarity condi-
tions on the energy surface and beyond it are more
complicated (see review [1]).

Knowledge of the two-body Coulomb transition
matrix is especially important when studying the
properties of atomic and nuclear systems consisting
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of three or more charges with the use of the Fad-
deev [2,3] and Faddeev–Yakubovsky [4] integral equa-
tion methods. For such systems, three-body Faddeev
equations are known to become non-Fredholm al-
ready below the decay threshold. The extraction of
the main Coulomb singularity and the regularization
of three-body equations in this case were proposed
by Veselova [5] with the help of the known Gorshkov
procedure for two-body systems [6]. The problem of
regularization of the integral equations for four-body
systems containing charged particles was considered
in work [7]. Earlier information about the properties
of the two-body off-shell Coulomb transition matrix
can be found in review [1].

There are a number of representations for the two-
body Coulomb transition matrix [8–16]. Of special in-
terest is the study of the Coulomb transition ma-
trix, by taking advantage of the Coulomb system
symmetry in the Fock four-dimensional Euclidean
space [17]. Earlier, the Fock method was applied in
Bratsev–Trifonov’s [10] and Schwinger’s [12] works
in order to derive the Coulomb Green’s function in
the one-parameter integral form. Expressions for the
three-dimensional Coulomb transition matrix with
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explicitly singled out transferred momentum and en-
ergy singularities were obtained in works [14] (for neg-
ative energies, 𝐸 < 0) and [15] (for zero and positive
energies, 𝐸 ≥ 0).

For the first time, a possibility to derive an analyt-
ical expression for partial wave two-body Coulomb
transition matrices at the ground bound state en-
ergy was examined for oppositely charged particles
(with the attractive interaction) in the previous work
[18]. In this work, on the basis of the Fock method of
stereographic projection of the three-dimensional mo-
mentum space onto a four-dimensional unit sphere
[17], the form of the partial wave Coulomb transi-
tion matrices for a system of two likely charged bod-
ies (with the repulsive Coulomb interaction) is ana-
lyzed. The consideration begins in Section 2, where
the expression obtained earlier in work [14] for the
three-dimensional Coulomb transition matrix at the
negative energy is used. In Section 3, a general ex-
pression for the off-shell partial wave Coulomb 𝑡-
matrix at the negative energy is derived. Section 4
is devoted to the study of the partial wave Coulomb
𝑡-matrix at the ground bound state energy, and it
is shown that a simple analytical expression for the
partial wave 𝑡-matrix can be obtained in this case.
Explicit analytical expressions for the 𝑠-, 𝑝-, and 𝑑-
wave components of the Coulomb 𝑡-matrix are pre-
sented. Final remarks and conclusions are made in
Section 5.

2. Three-Dimensional Coulomb
Transition Matrix at the Negative Energy
with Explicitly Singled Out Singularities

The three-dimensional Coulomb transition matrix
⟨k|𝑡(𝐸)|k′⟩ satisfies the inhomogeneous Lippmann–
Schwinger integral equation

⟨k|𝑡(𝐸)|k′⟩ = ⟨k|𝑣|k′⟩+

+

∫︁
𝑑k′′

(2𝜋)3
⟨k|𝑣|k′′⟩ 1

𝐸 − 𝑘′′2

2𝜇

⟨k′′|𝑡(𝐸)|k′⟩. (1)

Here, the free term ⟨k|𝑣|k′⟩ is determined by the
Coulomb interaction potential 𝑣(𝑟) = 𝑞1𝑞2/𝑟, where
𝑞𝑖 is the charge of the 𝑖-th particle (𝑖 = 1, 2), and
𝑟 is the distance between particles 1 and 2. In the
momentum space, this term looks like

⟨k|𝑣|k′⟩ = 4𝜋𝑞1𝑞2
|k− k′|2

, (2)

where k and k′ are relative momenta corresponding
to the radius-vectors r and r′, respectively, in the co-
ordinate space. The kernel of the integral equation (1)
is a product of the operator of Coulomb interaction
potential (2) and the free Green operator

⟨k|𝑔0(𝐸)|k′⟩ = (2𝜋)3𝛿(k− k′)

𝐸 − 𝑘2

2𝜇

, (3)

where the quantity 𝐸 is the total energy of the relative
motion of particles 1 and 2, and 𝜇 = 𝑚1𝑚2/(𝑚1+𝑚2)
is their reduced mass.

In this work, the consideration is confined to the
problem of Coulomb scattering of two off-energy-shell
likely charged particles in the case of negative energy

𝐸 = −~2𝜅2

2𝜇
. (4)

The consideration is based on the solution of the in-
tegral equation (1) for the three-dimensional off-shell
Coulomb transition matrix with the explicitly singled
out transferred momentum and energy singularities,
which were obtained by us earlier [14]:

⟨k|𝑡(𝐸)|k′⟩ = 8𝜋𝑞1𝑞2𝜅
2

(𝑘2 + 𝜅2)(𝑘′2 + 𝜅2) sin𝜔
×

×
[︂
cot

𝜔

2
− 𝜋𝛾 cos 𝛾𝜔 − 𝛾 sin 2𝛾𝜔 ln

(︁
sin

𝜔

2

)︁
+ .

+2𝜋𝛾 𝑐(𝛾) cot 𝛾𝜋 sin 𝛾𝜔 + 𝛾 cos 𝛾𝜔

𝜔∫︁
0

𝑑𝜙 sin 𝛾𝜙×

× cot
𝜙

2
+ 2𝛾2 sin 𝛾𝜔

𝜋∫︁
𝜔

𝑑𝜙 sin 𝛾𝜙 ln
(︁
sin

𝜙

2

)︁]︂
, (5)

where

𝛾 =
𝜇𝑞1𝑞2
~2𝜅

(6)

is the dimensionless Coulomb parameter, and ~ the
reduced Planck’s constant. The variable 𝜔 in Eq. (5)
stands for the angle between two 4-dimensional unit
vectors 𝑒 ≡ (e, 𝑒0) and 𝑒′ ≡ (e′, 𝑒′0) in the four-
dimensional Euclidean space introduced by Fock [17]:

e =
2𝜅k

𝜅2 + 𝑘2
, 𝑒0 =

𝜅2 − 𝑘2

𝜅2 + 𝑘2
,

e′ =
2𝜅k′

𝜅2 + 𝑘′2
, 𝑒′0 =

𝜅2 − 𝑘′2

𝜅2 + 𝑘′2
,

(7)
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cos𝜔 = 𝑒 𝑒′ = e e′ + 𝑒0 𝑒
′
0. (8)

The three-dimensional vectors k and k′ lie in a hyper-
plane, which is a stereographic projection of a sphere
with the unit radius. The variable 𝜔 is determined by
the relation

sin2
𝜔

2
=

𝜅2|k− k′|2

(𝑘2 + 𝜅2)(𝑘′2 + 𝜅2)
, 0 ≤ 𝜔 ≤ 𝜋. (9)

The function 𝑐(𝛾) in Eq. (5) looks like

𝑐(𝛾) =
1

2

⎛⎝1− 1

𝜋

𝜋∫︁
0

𝑑𝜙 sin 𝛾𝜙 cot
𝜙

2

⎞⎠ (10)

or, in terms of the gamma, Γ(𝑥), and digamma,
𝜓(𝑥) ≡ 𝑑 ln Γ(𝑥)/𝑑𝑥, functions [18],

𝑐(𝛾) = 𝜃(−𝛾) + sin 𝛾𝜋

2𝜋

[︂
𝜓

(︂
|𝛾|+ 1

2

)︂
−

− 𝜓

(︂
|𝛾|
2

)︂
− 1

|𝛾|

]︂
, (11)

where 𝜃(𝑥) is the Heaviside step function,

𝜃(𝑥) =

{︂
1 for 𝑥 > 0,

0 for 𝑥 < 0.

The first three terms in the square brackets in
Eq. (5) contain transferred momentum singulari-
ties: |k − k′|−2, |k − k′|−1 and ln{𝜅|k − k′|/[(𝑘2 +
+𝜅2)1/2(𝑘′2 + 𝜅2)1/2]}, respectively. The other three
terms in Eq. (5) are smooth functions of |k− k′|.

The fourth term in expression (5) contains energy
singularities. They arise only in the case of attractive
Coulomb potential (with opposite electric charges,
𝑞1𝑞2 < 0), when the Coulomb parameter 𝛾 accepts
negative integer values corresponding to the spectrum
of bound states of a two-particle system with the en-
ergies

𝐸𝑛 = −𝜇(𝑞1𝑞2)
2

2~2𝑛2
, 𝑛 = 1, 2, 3, ... . (12)

According to Eqs. (4) and (6), the corresponding val-
ues of the parameter 𝜅 and the Coulomb parameter
𝛾 are equal to

𝜅𝑛 =

√
−2𝜇𝐸𝑛

~
=
𝜇|𝑞1𝑞2|
~2𝑛

and

𝛾𝑛 =
𝜇𝑞1𝑞2
~2𝜅𝑛

=
𝑞1𝑞2
|𝑞1𝑞2|

𝑛, (13)

respectively. At those points, 𝛾 = 𝛾𝑛 = −𝑛, so that
the function cot 𝛾𝜋 has pole singularities, and the
function 𝑐(𝛾) differs from zero, 𝑐(−𝑛) = 1.

In the case of repulsive Coulomb potential (𝛾 > 0),
the expression for 𝑐(𝛾) equals zero at positive integer
𝛾-values, 𝑐(𝑛) = 0, and the fourth term in Eq. (5) is
finite and equal to

𝜌(𝛾) ≡ 2𝜋𝛾𝑐(𝛾)

tan 𝛾𝜋

⃒⃒⃒⃒
𝛾→𝑛

= 𝜌𝑛, (14)

where

𝜌𝑛 = 2𝑛𝑐′(𝑛), 𝑐′(𝑛) = − 1

2𝜋

𝜋∫︁
0

𝑑𝜙 cos𝑛𝜙 cot
𝜙

2
(15)

or, using the function 𝛽(𝑥) = 1
2

[︀
𝜓
(︀
𝑥+1
2

)︀
− 𝜓

(︀
𝑥
2

)︀]︀
,

𝜌𝑛 = (−1)𝑛 [2𝑛𝛽(𝑛)− 1]. (16)

The ultimate expression for 𝜌𝑛 looks like

𝜌𝑛 = (−1)𝑛 − 2𝑛 ln 2− 2𝑛

𝑛∑︁
𝑚=1

(−1)𝑚

𝑚
. (17)

3. Partial Wave Component of the Coulomb
Transition Matrix with Negative Energy

Using the partial-wave method and expanding the
matrix elements of the Coulomb potential and the
transition matrix with a negative energy in series in
Legendre polynomials 𝑃𝑙(𝑥),

⟨k|𝑣|k′⟩ =
∞∑︁
𝑙=0

(2𝑙 + 1)𝑣𝑙(𝑘, 𝑘
′)𝑃𝑙(k̂ k̂′),

⟨k|𝑡(𝐸)|k′⟩ =
∞∑︁
𝑙=0

(2𝑙 + 1)𝑡𝑙(𝑘, 𝑘
′;𝐸)𝑃𝑙(k̂ k̂′),

(18)

where k̂ is a unit vector along the vector k, and k̂ k̂′ =
= cos 𝜃, the one-dimensional integral equation for the
partial wave component of the transition matrix can
be written in the form

𝑡𝑙(𝑘, 𝑘
′;𝐸) = 𝑣𝑙(𝑘, 𝑘

′)+

+

∞∫︁
0

𝑑𝑘′′𝑘′′
2

2𝜋2
𝑣𝑙(𝑘, 𝑘

′′)
1

𝐸 − 𝑘′′2

2𝜇

𝑡𝑙(𝑘
′′, 𝑘′;𝐸). (19)
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The inhomogeneous term and the kernel of this equa-
tion contain a partial wave component of the Cou-
lomb interaction potential,

𝑣𝑙(𝑘, 𝑘
′) =

1

2

𝜋∫︁
0

𝑑𝜃 sin 𝜃 𝑃𝑙(cos 𝜃)⟨k|𝑣|k′⟩. (20)

According to definition (18), the partial wave com-
ponent of the Coulomb transition matrix 𝑡C𝑙 (𝑘, 𝑘

′;𝐸)
equals

𝑡𝑙(𝑘, 𝑘
′;𝐸) =

1

2

𝜋∫︁
0

𝑑𝜃 sin 𝜃 𝑃𝑙(cos 𝜃) ⟨k|𝑡(𝐸)|k′⟩. (21)

Taking into account that expression (5) for the three-
dimensional Coulomb transition matrix ⟨k |𝑡(𝐸)|k′⟩
depends on the angle 𝜔 between the unit vectors 𝑒
and 𝑒′ in the four-dimensional Fock space, it is con-
venient to change in Eq. (21) from the integration
over the angle 𝜃 between the vectors k̂ and k̂′ to the
integration over the angle 𝜔. From expression (9) de-
scribing the relationship between the angles 𝜃 and 𝜔,
it follows that

cos 𝜃 =
𝜉

𝜂
− 1

𝜂
sin2

𝜔

2
=

2𝜉 − 1 + cos𝜔

2𝜂
,

sin 𝜃 𝑑𝜃 =
1

2𝜂
sin𝜔 𝑑𝜔,

(22)

where

𝜉 =
𝜅2(𝑘2 + 𝑘′

2
)

(𝑘2 + 𝜅2)(𝑘′2 + 𝜅2)
,

𝜂 =
2𝜅2𝑘𝑘′

(𝑘2 + 𝜅2)(𝑘′2 + 𝜅2)
.

(23)

Then formula (21) can be rewritten in the form

𝑡𝑙(𝑘, 𝑘
′;𝐸) =

1

4𝜂
×

×
𝜔𝜋∫︁

𝜔0

𝑑𝜔 sin𝜔 𝑃𝑙

(︂
2𝜉 − 1 + cos𝜔

2𝜂

)︂
⟨k|𝑡(𝐸)|k′⟩. (24)

The integration limits in Eq. (24) are determined by
the expressions

𝜔0 = 2arcsin
√︀
𝜉 − 𝜂, 𝜔𝜋 = 2arcsin

√︀
𝜉 + 𝜂, (25)

so that

cos𝜔0 = 1− 2𝜉 + 2𝜂,
cos𝜔𝜋 = 1− 2𝜉 − 2𝜂,

sin𝜔0 = 2
√
𝜉 − 𝜂

√
1− 𝜉 + 𝜂,

sin𝜔𝜋 = 2
√
𝜉 + 𝜂

√
1− 𝜉 − 𝜂.

(26)

Substituting expression (5) for the three-dimensional
transition matrix into Eq. (24), we obtain the follow-
ing formula for the partial wave Coulomb transition
matrix 𝑡𝑙(𝑘, 𝑘′;𝐸) at 𝐸 < 0:

𝑡𝑙(𝑘, 𝑘
′;𝐸) =

𝜋𝑞1𝑞2
𝑘𝑘′

𝜔𝜋∫︁
𝜔0

𝑑𝜔 𝑃𝑙

(︂
2𝜉 − 1 + cos𝜔

2𝜂

)︂
×

×
{︁
cot

𝜔

2
− 𝜋𝛾 cos 𝛾𝜔 − 𝛾 sin 2𝛾𝜔 ln

(︁
sin

𝜔

2

)︁
+

+2𝜋𝛾 𝑐(𝛾) cot 𝛾𝜋 sin 𝛾𝜔 + 𝛾 cos 𝛾𝜔𝑥𝛾(𝜔)+

+2𝛾2 sin 𝛾𝜔𝑦𝛾(𝜔)
}︁
, (27)

where

𝑥𝛾(𝜔) =

𝜔∫︁
0

𝑑𝜙 sin 𝛾𝜙 cot
𝜙

2
,

𝑦𝛾(𝜔) =

𝜋∫︁
𝜔

𝑑𝜙 sin 𝛾𝜙 ln
(︁
sin

𝜙

2

)︁
.

(28)

The partial wave Coulomb transition matrix
𝑡𝑙(𝑘, 𝑘

′;𝐸) is a function of three independent vari-
ables: 𝑘, 𝑘′, and 𝐸. The quantities 𝜉 and 𝜂, as well
as the integration limits 𝜔0 and 𝜔𝜋 in expression
(27), also depend on those variables. The quantity 𝜅
is connected with the energy 𝐸 by formula (4). By
definition (6), the Coulomb parameter 𝛾 in expres-
sion (27) depends on 𝜅 and therefore on the energy
𝐸. Note that, in expression (27) for the 𝑡-matrix, the
Coulomb interaction intensity 𝑞1𝑞2 is contained both
in the preintegral factor and, in the Coulomb param-
eter 𝛾 [see Eq. (6)], in the terms in the curly braces
in the integrand.

4. Partial Wave Coulomb Transition
Matrices for Likely Charged Particles
at the Ground Bound State Energy

Expression (27) for the Coulomb transition matrix
contains the double integration over 𝜙 and 𝜔, which is
rather difficult. It is easy to see that, for separate val-
ues of the Coulomb parameter 𝛾 (which corresponds
to certain energy values 𝐸), the integration over 𝜙
and 𝜔 in Eq. (27) can be made explicitly. In such
cases, simple analytical expressions for the partial
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wave Coulomb 𝑡-matrix can be obtained. In partic-
ular, the integration in the expressions for 𝑥𝛾(𝜔) and
𝑦𝛾(𝜔) in Eq. (27) becomes simpler for integer values
of the Coulomb parameter 𝛾 = 𝛾𝑛 [Eq. (13)] cor-
responding to the energy spectrum of bound states
of two-particle systems [Eq. (12)] with the energies
𝐸 = 𝐸𝑛.

Let us consider the form of the off-shell partial wave
transition matrices for a repulsive Coulomb interac-
tion potential between likely charged particles (𝑞1𝑞2 >
> 0) at the ground bound state energy 𝐸 = 𝐸𝑛. In
this case, the Coulomb parameter is determined by
expression (13) with 𝑛 = 1 and equal to

𝛾 = 𝛾1 = 1; (29)

the fourth term in the curly braces in Eq. (27), ac-
cording to Eq. (14), is simplified to 𝜌1 sin𝜔; and the
integration in the fifth and sixth terms is carried as
follows:

𝑥1(𝜔) =

𝜔∫︁
0

𝑑𝜙 sin𝜙 cot
𝜙

2
= 𝜔 + sin𝜔,

𝑦1(𝜔) =

𝜋∫︁
𝜔

𝑑𝜙 sin𝜙 ln
(︁
sin

𝜙

2

)︁
= (30)

= − cos2
𝜔

2
− 2 sin2

𝜔

2
ln
(︁
sin

𝜔

2

)︁
.

As a result, formula (27) for the partial wave Coulomb
transition matrices (with 𝑙 = 0, 1, 2, ...) in the case of
repulsive interaction at 𝛾 = 1 (which corresponds to
the energy 𝐸 = 𝐸1) reads

𝑡𝑟𝑙 (𝑘, 𝑘
′ − 𝑏1) =

𝜋𝑞1𝑞2
𝑘𝑘′

𝜔𝜋1∫︁
𝜔01

𝑑𝜔𝑃𝑙

(︂
2𝜉1 − 1 + cos𝜔

2𝜂1

)︂
×

×
{︁
cot

𝜔

2
− 𝜋 cos𝜔 + 𝜔 cos𝜔 + (𝜌1 − 1) sin𝜔−

− 2 sin𝜔 ln
(︁
sin

𝜔

2

)︁}︁
, (31)

where, in accordance with Eq. (7),
𝜌1 = 1− 2 ln 2. (32)

The quantities 𝜉1, 𝜂1, 𝜔01, and 𝜔𝜋1 in Eq. (31) are
determined by the expressions for 𝜉, 𝜂, 𝜔0, and 𝜔𝜋,
respectively, in accordance with their definitions (23)
and (25) and calculated at the point 𝜅 = 𝜅1:

𝜉1 =
𝜅21(𝑘

2 + 𝑘′
2
)

(𝑘2 + 𝜅21)(𝑘
′2 + 𝜅21)

,

𝜂1 =
2𝜅21𝑘𝑘

′

(𝑘2 + 𝜅21)(𝑘
′2 + 𝜅21)

,

𝜔01 = 2arcsin
√
𝜉1 − 𝜂1,

𝜔𝜋1 = 2arcsin
√
𝜉1 + 𝜂1.

(33)

Note that the first term in the braces in the general
expression (31) for the partial wave Coulomb transi-
tion matrix corresponds to the Born approximation:

𝑡Born
𝑙 (𝑘, 𝑘′;−𝑏1) = 𝑣𝑙(𝑘, 𝑘

′) =

=
2𝜋𝑞1𝑞2
𝑘𝑘′

𝑄𝑙

(︃
𝑘2 + 𝑘′

2

2𝑘𝑘′

)︃
. (34)

Here, the function 𝑄𝑙(𝑥) is the Legendre function of
the second kind [18]:

𝑄𝑙(𝑥) =
1

2
𝑃𝑙(𝑥) ln

(︂
𝑥+ 1

𝑥− 1

)︂
−𝑊𝑙−1(𝑥), (35)

where

𝑊−1(𝑥) = 0, 𝑊𝑙−1(𝑥) =

𝑙∑︁
𝑘=1

1

𝑘
𝑃𝑙−𝑘(𝑥)𝑃𝑘−1(𝑥).

Owing to the orthogonality of the Legendre poly-
nomials,

𝜔𝜋∫︁
𝜔0

𝑑𝜔 sin𝜔 𝑃𝑙

(︂
2𝜉1 − 1 + cos𝜔

2𝜂1

)︂
=

= 2𝜂1

𝜋∫︁
0

𝑑𝜃 sin 𝜃 𝑃𝑙(cos 𝜃) = 4𝜂1𝛿𝑙0, (36)

the fourth term in Eq. (31) – it contains sin𝜔 – makes
contribution different from zero only for the partial 𝑠-
wave Coulomb 𝑡-matrix.

In the simplest case with 𝑙 = 0, by integrating over
𝜔 in expression (31), we obtain the following formula
for the partial 𝑠-wave Coulomb transition matrix for
two likely charged particles (for 𝑞1𝑞2 > 0):

𝑡𝑟0(𝑘, 𝑘
′;𝐸1) =

𝜋𝑞1𝑞2
𝑘𝑘′

{︂
4(𝜌1 − 1)𝜂1 − (2𝜉1 − 1)×

× ln

(︂
𝜉1 + 𝜂1
𝜉1 − 𝜂1

)︂
− 2𝜂1 ln

(︀
𝜉21 − 𝜂21

)︀
−

− [(𝜋 − 𝜔𝜋1) sin𝜔𝜋1 − (𝜋 − 𝜔01) sin𝜔01]

}︂
. (37)

Note that, in the case of attractive Coulomb interac-
tion (at 𝑞1𝑞2 < 0), the corresponding partial 𝑠-wave

ISSN 2071-0194. Ukr. J. Phys. 2017. Vol. 62, No. 3 267



V.F. Kharchenko

Coulomb transition matrix has a pole-like singularity
at the energy 𝐸 = 𝐸1, because it contains cot 𝛾𝜋.

Analogously, using formula (30) and integrating
over 𝜔 in expression (31), we obtain the following
formulas for the partial 𝑝- and 𝑑-wave Coulomb tran-
sition matrices in the case of repulsive interaction be-
tween the particles (at 𝑞1𝑞2 > 0):

𝑡𝑟1(𝑘, 𝑘
′;−𝑏1) =

𝜋𝑞1𝑞2
𝑘𝑘′

{︂
−1− 1

𝜂1

[︂
(𝜉21 − 𝜉1 − 𝜂21)×

× ln

(︂
𝜉1 + 𝜂1
𝜉1 − 𝜂1

)︂
+

1

8
(𝜔𝜋1 − 𝜔01)(2𝜋 − 𝜔𝜋1 − 𝜔01)+

+
1

2
(2𝜉1 − 1)[(𝜋 − 𝜔𝜋1) sin𝜔𝜋1 − (𝜋 − 𝜔01) sin𝜔01] +

+
1

8
[(𝜋 − 𝜔𝜋1) sin 2𝜔𝜋1 − (𝜋 − 𝜔01) sin 2𝜔01]

]︂}︂
, (38)

𝑡𝑟2(𝑘, 𝑘
′;−𝑏1) =

𝜋𝑞1𝑞2
𝑘𝑘′

{︂
− 1

𝜂1

(︂
𝜉1 +

3

2

)︂
−

− 1

𝜂21

[︂(︂
𝜉31 − 3

2
𝜉21 − 𝜉1𝜂

2
1 +

1

2
𝜂21

)︂
ln

(︂
𝜉1 + 𝜂1
𝜉1 − 𝜂1

)︂
+

+
3

16
(2𝜉1 − 1)(𝜔𝜋1 − 𝜔01)(2𝜋 − 𝜔𝜋1 − 𝜔01)+

+

(︂
3

2
𝜉21 − 3

2
𝜉1 −

1

2
𝜂21 +

21

32

)︂
[(𝜋 − 𝜔𝜋1) sin𝜔𝜋1 −

− (𝜋−𝜔01) sin𝜔01]+
3

16
(2𝜉1−1)[(𝜋−𝜔𝜋1) sin 2𝜔𝜋1 −

− (𝜋 − 𝜔01) sin 2𝜔01] +
1

32
[(𝜋 − 𝜔𝜋1) sin 3𝜔𝜋1 −

− (𝜋 − 𝜔01) sin 3𝜔01]

]︂}︂
. (39)

Making allowance for the relations

cos𝜔𝜋1 + cos𝜔01 = −2(2𝜉1 − 1),

cos𝜔𝜋1 − cos𝜔01 = −4𝜂1,

which follow from Eq. (26), and the expressions

(𝜋 − 𝜔𝜋1) sin 2𝜔𝜋1 − (𝜋 − 𝜔01) sin 2𝜔01 =

= 2(2𝜉1 − 1)𝐴− − 4𝜂1𝐴+,

(𝜋 − 𝜔𝜋1) sin 3𝜔𝜋1 − (𝜋 − 𝜔01) sin 3𝜔01 =

=
[︀
4(2𝜉1 − 1)2 + 16𝜂21 − 1

]︀
𝐴− + 16(2𝜉1 − 1)𝜂1𝐴+,

where

𝐴± ≡ (𝜋 − 𝜔𝜋1) sin𝜔𝜋1 ± (𝜋 − 𝜔01) sin𝜔01,

formulas (38) and (39) for the partial 𝑝- and 𝑑-wave
components of the 𝑡-matrix can be written in simpler
forms:

𝑡𝑟1(𝑘, 𝑘
′;−𝑏1) =

𝜋𝑞1𝑞2
𝑘𝑘′

{︂
−1− 1

𝜂1

[︂(︀
𝜉21 − 𝜉1 − 𝜂21

)︀
×

× ln

(︂
𝜉1 + 𝜂1
𝜉1 − 𝜂1

)︂
+

1

8
(𝜔𝜋1 − 𝜔01)(2𝜋 − 𝜔𝜋1 − 𝜔01)−

− 1

4
[(𝜋 − 𝜔𝜋1) sin𝜔𝜋1 cos𝜔01 −

− (𝜋 − 𝜔01) cos𝜔𝜋1 sin𝜔01]

]︂}︂
, (40)

𝑡𝑟2(𝑘, 𝑘
′;−𝑏1) =

𝜋𝑞1𝑞2
𝑘𝑘′

{︂
− 1

𝜂1

(︂
𝜉1 +

3

2

)︂
−

− 1

𝜂21

[︂(︂
𝜉31 − 3

2
𝜉21 − 𝜉1𝜂

2
1 +

1

2
𝜂21

)︂
ln

(︂
𝜉1 + 𝜂1
𝜉1 − 𝜂1

)︂
+

+
3

16
(2𝜉1 − 1)(𝜔𝜋1 − 𝜔01)(2𝜋 − 𝜔𝜋1 − 𝜔01)+

+
1

4
[(𝜋 − 𝜔𝜋1) sin𝜔𝜋1 − (𝜋 − 𝜔01) sin𝜔01]−

− 1

8
(2𝜉1 − 1)[(𝜋 − 𝜔𝜋1) sin𝜔𝜋1 cos𝜔01 −

− (𝜋 − 𝜔01) cos𝜔𝜋1 sin𝜔01]

]︂}︂
. (41)

For comparison, we present the formulas for the
corresponding partial transition matrices with 𝑙 = 1
and 2, which were obtained for the case of attractive
Coulomb interaction (𝑞1𝑞2 < 0) [18]:

𝑡𝑎1(𝑘, 𝑘
′ − 𝑏1) =

𝜋𝑞1𝑞2
𝑘𝑘′

{︂
4𝜉1 − 3− 1

𝜂1

[︂
(𝜉21 − 𝜉1 − 𝜂21)×

× ln

(︂
𝜉1 + 𝜂1
𝜉1 − 𝜂1

)︂
− 1

8
(𝜔𝜋1 − 𝜔01) (2𝜋 − 𝜔𝜋1 − 𝜔01)+

+
1

4
[(𝜋 − 𝜔𝜋1) sin𝜔𝜋1 cos𝜔01 −

− (𝜋 − 𝜔01) cos𝜔𝜋1 sin𝜔01]

]︂}︂
, (42)

𝑡𝑎2(𝑘, 𝑘
′;−𝑏1) =

𝜋𝑞1𝑞2
𝑘𝑘′

{︂
1

𝜂1

(︂
4𝜉21 − 5𝜉1 −

8

3
𝜂21 +

3

2

)︂
−

− 1

𝜂21

[︃(︂
𝜉31 − 3

2
𝜉21 − 𝜉1𝜂

2
1 +

1

2
𝜂21

)︂
ln

(︂
𝜉1 + 𝜂1
𝜉1 − 𝜂1

)︂
−

− 3

16
(2𝜉1 − 1) (𝜔𝜋1 − 𝜔01) (2𝜋 − 𝜔𝜋1 − 𝜔01)−
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− 1

4
[(𝜋 − 𝜔𝜋1) sin𝜔𝜋1 − (𝜋 − 𝜔01) sin𝜔01]−

− 1

8
(2𝜉1 − 1)[(𝜋 − 𝜔𝜋1) sin𝜔𝜋1 cos𝜔01 −

− (𝜋 − 𝜔01) cos𝜔𝜋1 sin𝜔01]

]︂}︂
. (43)

In view of the sign difference for 𝑞1𝑞2 in the co-
efficients before the braces in Eqs. (40), (41) and
Eqs. (42), (43), we obtain that the formulas for the
corresponding partial wave transition matrices differ
in the cases of attractive and repulsive Coulomb in-
teractions only by their first terms and the signs in
front of the second terms. The other terms are the
same.

5. Discussion and Conclusions

The off-shell Coulomb transition matrix is directly
connected with the Coulomb Green’s function and
includes all information about the system of inter-
acting particles. In the previous work [18], a possibil-
ity to derive an analytical expression for the off-shell
Coulomb transition matrix for two particles with the
use of the Fock method of stereographic projection
of the momentum space onto a four-dimensional unit
sphere was studied. In the case of attractive Coulomb
interaction between opposite charges (𝑞1𝑞2 < 0), sim-
ple analytical expressions for the partial 𝑝-, 𝑑-, and
𝑓 -wave transition matrices at the ground bound state
energy 𝐸 = 𝐸1, i.e. 𝑡𝑎𝑙 (𝑘, 𝑘

′;𝐸1) with 𝑙 = 1, 2, and 3,
were obtained.

Note that knowledge of the partial wave Coulomb
transition matrix 𝑡𝜆(𝑘, 𝑘′;𝐸𝑛), the bound state wave
function, and its derivatives is necessary, in par-
ticular, when determining the electric 2𝜆-pole po-
larizability 𝛼𝜆 (𝜆 = 1, 2, 3, ...) of a two-particle
Coulomb bound system in the state with the energy
𝐸 = 𝐸𝑛 [20].

In this work, the Fock method is applied in order
to derive partial wave two-particle transition matri-
ces in the case of repulsive Coulomb interaction (likely
charged particles, 𝑞1𝑞2 > 0) at the energy 𝐸 = 𝐸1.
Rather simple analytical expressions are obtained for
the partial 𝑠-, 𝑝-, and 𝑑-wave transition matrices
at the ground bound state energy, i.e. 𝑡𝑟𝑙 (𝑘, 𝑘

′;𝐸1)
with 𝑙 = 0, 1, and 2 [formulas (37), (40), and (41),
respectively].

It is of interest that, in the case of particles with
likely charges, for which bound states do not exist

at all, the simplification of expressions for the partial
wave Coulomb 𝑡-matrices takes place at the discrete
energies that correspond to the spectrum of bound
states for oppositely charged particles.

It should be pointed out that a possibility to have a
simple analytical form for the partial wave Coulomb
𝑡-matrix is associated with a possibility to carry out
the analytical integration over 𝜙 and 𝜔 in expres-
sions (28) for 𝑥𝛾(𝜔) and 𝑦𝛾(𝜔) and in expression (27)
for 𝑡𝑙(𝑘, 𝑘′;𝐸). In particular, such integration can be
done at the energy values that are equal to the ener-
gies of the ground and excited bound states in the dis-
crete spectrum 𝐸𝑛, 𝑛 = 1, 2, 3, ... [formula (12)]. The
procedure can be realized for the partial wave
Coulomb matrices 𝑡𝑟𝑙 (𝑘, 𝑘

′;𝐸𝑛) that describe a system
with repulsive forces (with likely charged particles,
𝑞1𝑞2 > 0) at all 𝑛- and 𝑙-values. Analytical expres-
sions for the Coulomb transition matrices 𝑡𝑎𝑙 (𝑘, 𝑘

′;𝐸)
describing a system with attractive forces (with op-
positely charged particles, 𝑞1𝑞2 < 0) can be obtained
only at 𝑛- and 𝑙-values that do not correspond to
bound states, when the corresponding transition ma-
trix has a pole-like singularity (at each 𝑛-value and
the orbital momentum values 𝑙 ≤ 𝑛−1). A pole singu-
larity arises, for instance, in the partial wave Coulomb
transition matrices 𝑡𝑎0(𝑘, 𝑘

′;𝐸) at 𝐸 = 𝐸1, in the
𝑡𝑎0(𝑘, 𝑘

′;𝐸) and 𝑡𝑎1(𝑘, 𝑘
′;𝐸) matrices at 𝐸 = 𝐸2, and

so forth.
Note that the partial wave Coulomb transition ma-

trix (27) acquires a simple analytical form not only
at the energy values corresponding to the discrete
spectrum of bound states [Eq. (12)], which is equiva-
lent, in accordance with Eq. (13), to integer values of
Coulomb parameter (6). Specifically, a similar simpli-
fication can also be obtained for the Coulomb param-
eter value 𝛾 = 1

2 , which is equivalent to the negative
energy 𝐸 = 4𝐸1.
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perturbations. Zh. Èksp. Teor. Fiz. 40, 1481 (1961) (in
Russian).

7. G.Ya. Bel’kin. Removal of two-particle Coulomb singu-
larities in the system of four charged particles. Vestn.
Leningrad. Univ. No. 13, 72 (1978).

8. S. Okubo, D. Feldman. Some aspects of the covariant two-
body problem. II. The scattering problem. Phys. Rev. 117,
292 (1960) [DOI: 10.1103/PhysRev.117.292].

9. E.H. Wichmann, C.H. Woo. Integral representation for the
nonrelativistic Coulomb Green’s function. J. Math. Phys.
2, 178 (1961) [DOI: 10.1063/1.1703696 ].

10. V.F. Bratsev, E.D. Trifonov. Integral representation for
Green’s function of the energy operator for a particle in a
Coulomb field. Vestn. Leningrad. Univ. No. 16, 36 (1962).

11. L. Hostler. Nonrelativistic Coulomb Green’s function in
momentum space. J. Math. Phys. 5, 1235 (1964) [DOI:
10.1063/1.1704231].

12. J. Schwinger. Coulomb Green’s function. J. Math. Phys.
5, 1606 (1964) [DOI: 10.1063/1.1931195].

13. A.M. Perelomov, V.S. Popov. The Lorentz group as a dy-
namic symmetry group of the hydrogen atom. Zh. Èksp.
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РОЗВ’ЯЗАННЯ РIВНЯННЯ
ЛIПМАНА–ШВIНГЕРА ДЛЯ ПАРЦIАЛЬНОЇ
МАТРИЦI ПЕРЕХОДУ З ВIДШТОВХУВАЛЬНОЮ
КУЛОНIВСЬКОЮ ВЗАЄМОДIЄЮ

Р е з ю м е

Дослiджено випадок, коли можливе аналiтичне розв’язання
iнтегрального рiвняння Лiпмана–Швiнгера для парцiаль-
ної двочастинкової кулонiвської матрицi переходу для одно-
йменно заряджених частинок при вiд’ємнiй енергiї. За до-
помогою фокiвського методу стереографiчного проектуван-
ня iмпульсного простору на чотиривимiрну одиничну сферу
одержано аналiтичнi вирази для 𝑠-, 𝑝- i 𝑑-хвильових парцi-
альних кулонiвських матриць переходу для частинок з вiд-
штовхувальною взаємодiєю при енергiї основного стану.
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