
R.M. Peleshchak, M.Ya. Seneta

doi: 10.15407/ujpe62.03.0256

R.M. PELESHCHAK, M.YA. SENETA
Ivan Franko State Pedagogical University of Drohobych
(24, Ivan Franko Str., Drohobych 82100, Lviv region, Ukraine; e-mail: marsen18@i.ua)

DISPERSION LAW AND THE DEPENDENCE
OF THE SURFACE ACOUSTIC MODE WIDTH
ON THE CONCENTRATION OF ADSORBED ATOMSPACS 81.07.Bc, 66.30.Lw

The dispersion law for elastic surface acoustic waves and the dependence of the surface acoustic
mode width on the concentration of adsorbed atoms have been found. The calculations are
carried out in the long-wave approximation for the interaction between the adatoms with regard
for image forces and the non-local elastic interaction between the adsorbed and matrix atoms.
K e yw o r d s: deformation potential, adatoms, non-local elastic interaction, image forces, sur-
face acoustic mode width.

1. Introduction

The method of surface acoustic waves (SAWs)
has been widely used recently to study the dynamic
parameters (dynamic conductivity, charge carrier mo-
bility, and concentration) of two-dimensional electron
layers in Al1−𝑥Ga𝑥As heterostructures [1–3], which
demonstrate piezoelectric properties. Nanoheterosys-
tems with strained GaAs/In1−𝑥Ga𝑥As/GaAs
[4], Cd1−𝑥Zn𝑥Te/CdTe/Cd1−𝑥Zn𝑥Te [5, 6], and
CdTe/HgTe [6] layers are characterized by both
non-uniform deformation and non-uniform piezo-
electric fields. An SAW generates an alternating
electric field and a dynamic deformation field. The
latter creates irregularities on the semiconductor
surface [7], which are responsible for the emergence
of regions with surface electron states at the semi-
conductor interface. Those regions are characterized
by different physical properties. They are separated
by an energy gap, the width of which is determined
by the irregularity height. The latter can depend on
both the concentration of adsorbed atoms and the
deformation potential magnitude [8]. Furthermore,
the interaction of the alternating electric field with
two-dimensional electrons [3] and the interaction of
the dynamic deformation field with adsorbed atoms
result in the renormalization of the SAW velocity
and damping.

The authors of work [9] studied the influence of in-
teraction between the surface elastic Rayleigh wave
and the electron-hole plasma in a two-dimensional
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semimetal (HgTe) – this interaction is driven by
two mechanisms: the deformation potential and the
piezoelectric effect – on the dispersion law and the
damping of Rayleigh waves. The influence of a struc-
turally distorted isotropic surface layer that was
grown up on the surface of isotropic solid on the
dispersion law and the reciprocal damping length of
Rayleigh waves was analyzed in work [10].

Since SAWs can be one of the sources that are re-
sponsible for long-range effects stimulating the for-
mation of nanoclusters beyond the laser-irradiated
region on the crystal surface [11], the researches of
the processes giving rise to the damping of surface
elastic acoustic waves on a single-crystalline sub-
strate surface with defects are challenging. The aim
of this work was to calculate the dispersion law and
the width of the surface elastic acoustic modes as
the functions of the concentration of adsorbed atoms
taking into account the non-local elastic interaction
of adatoms with the self-consistent quasi-Rayleigh
acoustic wave, as well as image forces.

2. Model of Adatom Interaction
with a Surface Acoustic Wave

Let a semiconductor surface coincide with the plane
𝑧 = 0 (the axis 𝑧 is directed into the single crys-
tal depth). This surface is bombarded with a flux
of atoms obtained in the course of the molecular
beam epitaxy process. The adsorbed atoms are con-
sidered as defects on the surface (elastic surface in-
clusions). Owing to the deformation potential and the
local renormalization of surface energy, the adsorbed
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atoms and the surface elastic quasi-Rayleigh acous-
tic wave together non-uniformly deform the near-
surface layer of the thickness 𝑎 (𝑎 is the lattice con-
stant along the axis 𝑧). In its turn, the arising self-
consistent non-uniform deformation, acting through
the deformation potential, redistributes the adsorbed
atoms over the surface, i.e. it induces an additional
deformation-diffusive flux of adatoms [12, 13] The in-
fluence of adsorbed atoms is reduced to the change of
boundary conditions for the strain tensor 𝜎𝑖𝑗 at the
surface 𝑧 = 0.

The displacement vector of a point in the medium,
u(r, 𝑡), satisfies the equation [14]

𝜕2u

𝜕𝑡2
= 𝑐2𝑡Δru+ (𝑐2𝑙 − 𝑐2𝑡 )

−−→
grad (divu). (1)

The solution of this equation for the surface Rayleigh
wave propagating along the axis 𝑥 is sought in the
form

𝑢𝑥(𝑥, 𝑧) = −𝑖𝑞𝐴𝑒𝑖𝑞𝑥−𝑖𝜔𝑡−𝑘𝑙𝑧 − 𝑖𝑘𝑡𝐵𝑒𝑖𝑞𝑥−𝑖𝜔𝑡−𝑘𝑡𝑧, (2)

𝑢𝑧(𝑥, 𝑧) = 𝑘𝑙𝐴𝑒
𝑖𝑞𝑥−𝑖𝜔𝑡−𝑘𝑙𝑧 + 𝑞𝐵𝑒𝑖𝑞𝑥−𝑖𝜔𝑡−𝑘𝑡𝑧, (3)

where 𝑘2𝑙,𝑡 = 𝑞2 − 𝜔2

𝑐2𝑙,𝑡
; and 𝐴 and 𝐵 are the SAW

amplitudes.
The direction 𝑥 on the crystal surface is determined

by elastic anisotropy. On an isotropic surface, it is de-
termined either by an external action that induces the
elastic anisotropy or owing to a spontaneous symme-
try breaking in the defect-deformation system, simi-
larly to work [15].

The strain 𝜀 at the semiconductor surface (𝑧 = 0)
is defined in terms of components of the displacement
vector, by using the relation

𝜀(𝑥, 𝑡) =
𝜕𝑢𝑥

𝜕𝑥
+

𝜕𝑢𝑧

𝜕𝑧
=

𝜔2

𝑐2𝑙
𝐴𝑒𝑖𝑞𝑥−𝑖𝜔𝑡. (4)

The spatially non-uniform surface strain 𝜀(𝑥, 𝑡) stim-
ulates an inhomogeneous redistribution of adatoms
𝑁𝑑(𝑥, 𝑡):

𝑁𝑑(𝑥, 𝑡) = 𝑁𝑑0 +𝑁𝑑1(𝑥, 𝑡) = 𝑁𝑑0 +𝑁𝑑1(𝑞)𝑒
𝑖𝑞𝑥−𝑖𝜔𝑡,

(5)

where 𝑁𝑑0 is the spatially homogeneous compo-
nent, and 𝑁𝑑1(𝑞) the periodic perturbation amplitude
(𝑁𝑑1 ≪ 𝑁𝑑0). In the non-local Hooke’s law approx-
imation [12, 16, 17], the energy of interaction of an

adsorbed atom with atoms of the matrix, 𝑊𝑑𝑎, is de-
termined as follows:

𝑊𝑑𝑎(𝑥) = −
∫︁

𝜆 (|𝑥′ − 𝑥|) 𝜀(𝑥′)ΔΩ𝑑 𝑑𝑥
′, (6)

where 𝜆 is the operator of elastic moduli [16], and
ΔΩ𝑑 a variation of the crystal volume induced by one
adsorbed atom.

Let us introduce the variable 𝜏 = 𝑥′−𝑥 and expand
𝜀(𝑥′) in a Taylor series in 𝜏 :

𝑊 int
𝑑𝑎 (𝑥) = −

∫︁
𝜆 (|𝜏 |) 𝜀(𝑥+ 𝜏)ΔΩ𝑑𝑑𝜏 =

= −
∫︁

𝜆 (|𝜏 |)
(︂
𝜀(𝑥) +

𝜕2𝜀(𝑥)

𝜕𝑥2

𝜏2

2

)︂
ΔΩ𝑑𝑑𝜏 =

= −𝐾𝑑𝜀(𝑥)ΔΩ𝑑 −𝐾𝑑
𝜕2𝜀(𝑥)

𝜕𝑥2
𝑙2𝑑ΔΩ𝑑, (7)

where 𝐾𝑑 =
∫︀
𝜆 (|𝜏 |) 𝑑𝜏 ≡ 𝐾 is the elastic modulus,

and

𝑙2𝑑 =

∫︀
𝜆(𝜏)𝜏2𝑑𝜏

2
∫︀
𝜆 (|𝜏 |) 𝑑𝜏

is the average squared characteristic distance of the
interaction of an adatom with atoms of the matrix.

The elastic fields created by adsorbed atoms shift
atoms in vicinities of other adatoms and create forces
acting on them, which results in their elastic inter-
action. The energy of this interaction decreases, by
following the power law. This energy is rather sub-
stantial if adatoms strongly deform the crystal lat-
tice. In isotropic objects, the energy of elastic interac-
tion between defects equals zero. Along with the elas-
tic interaction of adsorbed atoms, which decreases,
by following the power law, as the distance between
the adatoms grows, there exists an interaction that
smoothly changes at distances of an order of the
crystal size. This interaction is associated with image
forces applied to the crystal surface. The correspond-
ing energy 𝑊 int

𝑑𝑑 of interaction between an adsorbed
atom located at 𝑟′ and other adatoms distributed
with the concentration 𝑁𝑑(𝑥) is practically indepen-
dent of the adatom position 𝑟′ and can be determined,
by using the formula [17]

𝑊 int
𝑑𝑑 (𝑥) = −2

3

1− 2𝜈

𝐾(1− 𝜈)𝑎
𝜃2𝑠𝑁𝑑(𝑥), (8)

where 𝜈 is Poisson’s ratio, and 𝜃𝑠 = 𝐾ΔΩ𝑑 is the
surface deformation potential.
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The elastic field that arises in the matrix implanted
with adatoms acts on the adatom with the force

𝐹 = −
𝜕
(︀
𝑊 int

𝑑𝑑 (𝑥) +𝑊 int
𝑑𝑎 (𝑥)

)︀
𝜕𝑥

=
2

3

1− 2𝜈

𝐾(1− 𝜈)𝑎
×

× 𝜃2𝑠
𝜕𝑁𝑑(𝑥)

𝜕𝑥
+ 𝜃𝑠

𝜕𝜀(𝑥, 𝑡)

𝜕𝑥
+ 𝜃𝑠𝑙

2
𝑑𝑎

𝜕3𝜀(𝑥, 𝑡)

𝜕𝑥3
. (9)

Besides the ordinary diffusion flux
(︁
−𝐷𝑑

𝜕𝑁𝑑(𝑥)
𝜕𝑥

)︁
,

this force induces an additional deformation flux of
adatoms. The latter results from the strain, 𝜕𝜀(𝑥,𝑡)

𝜕𝑥 ,
and defect concentration, 𝜕𝑁𝑑(𝑥)

𝜕𝑥 , gradients.
The analysis of formula (9) demonstrates that the

concentration gradient
(︁
𝜃2𝑠

𝜕𝑁𝑑(𝑥)
𝜕𝑥

)︁
creates a compo-

nent of the deformation flux. Unlike the ordinary dif-
fusion flux, this component is directed in the direc-
tion of the adatom concentration growth (the first
term). In addition, the adatoms that are stretching
centers (ΔΩ𝑑 > 0) move into a region that un-
dergoes a relative stretching, whereas the adatoms
that are squeezing centers (ΔΩ𝑑 < 0) move into a
region undergoing a relative squeezing (the second
term). Under the action of force (9), the adatoms in
the elastic field obtain the velocity

𝜐 = 𝜇𝐹 =
2

3

1− 2𝜈

𝐾(1− 𝜈)

𝐷𝑑 𝜃
2
𝑠

𝑘B𝑇𝑎

𝜕𝑁𝑑(𝑥)

𝜕𝑥
+

+
𝐷𝑑 𝜃𝑠
𝑘B𝑇

𝜕𝜀(𝑥, 𝑡)

𝜕𝑥
+

𝐷𝑑 𝜃𝑠
𝑘B𝑇

𝑙2𝑑𝑎
𝜕3𝜀(𝑥, 𝑡)

𝜕𝑥3
, (10)

where 𝐷𝑑 is the diffusion coefficient for the adatom, 𝑇
the temperature, 𝑘B the Boltzmann constant, and the
adatom mobility 𝜇 is determined using the Einstein
relation.

In view of Eq. (10) and the continuity equation

div j = −𝜕𝑁𝑑(𝑥, 𝑡)

𝜕𝑡
,

the flux of implanted adatoms equals

𝑗 = −𝐷𝑑
𝜕𝑁𝑑(𝑥, 𝑡)

𝜕𝑥
+

𝐷𝑑 𝜃𝑠
𝑘B𝑇

𝑁𝑑(𝑥, 𝑡)×

× 𝜕

𝜕𝑥

(︂
2

3

1− 2𝜈

𝐾(1− 𝜈)𝑎
𝜃𝑠𝑁𝑑(𝑥, 𝑡)+

+ 𝜀(𝑥, 𝑡) + 𝑙2𝑑𝑎
𝜕2𝜀(𝑥, 𝑡)

𝜕𝑥2

)︂
, (11)

and the equation for the adatom concentration reads

𝜕𝑁𝑑(𝑥, 𝑡)

𝜕𝑡
= 𝐷𝑑

𝜕2𝑁𝑑(𝑥, 𝑡)

𝜕𝑥2
−

− 𝐷𝑑 𝜃𝑠
𝑘B𝑇

𝜕

𝜕𝑥

(︂
𝑁𝑑(𝑥, 𝑡)

𝜕

𝜕𝑥

(︂
2

3

1− 2𝜈

𝐾(1− 𝜈)𝑎
𝜃𝑠𝑁𝑑(𝑥, 𝑡)+

+ 𝜀(𝑥, 𝑡) + 𝑙2𝑑𝑎
𝜕2𝜀(𝑥, 𝑡)

𝜕𝑥2

)︂)︂
. (12)

The first term in Eq. (12) describes the ordinary
gradient-driven concentration diffusion, whereas the
second one is a qualitatively new diffusion effect, “the
flux of deformation drawing-in”. The latter is gov-
erned by both image forces and the deformation gra-
dient [18], on the one hand, and the non-local interac-
tion of adatoms with surface atoms [19], on the other
hand.

In the linear approximation with regard for the con-
ditions 𝑁𝑑1 ≪ 𝑁𝑑0 and formula (5), Eq. (12) looks
like(︂
−𝑖𝜔 +𝐷𝑑

(︂
1− 2

3

1− 2𝜈

𝐾(1− 𝜈)𝑎

𝜃2𝑑
𝑘B𝑇

𝑁𝑑0

)︂
𝑞2
)︂
𝑁𝑑1(𝑞) =

=
𝐷𝑑 𝜃𝑑
𝑘B𝑇

𝑁𝑑0𝜀(𝑞)𝑞
2(1− 𝑙2𝑑𝑞

2). (13)

This equation is used to obtain an expression for
the amplitude of the surface adatom concentration
𝑁𝑑1(𝑞).

The spatially non-uniform distribution of adatoms
modulates the surface energy

𝐹 (𝑥) = 𝐹0 +
𝜕𝐹

𝜕𝑁𝑑1
𝑁𝑑1(𝑥),

which results in the appearance of the lateral mechan-
ical stress

𝜎𝑥𝑧 =
𝜕𝐹 (𝑁(𝑥))

𝜕𝑥
,

which is compensated by the shift stress in the
medium [14].

The boundary condition reflects a balance of lateral
stresses:

𝜇

(︂
𝜕𝑢𝑥

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑥

)︂
𝑧=0

=

(︂
𝜕𝐹

𝜕𝑁𝑑1

)︂
𝜕𝑁𝑑1(𝑥)

𝜕𝑥
, (14)

where 𝜇 is the shear modulus of the medium. The co-
efficient 𝜕𝐹

𝜕𝑁𝑑1
is considered to be a given phenomeno-

logical parameter.
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Furthermore, owing to the interaction between the
adatoms and the semiconductor atoms, there arises a
normal mechanical stress on the semiconductor sur-
face, so that the boundary condition looks like(︂
𝜕𝑢𝑧

𝜕𝑧
+ (1− 2𝛽)

𝜕𝑢𝑥

𝜕𝑥

)︂
𝑧=0

=
𝜃𝑑𝑁𝑑1(𝑥)

𝜌𝑐2𝑙 𝑎
, (15)

where 𝑎 is the crystal lattice constant at the semi-
conductor surface, 𝛽 = 𝑐2𝑡/𝑐

2
𝑙 , and 𝜌 is the crystal

density.

3. Dispersion Equation
and the Width of the Surface Elastic Acoustic
Mode Interacting with Adsorbed Atoms

In order to derive the dispersion equation, let us sub-
stitute Eq. (13) into Eqs. (14) and (15) with regard
for Eqs. (2), (3), (4), and (5). As a result, we obtain
a system of two linear equations for the amplitudes
𝐴 and 𝐵. The condition that its solutions must be
non-trivial gives rise to the following dispersion equa-
tion for the surface acoustic wave interacting with ad-
sorbed atoms:

(𝑞2 + 𝑘2𝑡 )
2 − 4𝑞2𝑘𝑙𝑘𝑡 = − 2

𝛽

𝜔2

𝑐2𝑙

𝜃𝑑𝑁𝑑0

𝑘B𝑇𝜌𝑐2𝑙
×

× 𝐷𝑑𝑞
2

−𝑖𝜔 +𝐷𝑑

(︁
1− 2

3
1−2𝜈

𝐾(1−𝜈)𝑎

𝜃2
𝑑

𝑘B𝑇 𝑁𝑑0

)︁
𝑞2

×

× (1− 𝑙2𝑑𝑞
2)

(︂
𝑞2𝑘𝑡

𝜕𝐹

𝜕𝑁𝑑1
+ (𝑞2 + 𝑘2𝑡 )

𝜃𝑑
2𝑎

)︂
. (16)

The left-hand side of this equation coincides with
the Rayleigh determinant, with the zero value of the
latter determining the dispersion law for a surface
Rayleigh acoustic wave in the absence of adsorbed
atoms [14]. The right-hand side of Eq. (16) renormal-
izes the dispersion equation for the Rayleigh acous-
tic wave owing to the force action (∼𝜃𝑑) of adsorbed
atoms that deform the near-surface layer of the crys-
tal lattice. Substituting 𝜔 = 𝑐𝑡𝑞𝜉 into Eq. (16), we
obtain

(2− 𝜉2)2 − 4
√︀

1− 𝜉2

√︃
1− 𝑐2𝑡

𝑐2𝑙
𝜉2 = −2𝜉2𝜃𝑑𝑁𝑑0

𝑘B𝑇𝜌𝑐2𝑙
×

×
𝐷𝑑𝑞

(︁
𝐷𝑑

(︁
1− 2

3
1−2𝜈

𝐾(1−𝜈)𝑎
𝜃2
𝑑

𝑘B𝑇 𝑁𝑑0

)︁
𝑞 + 𝑖𝑐𝑡𝜉

)︁
(︁
𝐷𝑑

(︁
1− 2

3
1−2𝜈

𝐾(1−𝜈)𝑎

𝜃2
𝑑

𝑘B𝑇 𝑁𝑑0

)︁)︁2
𝑞2 + 𝑐2𝑡 𝜉

2

×

× (1− 𝑙2𝑑𝑞
2)

(︂
𝑞
√︀
1− 𝜉2

𝜕𝐹

𝜕𝑁𝑑1
+ (2− 𝜉2)

𝜃𝑑
2𝑎

)︂
. (17)

Expression (17) has the real and imaginary parts,
which ultimately determine a correction to the dis-
persion law for the Rayleigh wave and its damping,
respectively. The presence of the factor 𝑞 in the nu-
merator of Eq. (17) makes it possible to solve this
equations in the long-wave region (𝑞𝑎 ≪ 1) by the
iteration procedure.

Let us designate the left-hand side of Eq. (17) as
a function 𝑓(𝜉) and expand it in the Taylor series in
a vicinity of the point 𝜉0, which is a solution of the
equation 𝑓(𝜉0) = 0:

𝑓(𝜉0 + 𝛿𝜉) ≈ 𝑓(𝜉0) + 𝑓 ′(𝜉0)𝛿𝜉. (18)

Then the correction 𝛿𝜉 is determined by the right-
hand side of Eq. (17), in which the substitution 𝜉 →
→ 𝜉0 was made:

𝛿𝜉 = − 1

𝑓 ′(𝜉0)

2𝜉20 𝜃𝑑𝑁𝑑0

𝑘B𝑇𝜌𝑐2𝑙
×

×
𝐷2

𝑑𝑞
2
(︁
1− 2

3
1−2𝜈

𝐾(1−𝜈)𝑎
𝜃2
𝑑

𝑘B𝑇 𝑁𝑑0

)︁
(︁
𝐷𝑑

(︁
1− 2

3
1−2𝜈

𝐾(1−𝜈)𝑎

𝜃2
𝑑

𝑘B𝑇 𝑁𝑑0

)︁)︁2
𝑞2 + 𝑐2𝑡 𝜉

2
0

×

× (1− 𝑙2𝑑𝑞
2)

(︂
𝑞
√︁

1− 𝜉20
𝜕𝐹

𝜕𝑁𝑑1
+ (2− 𝜉20)

𝜃𝑑
2𝑎

)︂
−

− 𝑖
1

𝑓 ′(𝜉0)

2𝑐𝑡𝜉
3
0𝜃𝑑𝑁𝑑0

𝑘B𝑇𝜌𝑐2𝑙
×

× 𝐷𝑑𝑞(︁
𝐷𝑑

(︁
1− 2

3
1−2𝜈

𝐾(1−𝜈)𝑎

𝜃2
𝑑

𝑘B𝑇 𝑁𝑑0

)︁)︁2
𝑞2 + 𝑐2𝑡 𝜉

2
0

×

× (1− 𝑙2𝑑𝑞
2)

(︂
𝑞
√︁

1− 𝜉20
𝜕𝐹

𝜕𝑁𝑑1
+ (2− 𝜉20)

𝜃𝑑
2𝑎

)︂
. (19)

A numerical analysis testifies that 𝑓 ′(𝜉0) > 0 in the
whole domain of the variable 𝜉0.

Extracting the real and imaginary parts of Eq. (19)
and taking the relation 𝜔 = 𝑐𝑡𝑞𝜉0+𝑐𝑡𝑞𝛿𝜉 into account,
we obtain the dispersion law 𝜔′(𝑞) for the surface elas-
tic acoustic wave in the form

𝜔′(𝑞) = 𝑐𝑡𝑞𝜉0

(︂
1− 1

𝑓 ′(𝜉0)

2𝜉0𝜃𝑑𝑁𝑑0

𝑘B𝑇𝜌𝑐2𝑙
×

×
𝐷2

𝑑𝑞
2
(︁
1− 2

3
1−2𝜈

𝐾(1−𝜈)𝑎
𝜃2
𝑑

𝑘B𝑇 𝑁𝑑0

)︁
(︁
𝐷𝑑

(︁
1− 2

3
1−2𝜈

𝐾(1−𝜈)𝑎

𝜃2
𝑑

𝑘B𝑇 𝑁𝑑0

)︁)︁2
𝑞2 + 𝑐2𝑡 𝜉

2
0

×

× (1− 𝑙2𝑑𝑞
2)

(︂
𝑞
√︁
1− 𝜉20

𝜕𝐹

𝜕𝑁𝑑1
+ (2− 𝜉20)

𝜃𝑑
2𝑎

)︂)︂
, (20)
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and the following expression for its width 𝜔′′(𝑞),
which is associated with the interaction between
the adsorbed atoms and the self-consistent quasi-
Rayleigh wave:

𝜔′′(𝑞) = −𝑐2𝑡
1

𝑓 ′(𝜉0)

2𝜉30𝜃𝑑𝑁𝑑0

𝑘B𝑇𝜌𝑐2𝑙
×

× 𝐷𝑑𝑞
2(︁

𝐷𝑑

(︁
1− 2

3
1−2𝜈

𝐾(1−𝜈)𝑎

𝜃2
𝑑

𝑘B𝑇 𝑁𝑑0

)︁)︁2
𝑞2 + 𝑐2𝑡 𝜉

2
0

×

× (1− 𝑙2𝑑𝑞
2)

(︂
𝑞
√︁
1− 𝜉20

𝜕𝐹

𝜕𝑁𝑑1
+ (2− 𝜉20)

𝜃𝑑
2𝑎

)︂
. (21)

The obtained formulas make allowance for both the
non-local elastic interaction of an implanted impurity
with the matrix atoms [16] and image forces [17].

4. Dispersion Law and the Width
of the Surface Elastic Acoustic Mode.
Numerical Calculation and Analysis
of Their Dependences on the Concentration
of Adsorbed Atoms

The dispersion law 𝜔′(𝑞) = Re 𝜔(𝑞) for the sur-
face elastic acoustic wave and the width 𝜔′′(𝑞) =
= Im 𝜔(𝑞) of the acoustic mode were calculated
for the GaAs (001) semiconductor with the surface
concentrations of adsorbed atoms 𝑁𝑑0 = 3 × 1012

and 3 × 1013 cm−2. The values of other parame-
ters were as follows: 𝑙𝑑 = 2.9 nm, 𝑎 = 0.565 nm,
𝑐𝑙 = 4400 m/s, 𝑐𝑡 = 2475 m/s, 𝜌 = 5320 kg/m3,
𝐷𝑑 = 5×10−2 cm2/s, 𝜃𝑑 = 10 eV, 𝜕𝐹/𝜕𝑁𝑑1 = 0.1 eV,

Fig. 1. Dispersion law and the phonon mode width for
the surface elastic acoustic wave interacting with adsorbed
atoms. Image forces and the non-local character of the interac-
tion between the adsorbed atom and the matrix atoms (𝑙𝑑 ̸= 0)
are taken into consideration

and 𝑇 = 100 K [13]. The value of characteristic length
of the interaction between an adatom and lattice
atoms, 𝑙𝑑, was determined from the minimum condi-
tion for the free energy of the crystal with adsorbed
atoms [12].

Figure 1 illustrates the results of calculations car-
ried out for the dispersion law 𝜔′(𝑞) of the surface
elastic acoustic mode (curves 1 and 2) and for the
dependence 𝜔′′(𝑞) of its width on the absolute value
of the wave vector 𝑞 (curves 1′, 1′′ and 2′, 2′′). The
latter dependence arises due to the account for the
interaction between the adsorbed atoms and the self-
consistent quasi-Rayleigh wave, and it was calculated
making allowance for image forces. The calculations
were performed for two indicated values of the ad-
sorbed atom concentration 𝑁𝑑0.

One can see that the dependences 𝜔′(𝑞) and 𝜔′′(𝑞)
are non-linear in the interval 0 ≤ 𝑞 < 1

𝑙𝑑
. If 𝑞 → 0,

the width of the surface acoustic mode 𝜔′′(𝑞) tends
to zero, whereas the dispersion curve 𝜔′(𝑞) asymptot-
ically approaches the dispersion curve 𝜔(𝑞) = 𝑐𝑡𝜉0𝑞
for the surface Rayleigh wave. It has to be noted
that, at 𝑞 = 1

𝑙𝑑
, the length of the surface acoustic

wave is identical to the characteristic length of the
interaction between an adatom and lattice atoms. As
one can see from Fig. 1, the width of the acoustic
phonon mode grows with the concentration of ad-
sorbed atoms. In particular, at 𝑞 = 0.012 Å, the
energy width for the surface acoustic mode ~𝜔′′(𝑞)
amounts approximately to Γ2′2′′ = 8.9 𝜇eV, if the
adatom concentration 𝑁𝑑0 = 3 × 1012 cm−2, and to
Γ1′1′′ = 55 𝜇eV, if 𝑁𝑑0 = 3×1013 cm−2. In the short-
wave interval for the surface elastic acoustic waves (at
𝑞 = 0.02 Å), the energy widths at the same concen-
tration equal 16.6 and 66.7 𝜇eV, respectively. In addi-
tion, at 𝑞 = 0.02 Å, the energy width Γ2′2′′ = 28 𝜇eV,
if 𝑁𝑑0 = 3 × 1012 cm−2, and Γ1′1′′ = 100 𝜇eV, if
𝑁𝑑0 = 3× 1013 cm−2.

The analysis of our calculation results obtained
for the dispersion law 𝜔′(𝑞) and the phonon mode
width Γ𝑖𝑗 (𝑖, 𝑗 = 1′, 2′, ...) of the surface elastic acous-
tic wave demonstrates (see Figs. 1 and 2) that the
phonon mode width Γ𝑖𝑗 grows in the absence of
a non-local interaction (Fig. 2). Furthermore, if the
non-local interaction is not taken into consideration
(𝑙𝑑 = 0), the phase velocity 𝑣𝑓 = 𝜔(𝑞)

𝑞 of propaga-
tion of a quasi-Rayleigh wave is higher in compari-
son with the case where this interaction is taken into
account.
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From the boundary conditions (14) and (15) with
regard for Eqs. (2) and (3), as well as the orthogo-
nality conditions for the displacement vectors u𝑛 and
u𝑚 (𝑛,𝑚 = 𝑥, 𝑦, 𝑧) [20]

1

𝑎3

1
𝑘𝑙∫︁
0

𝑢*
𝑧(𝑥, 𝑧)𝑢𝑧(𝑥, 𝑧)𝑑𝑧 = 1, (22)

we obtain the expressions for the amplitudes |𝐴| and
|𝐵|, which enter the formula for the height of an ir-
regularity created by a quasi-Rayleigh wave and ad-
sorbed atoms on the surface 𝑧 = 0. The irregularity
height 𝜍 is defined as the sum of the normal compo-
nents of the vectors of displacements for longitudinal
(u𝑙) and transverse (u𝑡) waves at the monocrystal
surface (𝑧 = 0):

𝜍 = 𝑢𝑙
𝑧(0) + 𝑢𝑡

𝑧(0), (23)

where 𝑢𝑙
𝑧 = 𝑘𝑙 |𝐴| ; 𝑢𝑡

𝑧 = 𝑞 |𝐵| ; 1
𝑘𝑙

is the depth of pen-
etration of an acoustic wave into the semiconductor,

|𝐴| = 𝑎3/2
⧸︂(︂

𝑘𝑙
2

(︂
1− 1

𝑒2

)︂
+

𝑘𝑙
𝑘𝑙 + 𝑘𝑡

×

× −𝑘2𝑙 + (1− 2𝛽)𝑞2 +𝑀

𝛽𝑘𝑡

(︂
1− 1

𝑒1+𝑘𝑡/𝑘𝑙

)︂
+

+
𝑞2

2𝑘𝑡

(−𝑘2𝑙 + (1− 2𝛽)𝑞2 +𝑀)2 + 𝑍2

(2𝛽𝑘𝑡𝑞)2
×

×
(︂
1− 1

𝑒2𝑘𝑡/𝑘𝑙

)︂)︂1/2
, (24)

|𝐵| =

√︃
(−𝑘2𝑙 + (1− 2𝛽)𝑞2 +𝑀)2 + 𝑍2

(2𝛽𝑘𝑡𝑞)2
𝑎3/2

⧸︂
⧸︂(︂

𝑘𝑙
2

(︂
1− 1

𝑒2

)︂
+

𝑘𝑙
𝑘𝑙 + 𝑘𝑡

−𝑘2𝑙 + (1− 2𝛽)𝑞2 +𝑀

𝛽𝑘𝑡
×

×
(︂
1− 1

𝑒1+𝑘𝑡/𝑘𝑙

)︂
+

+
𝑞2

2𝑘𝑡

(−𝑘2𝑙 + (1− 2𝛽)𝑞2 +𝑀)2 + 𝑍2

(2𝛽𝑘𝑡𝑞)2
×

×
(︂
1− 1

𝑒2𝑘𝑡/𝑘𝑙

)︂)︂1/2

, (25)

where

𝑀 = −𝜔
′2

𝑐2𝑙

𝜃2𝑑
𝜌𝑐2𝑙 𝑎

𝐷2
𝑑𝑁𝑑0

𝐷2
𝑑𝑞

4 + 𝜔′2

𝑞2

𝑘B𝑇
(1− 𝑙2𝑑𝑞

2), (26)

𝑍 = −𝜔
′3

𝑐2𝑙

𝜃2𝑑
𝜌𝑐2𝑙 𝑎

𝐷𝑑𝑁𝑑0

𝐷2
𝑑𝑞

4 + 𝜔′2

𝑞2

𝑘B𝑇
(1− 𝑙2𝑑𝑞

2). (27)

Fig. 2. The same as in Fig. 1, but neglecting the non-local
interaction between the adsorbed atom and the matrix atoms
(𝑙𝑑 = 0) .

Those amplitudes enter the formula for the height of
an irregularity created by a quasi-Rayleigh wave and
adsorbed atoms on the surface 𝑧 = 0. The irregularity
height 𝜍 is determined as the sum of the normal com-
ponents of the displacement vectors for longitudinal
(u𝑙) and transverse (u𝑡) waves at the single-crystal
surface (𝑧 = 0):

𝜍 = 𝑢𝑙
𝑧(0) + 𝑢𝑡

𝑧(0), (28)

where 𝑢𝑙
𝑧 = 𝑘𝑙 |𝐴|, 𝑢𝑡

𝑧 = 𝑞 |𝐵|, and 1
𝑘𝑙

is the pen-
etration depth of an acoustic wave into the semi-
conductor.

5. Conclusions

1. A theory describing the dispersion of surface elastic
acoustic waves and its dependence on the concentra-
tion of adsorbed atoms and the deformation potential
has been developed. The theory involves the non-local
elastic interaction between the adsorbed atoms and
the matrix atoms, as well as image forces.

2. The energy width of the surface acoustic mode is
found to be proportional to the product of the surface
concentration of adsorbed atoms and the deformation
potential of an adsorbed atom (Γ𝑖𝑗 ∼ 𝑁𝑑0𝜃𝑑).

3. The non-local elastic interaction between the ad-
sorbed atom and the matrix atoms is found to result
in a reduction of the energy width of the surface elas-
tic acoustic mode. In the short-wave interval of the
acoustic mode, the non-local elastic interaction af-
fects more strongly the variation of the energy width
of the surface acoustic elastic mode.
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4. Provided an identical concentration of adsorbed
atoms in the near-surface region of the crystal lat-
tice, the width of the surface acoustic mode is found
to be larger, if those atoms are interstitial impurities
in comparison with the case where they are substitu-
tional impurities. This difference is associated with
the fact that the surface deformation potential of
adsorbed atoms in the former case (interstitial im-
purities), 𝜃(i)

𝑑
= 𝐾𝑎3, is larger than in the case

where the adsorbed atoms are substitutional impu-
rities, 𝜃(s)

𝑑
= 4

3𝜋(𝑅
3
𝑎 − 𝑅3

0), where 𝑅𝑎 and 𝑅0 are the
covalent-ionic radii of the adsorbed and matrix atoms,
respectively.
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ЗАКОН ДИСПЕРСIЇ ТА ШИРИНА
ПОВЕРХНЕВОЇ АКУСТИЧНОЇ МОДИ
В ЗАЛЕЖНОСТI ВIД КОНЦЕНТРАЦIЇ
АДСОРБОВАНИХ АТОМIВ

Р е з ю м е

У межах моделi взаємодiї адатомiв з самоузгодженою аку-
стичною квазiрелеєвською хвилею в довгохвильовому на-
ближеннi з урахуванням сил дзеркального зображення та
нелокальної пружної взаємодiї адсорбованого атома з ато-
мами матрицi знайдено закон дисперсiї поверхневих пру-
жних акустичних хвиль i ширину поверхневої акустичної
моди в залежностi вiд концентрацiї адсорбованих атомiв.
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