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POTENTIAL ENERGY ANALYSIS
FOR A SYSTEM OF INTERACTING PARTICLES
ARRANGED IN A BRAVAIS LATTICEPACS 52.27.Lw, 02.30.Mv

We propose a method to calculate the type of a lattice formed by grains in dusty plasma and
estimate its potential energy. Basically, this task is complicated by the interparticle potential
that appertains to “catastrophic potentials”. This kind of potentials needs special approaches to
avoid divergences during potential energy calculations. In the current contribution, we will de-
velop all the necessary modifications to appropriate methods. It will be shown that the obtained
potential energy expression can be used to determine lattice parameters and these parameters
comply to known experimental data.
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1. Introduction

There are many soft-matter systems such as grains in
a dusty plasma, colloids in various solvents, surfac-
tant solutions, etc., that exhibit the self-organization
and rearrangement in crystalline structures under cer-
tain conditions. They are often described with a Cou-
lomb-like long-range potential. Thus, on one hand, we
have very interesting physical systems with applica-
tions to the studies of a variety of peculiar phenomena
in different fields of science [1–3]. On the other hand,
we have interaction that leads to a divergence dur-
ing potential energy calculations (that is why they
are often called “catastrophic potentials”) and highly
complicates the consideration. This induced a variety
of successful approaches to treat divergences [4–10].

If we overcome the infinite energy problem some-
how, then the partition function will be exactly eval-
uated only for few model systems of interacting parti-
cles in the thermodynamical limit [9,11–15]. But that
is the case where one can observe crystallization-like
phenomena and transitions between different lattice
symmetries [16–20], which is the case of study.

This work is based on Ewald’s sum modification. In
particular, instead of describing particle’s position
with the delta-function, a certain distribution func-
tion will be used. This approach is known, because it
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allows one to consider the boundary effects for finite
particles’ clusters [4,9] and to obtain some progress in
potential energy calculations for two-dimensional sys-
tems [11]. Namely, we will expand and significantly
supplement results obtained for two dimensions in
[11], by making them applicable to three-dimensional
systems. It will be shown that the three-dimensional
case is more complicated, but, instead, we can per-
form the significant convergence improvement for se-
ries representing the potential energy of a Coulomb-
like system.

In Section 4, we will consider grains in dusty plasma
and apply the developed methods to find the expected
lattice and compare it to known experimental data. It
was chosen as the one manifesting a lot of interesting
effects. For example, dusty plasma may serve as a per-
fect medium for the experimental exploration of clas-
sical fluids and solids along with colloids [20, 22–30].

Along this article, one will meet examples after
each block of calculations in Section 2. They serve
two purposes. First of all, they show how to use the
introduced equations in some practical case. The sec-
ond purpose is reuse of results obtained in examples,
when treating dusty plasma in Section 4. Depending
on personal preferences, one may read them in the
given order, as well as skip and then return, when
they are referenced in Section 4.

For the current article not to be overloaded with
lots and lots of complicated mathematical compu-
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Fig. 1. Two-dimensional analogy of the transition from a
single-particle probability distribution function 𝜌sp(r) (on the
left) to the many-particle one 𝜌(r) (on the right). Function 𝜌(r)

is defined for all R2 with two-dimensional analogy of (1)

tations, we moved them to appendices 5. Thus, it
mostly contains some physical explanations and re-
sults. But using references to appendices, one may
find here the detailed rigorous exposition of the pre-
sented ideas as well.

The rest of the article is organized as follows. It can
be contingently divided into two parts: development
of a technique and its application. Section 2 focuses
on a general expression for the potential energy for
any Bravais lattice and any potential. In addition, the
most interesting case of Coulomb potential is consid-
ered to show how to use the developed technique.

In Section 3, we will analyze possible uncertain-
ties in the choice of lattice parameters and eliminate
them. This is very important, because the minimiza-
tion algorithm starts often with very large parame-
ters, when the lattice can be described with much
smaller numbers. In this case, the calculation errors
emerge and computer starts getting wrong results for
the potential energy, which makes this calculation un-
stable and incorrect. Thus, in Section 3, we provide
a method to avoid the mentioned problem during the
minimization process.

In the last section 4, a crystal of dust particles is
considered. It is shown that the hexagonal close pack-
ing seems to be the lattice we expect to be seen in ex-
periment. This is in agreement with experiments [16]
and computer simulations [17]. One more interesting
conclusion we get is that the lattice type is indepen-
dent of the grain charge.

2. Particles Arranged in a Lattice

In this section, we aim to find a method of potential
energy calculation for a system of identical (from po-
tential’s point of view) particles arranged in a Bravais
lattice.

As a result, we will get an expression for the poten-
tial energy in the form of series (6). If the potential

approaches the “catastrophic” one, the mentioned se-
ries may contain at most one diverging term. This
term does not depend on any lattice parameter but
the mean particle number density only. Thus, there
are plenty of problems, where we can use this term
as energy’s “ground-level” (similar to the renormal-
ization approach in QFT).

2.1. Particle’s spatial distribution function

Suppose we have an equilibrium static multiparticle
system in the three-dimensional space. All particles
are arranged in some sort of Bravais lattice. We want
to calculate the potential energy of a particle in this
system depending on the given potential and lattice
type. But before we will be able to do this calculation,
some method of describing particles’ spatial distribu-
tion should be developed.

We opted to use a spatial probability distribu-
tion function, further designated as 𝜌(r). It answers
the question what is the probability density to find
some particle at (𝑥, 𝑦, 𝑧). Moreover, it is supposed
this function is not just “a collection of delta-func-
tions”, but every particle actually fluctuates near its
lattice site. In terms of separate particles, it may be
treated as introducing a form-factor (QFT-like app-
roach). Regarding the whole lattice, it may be treated
as a modification of Ewald’s summation [11, 21] by
means of introducing the single particle’s probability
distribution function 𝜌sp instead of the delta-function.

Now, we directly move to calculations. It is rela-
tively easy to introduce 𝜌sp, at least by empirical
means. But the probability distribution function 𝜌 for
the whole lattice may be a bit sophisticated. Further,
we show how to “replicate” the given 𝜌sp and con-
struct any Bravais lattice from it. Successful usage of
this method should result in something like shown
in Fig. 1 (for illustrative purposes, the 2D space is
shown, rather than the 3D one, as we consider).

To construct something this way, we split the whole
space R3 into “building blocks”. Let V designate one
subset of the exact cover of R3 with similar domains
containing strictly one particle (relative position of
every particle supposed to be the same in its do-
main). Choice of V is far from being unique, but we
are interested in the most natural and simple op-
tion. Thus, we will use parallelepipeds as V (figure 2).

One can see that choosing V this way satisfies all
preconditions. We build a parallelepiped on Bravais
lattice’s base vectors, and, thus, the translation sym-
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metry appears naturally. The particle is placed at the
center. This is critical for subsequent calculations.

Next thing we want to do is expressing the proba-
bility distribution function 𝜌 for the whole R3 through
a single-particle probability distribution 𝜌sp. It may
be shown that “a slight modification” of the Fourier
series can do the job. As a result, the connection be-
tween 𝜌 and 𝜌sp will be obtained (1)

𝜌(r) =
∑︁
k∈Z3

𝜌kfk(r), (1a)

𝜌k = 𝜌

∫︁∫︁∫︁
V

f*k(r)𝜌sp(r)𝑑
3r, (1b)

fk(r) = 𝑒2𝜋i(k
𝑇 �̂�r ), (1c)

�̂� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

𝑎
−

cot(𝛼)

𝑎
−

cot(𝛽𝑐) sin(𝛼− 𝛼𝑐)

𝑎 sin(𝛼)

0
csc(𝛼)

𝑏
−

cot(𝛽𝑐) sin(𝛼𝑐)

𝑏 sin(𝛼)

0 0
csc(𝛽𝑐)

𝑐

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1d)

It may be noticed that all vectors are treated as col-
umn vectors. Symbol * designates here the complex
conjugation, and

𝜌 =
1

𝑎𝑏𝑐 sin(𝛼) sin(𝛽𝑐)
(2)

is the mean particle number density. In addition, one
should mention the matrix �̂� comprising all geometry
of the lattice under consideration.

We omit here too much detailed calculations. But
referring to Appendix 6.1, one may find the proof of
the 𝜌 periodicity along vectors a, b, and c. In addi-
tion, some light is shed there on the connection of the
current transformation with the Fourier series and in-
verse lattice.

Equations (1) allow us to construct the function
𝜌 (r ) “composed” from single particle distributions
“arranged in a lattice”. This principle is demonstrated
by Fig. 1. Since 𝜌 has the same symmetry as the lat-
tice and locally is a good approximation for 𝜌sp, it will
be treated as the probability distribution function for
the whole lattice.

To get a better intuitive understanding on (1) us-
age, one may check Example 2.2 for the Gaussian 𝜌sp.

2.2. Example: calculating the distribution
function 𝜌 for the Gaussian single-particle
distribution 𝜌sp

We suppose that all particles are arranged in a lattice
and their positions are quite determined. But since
the temperature differs from zero, we can expect that
particle’s position fluctuates near its lattice site as
(somewhat analogous to a form factor in QFT)

𝜌sp(r) =
1

(2𝜋𝑠2)3/2
𝑒−𝑟2/(2𝑠2), (3)

where 𝑠 is the dispersion or localization distance by
physical meaning. Equation (3) is the normal distri-
bution, which seems to be quite reasonable for both
classical and quantum (ground state of a quantum
harmonic oscillator) systems.

The last assumption we do is that “Gaussian” (3)
is very “sharp” and every particle lays outside the
localization radius of any other particle. Otherwise,
we would not be able to treat this system as a crystal
in any sense. This means that 𝑠 is much smaller than
other characteristic distances in this system.

Now, we just plug-in 𝜌sp(𝑟) into (1b) and per-
form the integration. Assuming that 𝜌sp(𝑟) is a very
“sharp” Gaussian, the following result is obtained:

𝜌k = 𝜌𝑒−2𝜋2𝑠2k𝑇 �̂��̂�𝑇k, (4)

where 𝜌 is the mean particle number density (2). For
more details regarding the integration procedure, one
may refer to Appendix 6.2.

Equation (4) can be directly substituted into (1a),
and we will get the aimed result of this exam-

Fig. 2. One cell V from the exact cover of R3. Vectors a, b,
and c are base vectors for the Bravais lattice. Angle between a

and b is supposed to be 𝛼. Angle between c and 𝑋𝑌 plane is
𝛽𝑐, and the angle between its projection on 𝑋𝑌 plane and a is
𝛼𝑐. One particle is shown at the center
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ple. Later, we will use (4) to calculate the potential
energy for the Coulomb interaction in Subsection 2.4.

2.3. Potential energy of a single particle

Now, we switch gears to the potential energy cal-
culation. In the regular case, one may expect 𝑖-th
particle’s potential energy to be something as 𝐸𝑖 =
=

∑︀
𝑗 ̸=𝑖 𝑉 (𝑟𝑖𝑗), where 𝑉 is the interaction potential,

and 𝑟𝑖𝑗 is the distance between the 𝑖- and 𝑗-th par-
ticles. But we do not want to stick to specific parti-
cles’ positions and will use the probability distribu-
tion function we introduced in Subsection 2.1.

Thus, we change the summation to the integration∑︀
→

∫︀
, and use the requirement 𝑖 ̸= 𝑗 → R3 ∖V,

e.g., the exclusion of V that contains a particle of
interest. Setting the sufficient integration borders and
multiplying with the probability distribution function
where needed, we get the following expression for the
single particle potential energy 𝐸sp:

𝐸sp = 𝐸int − 𝐸s, (5a)

𝐸int=

∫︁∫︁∫︁
V

∫︁∫︁∫︁
R3

𝑉 (|r− r′|) 𝜌 (r ) 𝜌 (r′) 𝑑3r′ 𝑑3r, (5b)

𝐸s =

∫︁∫︁∫︁
V

∫︁∫︁∫︁
V

𝑉 (|r− r′|) 𝜌 (r ) 𝜌 (r′) 𝑑3r′ 𝑑3r. (5c)

The interaction energy is presented here with 𝐸int −
−𝐸s. This “splitting” is just another way of saying
we want to integrate over R3 ∖V. If we collect both
expressions (5b) and (5c) together and use

∫︀∫︀∫︀
R3∖V =

=
∫︀∫︀∫︀

R3 −
∫︀∫︀∫︀

V, we will get the regular integration
over R3∖V for r′.

In other words, Eq. (5) states following. Since the
particle is localized near a lattice site, we take some
“part of space” V around it. Then, by integration, we
calculate the energy of interaction between the parti-
cle in V and all the rest particles in R3∖V.

Further, we call 𝐸int (5b) interaction energy and
𝐸s (5c) self-interaction energy. This “splitting” is con-
venient from the physical point of view. Basing on the
nature of the considered potential, we may want or
not compensate the self-interaction.

To clarify the last statement, let us consider both
cases. Later on, we will analyze the Coulomb poten-
tial, and it should have definitely the self-interaction
compensated. This is easily checked by considering
strictly one particle: the potential energy is zero, it is

not even known whether it has some charge, because
there is nothing to interact with.

A good example of when we may not want to
perform the compensation is the surface distortion
[11]. If the particle distorts a surface, it changes sys-
tem’s energy even if no other particle is present. For
minimization purposes, one may “merge” this energy
into the potential energy of the particle and treat this
as the “self-interaction” [11]. It may be a good ap-
proach for effective interactions through a medium.

Now, we substitute (1) into (5b) to get the interac-
tion energy in terms of the single-particle probability
distribution function

𝐸int =
1

𝜌 2

∑︁
k∈Z3

|𝜌k|2 𝑉k, (6a)

𝑉k = 𝜌

∫︁∫︁∫︁
R3

fk (r
′)𝑉 (|r′|) 𝑑3r′, (6b)

where 𝜌 is the mean particle number density. For
more technical details of the performed transforma-
tion, one can refer to Appendix 6.3.

Now, we claim that (5a), (6), and (5c) are the
aimed result of Section 2. The convenience of these
expressions is far from being self-evident. Thus, let
us consider them more carefully.

First of all, we try to handle divergences, when
the system gets unbounded, and the potential is
“catastrophic”. Since the integration in (5c) is per-
formed over the parallelepiped V, and 𝜌sp is a “good”
quickly descending function, we have no divergence
there. Thus, we are concerned with (6) only.

Using the Fourier series theory, one can easily show
that there is only one term in (6) that can diverge,
when the system gets unbounded, and the potential
is “catastrophic”:
1

𝜌 2
|𝜌0|2 𝑉0 = 4𝜋𝜌

∞∫︁
0

𝑉 (𝑟)𝑟2𝑑𝑟.

But this term does not contain any information on
the “lattice geometry” and depends on the mean par-
ticle number density only. This means we can com-
pare two lattices with equal mean particle number
densities, even if the interparticle potential is “catas-
trophic”. We just measure the energy from this term
as ground-level (somewhat analogous to the renor-
malization in QFT). Now, we have tools to compare
the energies of lattices and to minimize this energy
with respect to lattice parameters.
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The following example 2.4 shows how to calculate
the potential energy for any Bravais lattice formed by
charged particles. If needed, all previous calculations
and following examples may be reduced to the two-
dimensional case in an obvious way.

2.4. Example: calculating
𝐸int − 𝐸s for screened and non-screened
Coulomb potentials

Let us apply the formalism developed in Subsec-
tion 2.3 to the most interesting case of Coulomb inter-
action. First, we will consider the screened Coulomb
potential

𝑉 (𝑟) =
𝑞2𝑒−𝑟/𝜆D

𝑟
, (7)

where 𝜆D is the Debye screening distance, 𝑞 is the
charge of one particle. The non-screened interaction
will be treated as a partial case of screened one, when
𝜆D → ∞.

We substitute 𝑉 from (7) into (6b) and perform
the integration to get 𝑉k

𝑉k =
4𝜋𝜌𝑞2

1/𝜆2
D + 4𝜋2k𝑇 �̂��̂�𝑇k

. (8)

Details on how to perform this integration can be
found in Appendix 6.4.

The next step is easy as well. We take (8) and sub-
stitute into (6a). One may notice that we still need
𝜌k in this equation to have a complete expression for
the interaction energy. As the one, we use 𝜌k for the
Gaussian single-particle probability distribution from
Eq. (4), Example 2.2. We get

𝐸int =
∑︁
k∈Z3

𝑒−4𝜋2𝑠2k𝑇 �̂��̂�𝑇k 4𝜋𝜌𝑞2

1/𝜆2
D + 4𝜋2k𝑇 �̂��̂�𝑇k

. (9)

For large values of 𝜆D, we will see that the first
summands in (9) descend as 1/|k|2. But if we write a
series containing the interaction energy between this
particle and any other straightforward, the first sum-
mands will descend only as 1/|k|. Thus, series (9) has
better convergence.

To calculate the free energy with Eqs. (5), we need
to find expressions for 𝐸int and 𝐸s. At this point, we
have 𝐸int (9) and still need 𝐸s (5c). Let us substitute
the Gaussian 𝜌sp from (3) into (5c), take the “sharp-
ness” of this Gaussian into account (means 𝑠 is small),

and perform a simplification

𝐸s =
1

2
√
𝜋𝑠3

∞∫︁
0

𝑒−𝑟′ 2/(4𝑠2)𝑉 (𝑟′)𝑟′ 2𝑑𝑟′. (10)

Then we substitute the screened Coulomb potential
(7) into (10) and once more perform the integration:

𝐸s =
𝑞2√
𝜋𝑠

− 𝑞2

𝜆D
. (11)

Computing Eq. (11), we took again into account that
𝑠 is small compared to other distances in the lat-
tice. To see performed transformations in more de-
tails, one may use Appendix 6.5.

At this point, the expression for 𝐸int − 𝐸s can be
constructed from (9) and (11). One can see that, for
the non-screened Coulomb potential, e.g., 𝜆D → ∞,
only one term is going to infinity. It is the summand
from 𝐸int with k = 0 (9). But this term does not
contain �̂�. This means that there is no dependence
on the lattice form, only on the mean particle num-
ber density. Thus, we can use an approach similar to
the renormalization in QFT and treat this term as
the “ground-level” energy. On the other hand, we can
mention that it is equal to 4𝜋𝜌𝑞2𝜆2

D, which is the in-
teraction energy with uniformly distributed charge. If
we suppose that particles are in some medium with
uniformly distributed charge of opposite sign, this
term will be automatically equal to zero.

It may be a good point to stop, but we want to
make one more step to the convergence improvement.
The Coulomb interaction is very special and ubiqui-
tous; thus, it looks reasonable to search for as good
approximation for particle energy as possible. If we
introduce the mean distance between particles,

𝑙 =
1
3
√
𝜌
, (12)

and suppose that the lattice is not degenerate, then
Eq. (10) can be approximated as

𝐸int − 𝐸s =

√
𝜋𝑞2

𝑙

∑︁
k̸=0

𝑒−k𝑇 �̂�−1𝑇 �̂�−1k/𝑙2

k𝑇 �̂�−1𝑇 �̂�−1k/𝑙2
+

+
𝑞2

𝜋𝑙

∑︁
k ̸=0

𝑒−𝑙2k𝑇 �̂��̂�𝑇k

𝑙2k𝑇 �̂��̂�𝑇k
− 2

√
𝜋𝑞2

𝑙
+ 4𝜋𝜌𝑞2𝜆2

D. (13)

More details on the approximation procedure can be
found in Appendix 6.6.
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Fig. 3. Same lattice in different representations. It has trans-
lation symmetry with respect to two vectors a and b. Left fig-
ure shows different choices for the second translation vector: b

and b′. Using reflections, one may show that the lattice on the
right is the same as the left one. So, b ′′ is a possible choice as
well. When performing the numerical calculations, additional
restrictions are used to overcome this uncertainty

One may see that the last term is equal to the en-
ergy in the case of evenly distributed charge. It is very
useful to note that this is the only summand that ap-
proaches infinity, if 𝜆D → ∞. This means that (13)
can be used for the comparison of different lattices
even without screening. We will only need to mea-
sure the energy, by starting from 4𝜋𝜌𝑞2𝜆2

D as “ground-
level”. Other terms are corrections due to the charge
pointness and comprise all information on the lattice
geometry.

Now, the last self-check. The Coulomb interac-
tion is long-range, and the localization distance 𝑠
should not play any significant role in the approxi-
mation. Here, we see that it is really absent. Rather
different may be a picture for short-range interactions
or effective interactions with uncompensated 𝐸s.

The obtained equation (13) is, in some sense, equiv-
alent to Ewald’s series – same idea of splitting into
two sums over the lattice and over inverse lattice and
the same convergence rate. But the Ewald summa-
tion implies some arbitrary constants that are cho-
sen experimentally, depending on a specific lattice,
to achieve a better performance. Methods of choosing
these parameters are significantly different in differ-
ent works [38–45]. In the present contribution, we ob-
tain series without any “free variables”. If needed, the
Reader may treat the presented derivation as the con-
struction of Ewald series with all parameters “built-
in” and tuned for for the best performance in the
scope of the considered problem.

There is one more thing to point out. We do not
focus on calculating the potential energy itself – this
is rather a byproduct. What we want is comparing
two lattices; we only need “<” or “>” sign to put lat-
tices in order. This means that even if the obtained
series are not “overprecise” compared to different ap-
proaches, they are extremely useful. As we will see

further, the obtained series are “order-preserving” and
allow us to compute the lattice parameters with less
than 100 summands per lattice.

3. Using Lattice Symmetry
When Performing the Computer
Minimization of the Potential Energy

Here, we develop a method for examining the poten-
tial energy of one particle from an infinite Bravais
lattice. We want this method to be suitable for the
minimization of this energy with respect to lattice
parameters.

It looks like Eqs. (6) and (5c) or their specific
version for the Coulomb interaction (13) should be
enough. But one who tries to minimize the potential
energy within numerical methods will meet the fol-
lowing problem. All possible parameter values (trans-
lation vectors) and all possible Bravais lattices are not
in the one-to-one correspondence. There is an infinite
set of possible triples of -translation vectors that de-
scribe the same Bravais lattice.

Performing the potential energy minimization, a
computer searches for a triple of translation vectors
that should be substituted into the expression for
𝐸int−𝐸s to obtain a minimal possible value. But, due
to the mentioned uncertainties, one starts sometimes
to choose triples containing longer and longer vec-
tors. This is so, because the calculation errors emerge,
and the algorithm starts thinking that longer vectors
make the potential energy smaller. Thus, it is highly
desirable to somehow restrict parameters and remove
uncertainties from the choice of translation vectors.

In Section 3, we will analyze possible uncertainties
and provide a method to avoid the mentioned prob-
lem during the minimization.

It is easier to start with a 2D lattice. Figure 3 shows
the uncertainty, when choosing parameters. One may
see that it can be eliminated, if we claim that the
projection of b on a is less than a half of a. In terms
of parameters, this may be expressed as

0 ≤ 𝑏 cos(𝛼) ≤ 𝑎

2
. (14)

Restrictions in the 3D case are more sophisti-
cated. To imagine the translation vectors, one can re-
fer to Fig. 2. Obviously, (14) should be kept for 3D,
as is. We only need the additional consideration for c.

The definition of vector c has same problems as b
in Fig. 3 has had. For any Bravais lattice, c can be
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chosen so that its projection is inside of the paral-
lelogram built on a and b. This conclusion becomes
obvious after considering Fig. 2 and thinking about c
in the same manner, as about b in Fig. 3.

But, using the reflection with respect to the 𝑋𝑌
plane, this condition may be strengthened. Conside-
ring Fig. 4, one may see that c may be always pro-
jected to the lower part of the parallelogram con-
structed on a and b. Using the expression for the
mean particle number density (2), we get

𝑐𝑥 = 𝑐 cos(𝛽𝑐) cos(𝛼𝑐) =
cot(𝛽𝑐) cos(𝛼𝑐)

𝜌𝑎𝑏 sin(𝛼)
,

𝑐𝑦 = 𝑐 cos(𝛽𝑐) sin(𝛼𝑐) =
cot(𝛽𝑐) sin(𝛼𝑐)

𝜌𝑎𝑏 sin(𝛼)
.

Then, by adding the restriction mentioned above, we
have
0 < 𝑐𝑦 <

𝑏 sin(𝛼)

2
,

𝑐𝑦 cot(𝛼) < 𝑐𝑥 < 𝑐𝑦 cot(𝛼) + 𝑎.
(15)

Equations (14) and (15) are enough to set up a
one-to-one correspondence between translation vec-
tors and Bravais lattices. They will be used in Sec-
tion 4 to get the parameters of a dust crystal with
minimal potential energy.

4. Grains in Dusty Plasma,
Dust Crystal, and Its Lattice

It is known that grains in dusty plasma interact and
even show the self-organization in form of the melt-
ing and the crystallization of dust crystals [16–20].
We aim to apply the methods developed in Section 2
to this system. As the first approximation, we sup-
pose that grains interact only as charged particles
(screened Coulomb potential). The obtained equation
(13) (example 2.4) allows us to calculate the energy
of any lattice just inserting the correct matrix �̂� and
performing the summation. But much more interest-
ing is finding the lattice with minimal energy, when
the particle number density 𝜌 is fixed. The obtained
result can be verified experimentally.

We will perform the minimization of the potential
energy with respect to �̂� parameters, if the mean par-
ticle number density is constant. The expression for
𝐸sp ≡ 𝐸int − 𝐸s was already obtained as (13), ex-
ample 2.4. Moreover, the problem of different �̂� rep-
resenting the same lattice is solved by introducing
restrictions (14) and (15) in Section 3.

Fig. 4. Projection of the same lattice in different represen-
tations on the 𝑋𝑌 plane. The particles from layers above and
below the 𝑋𝑌 plane are shown by a circle and a filled cir-
cle, respectively. Particles in the 𝑋𝑌 plane are not explicitly
shown. If a particle from above the plane is projected into the
upper half of the 𝑎𝑏 parallelogram, a reflection with respect to
the 𝑋𝑌 plane can be used to get representation, where this
particle is in the lower half of the parallelogram

To simplify the minimization, we perform few
transformations of (13). First of all, we designate
𝑎 = 𝑙(1+𝛿𝑎), 𝑏 = 𝑙(1+𝛿𝑏), and express 𝑐 through (2).
One may notice that 𝑙 is canceled out in exponents
and denominators in (13). This means that the used
method of minimization allows us to cancel out the
mean interparticle distance and leads to the scale-free
minimization. This result is significant on its own –
we claim that the lattice predicted during the mini-
mization does not depend on the mean particle den-
sity. This agrees with the physical intuition, since the
Coulomb interaction is long-range and does not con-
tain any specific distance parameters. Second, it al-
lows us to work with numbers that are comfortable
for a computer and do not cause too big calculation
errors. In the same way, we perform manipulations
on restrictions (14) and (15). One should see that we
have obtained this restrictions in a way that preserves
scale-free properties of the equations.

In addition, we mention that we need to minimize
only parts with �̂� and, thus, disregard other terms in
𝐸int−𝐸s (this is proper, because the particle number
density is constant). Now, the only term containing 𝑙
is 𝑞/𝑙 in the expression for 𝐸int − 𝐸s. But it can be
factored out and, thus, does not affect the minimiza-
tion – we just ignore it.

The numerical minimization was performed with
the standard function FindMinimum of Wolfram
Mathematica v.9. Both sums in (13) are highly con-
vergent. Thus, we can limit the summation with
|k| ≤ 4. Taking more summands does not change the
calculated optimal lattice.

Now, we can present the results of numerical min-
imization in Fig. 5 and Table.
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Fig. 5. Part of the lattice obtained by the minimization. As
is seen, the 3D lattice consists of interleaving planes with 2D
hexagonal (triangular) lattices in each. The only difference be-
tween planes is a shift: particles from one plane are projected
onto “empty spaces” in another one. Translation vectors are
shown as well

Parameter Calculated Hexagonal close
value packing (HCP)

𝛼 ≈1.04717 𝜋/3 ≈ 1.0472

𝛼𝑐 ≈0.523589 𝜋/6 ≈ 0.5236

𝛽𝑐 ≈0.955205 arcsin(
√︀

2/3) ≈ 0.9553

𝑎 ≈1.122462 6
√
2 ≈ 1.12246

𝑏 ≈1.122462 6
√
2 ≈ 1.12246

Looking at Fig. 5, one may see that it is very similar
to a hexagonal close-packed (HCP) lattice. HCP con-
sists of two interleaving planes with a triangular 2D
lattice in each as well. So, we may check, if this is re-
ally the HCP lattice, by comparing their parameters.

The results show that the lattice obtained by
numerical calculations is really HCP. This complies
with experimental data and the computer simulation
[16, 17].

5. Conclusions

In conclusion, we want to make some overview of the
results we have obtained.

In Section 2, we have developed a general formal-
ism for calculations of the potential energy. Any Bra-
vais lattice can be treated within this approach, even
if the interparticle potential is “catastrophic”. As the
most interesting example, the Coulomb potential was
considered (both screened and non-screened). In the
following sections, this result was used to find which
lattice is formed by dust particles in plasma.

The obtained equations are, in some sense, equiv-
alent to Ewald’s series – the same idea of splitting
into two sums over the lattice and over the inverse
lattice; the same convergence rate. But the Ewald
summation implies some arbitrary constants that are
chosen experimentally depending on a specific lattice
to achieve the better performance. The methods of
choosing these parameters may be significantly differ-
ent in different works [38–45]. In the present work, we
have obtained series without any “free variables”. If
needed, the Reader may treat the presented deriva-
tion as obtaining the Ewald series with all prameters
“built-in” and tuned for for the best performance in
the scope of the considered problem.

We do not focus on calculating the potential energy
itself – this is rather a byproduct. What we want is
the comparison of two lattices; we only need the < or
> sign to put lattices in order. This means that even
if the obtained series are not “overprecise” compared
to different approaches, they are extremely useful. As
is shown, the obtained series are “order-preserving”
and allow one to compute lattice parameters with less
than 100 summands per lattice.

But even having the expression for potential en-
ergy, one will face the problem of ambiguity of the
choice of translation vectors, when describing some
Bravais lattice. During a numerical computation, this
may cause the algorithm to choose longer and longer
translation vectors. This is because the calculation er-
rors emerge, and the algorithm starts thinking that
longer vectors make the potential energy smaller. In
Section 3, we have developed methods to overcome
this problem. As a result, a restriction on translation
vectors is obtained. This restriction allows us to elimi-
nate the uncertainty and to perform the minimization
correctly. Moreover, the obtained restrictions, as well
as series for the minimization, are “scale-free”, which
has positive effect on computations.

Section 4 is devoted to the consideration of dusty
plasma. We use the results from the previous sections
to find out what is the lattice type of a dust crystal. It
seems we should expect a hexagonal close-packed
(HCP) lattice for grains in dusty plasma. This result
is independent on grains’ charge unless they all are
equally charged. In addition, there is no dependence
on the screening distance, if only it is larger than the
mean interparticle distance. This coincides with the
results of other numerical simulations [17] and exper-
iments [16]. The above result has been obtained, by
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using less than 100 summands per lattice. Thus, we
treat the performed calculations as “near-analytical”
and leaving a possibility to find sometime a fully an-
alytical approach to this class of problems.

6. APPENDICES

During this article, we tried to provide the rigorous exposition
of presented ideas, but without physical sole being lost in lots
of equations. Thus, calculations that heavily rely on mathe-
matical transformations only were moved to appendices. The
Reader interested only in “physical part” may omit them.

6.1. On the properties of fk(r)

In (1), we present how to calculate the probability distribution
function for the whole system 𝜌(r) basing on the single-particle
probability distribution function 𝜌sp(r). It is based on the de-
composition of 𝜌sp, by using fk(r) (1c) as basis functions in the
inverse lattice space. Here, we add some consideration about
the connection between a Fourier series and the presented one.

Suppose we have a function 𝑔(u) defined on the unit cube
U ≡ [0; 1] × [0; 1] × [0; 1]. This function can be expressed in
terms of a Fourier series

𝑔(/𝑏𝑓𝑢) =
∑︁
k∈Z3

𝑔k 𝑒2𝜋i(k𝑇u),

𝑔k =

∫︁∫︁∫︁
U

𝑔(u)𝑒−2𝜋i(k𝑇u)𝑑3u.
(16)

Let us consider a bijection �̂� (1d) from V to U and its inverse
�̂�−1 : U → V (see Fig. 2 for a geometrical reasoning)

�̂�−1 =

⎛⎜⎝𝑎 𝑏 cos(𝛼) 𝑐 cos(𝛼𝑐) cos(𝛽𝑐)

0 𝑏 sin(𝛼) 𝑐 sin(𝛼𝑐) cos(𝛽𝑐)

0 0 𝑐 sin(𝛽𝑐)

⎞⎟⎠. (17)

It may be seen that the rows of �̂� are components of the in-
verse lattice basis vectors. We are interested in the case 𝑔(u ) =

= 𝜌sp
(︁
�̂�−1u

)︁
. Since we know that ∀r ∈ V : 𝜌sp

(︁
�̂�−1�̂�r

)︁
=

= 𝜌sp(r), one can immediately write

𝜌sp(r) =
∑︁
k∈Z3

𝑔k𝑒
2𝜋i(k𝑇 �̂�r ). (18)

In the same way, we consider the second equation from (16):

𝑔k =

∫︁∫︁∫︁
V

𝜌sp
(︁
�̂�−1u

)︁
𝑒−2𝜋ik𝑇 �̂��̂�−1u

𝑑3
(︁
�̂�−1u

)︁
𝐽
[︁
�̂�−1u

]︁ , (19)

where 𝐽 is a Jacobian. Here, �̂�−1u is treated as a new variable
with the domain V.

The Jacobian 𝐽
[︁
�̂�−1u

]︁
= 𝑎𝑏𝑐 sin(𝛼) sin(𝛽𝑐) = 1/𝜌 is actu-

ally the volume of V or the inverse mean particle number den-
sity. Designating 𝑔k as 𝜌k in (18) and (19), changing the vari-
able in (19) �̂�−1u → r, and designating the exponent in (18)
as fk (it can be seen that the exponent in (19) is f*k, where

* designates the complex conjugation), we immediately get
Eqs. (1). Moreover, the obtained result means that all prop-
erties of a Fourier series can be applied to decomposition (1).

The last thing to be mentioned is periodical properties of
the presented series. We are going to expand the domain to R3

so that 𝜌(r ) will be defined everywhere in the space. Now, we
need to explore the behavior of this function. From (1d), one
may see that, if 𝑙 ∈ Z, 𝑚 ∈ Z, and 𝑛 ∈ Z,

�̂� (r+ 𝑙a+𝑚b+ 𝑛c ) = �̂�r+ 𝑙e𝑥 +𝑚e𝑦 + 𝑛e𝑧 , (20)

where e𝑥, e𝑦 , and e𝑧 are unit vectors along the coordinate
axes. With regard for (1c), we have

fk (r+ 𝑙a+𝑚b+ 𝑛c ) = fk(r) (21)

and, from (1a),

𝜌 (r+ 𝑙a+𝑚b+ 𝑛c ) = 𝜌(r). (22)

The last equation justifies our view of the connection between
𝜌 and 𝜌sp, as it is presented in Fig. 1.

6.2. On the expression of 𝜌k for the Gaussian 𝜌sp

We suppose that 𝜌sp(r) is either 0 everywhere in R3 ∖V or
at least negligibly small. If so, we can change the integration
limits in (1b) to infinite ones.

At this point, we are interested in a specific form of 𝜌sp

(3); thus, it is explicitly substituted into (1b). In addition, we
designate �⃗� = 2𝜋k𝑇 �̂� and rewrite the expression in Cartesian
coordinates, by changing the multiple integral to the product
of integrals

𝜌k =
𝜌

(2𝜋𝑠2)3/2

3∏︁
𝑗=1

∞∫︁
−∞

𝑒−𝑟2𝑗 /(2𝑠
2)−i𝒦𝑗𝑟𝑗𝑑𝑟𝑗 .

The last expression can be integrated, if we use the rela-
tion [31]

+∞∫︁
−∞

𝑒−𝑝2𝑥2±𝑞𝑥𝑑𝑥 =

√
𝜋

𝑝
𝑒𝑞

2/(2𝑝)2 , ℜ
(︀
𝑝2

)︀
> 0.

As a result, we get

𝜌k = 𝜌
3∏︁

𝑗=1

𝑒−𝒦2
𝑗𝑠

2/2𝑑𝑟𝑗 .

Changing the product of exponents to the exponent of a
sum and mentioning that

∑︀
𝑗 𝒦2

𝑗 = �⃗��⃗� 𝑇 = 4𝜋2k𝑇 �̂��̂�𝑇k, we
immediately get (4).

6.3. On the expression of 𝐸int

Let us start with (5b). The inner integral has infinite limits. So,
we may rewrite this expression as follows:

𝐸int =

∫︁∫︁∫︁
V

∫︁∫︁∫︁
R3

𝑉
(︀⃒⃒
r′
⃒⃒)︀

𝜌 (r ) 𝜌
(︀
r+ r′

)︀
𝑑3r′ 𝑑3r.
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Since 𝜌 (r ) is real, it can be replaced with complex conjugate
𝜌* (r ) without changing 𝐸int. Now, we can substitute 𝜌 from
(1a) and mention that fk (r+ r′) = fk (r ) fk (r′) (1c). If we
designate 𝑉k as in (6b), it can be written as

𝐸int =
1

𝜌

∑︁
k∈Z3

𝜌k𝑉k

∑︁
k′∈Z3

𝜌*k′

∫︁∫︁∫︁
V

fk (r ) f*k′ (r ) 𝑑
3r.

The last equation can be simplified, if we perform the inte-
gration. From Appendix 5, we expect the orthogonality of fk
functions. From (1c), we have fk(r)f

*
k′ (r) = fk−k′ (r), and we

get∫︁∫︁∫︁
V

fk(r)f
*
k′ (r)𝑑

3r = 𝑎𝑏𝑐 sin(𝛼) sin(𝛽𝑐)𝛿k,k′ . (23)

Here, 𝛿k,k′ = 𝛿𝑘𝑥,𝑘′
𝑥
𝛿𝑘𝑦,𝑘′

𝑦
𝛿𝑘𝑧 ,𝑘′

𝑧
is a product of three Kro-

necker’s deltas.
Mentioning that 𝑎𝑏𝑐 sin(𝛼) sin(𝛽𝑐) = 1/𝜌, where 𝜌 is the

mean particle number density (one particle per V, see fig. 2 for
a geometrical reasoning), we get (6a).

6.4. 𝑉k for the screened Coulomb potential

Let us consider Eqs. (1c) and (1d) in spherical coordinates

fk(r) = 𝑒2𝜋i𝑟
(︀
𝑔k cos(𝜃)+𝑔′k cos(𝜙−𝛿𝜙k) sin(𝜃)

)︀
,

𝑔k =
𝑘𝑥 sin(𝛼𝑐 − 𝛼)

𝑎 tan(𝛽𝑐) sin(𝛼)
−

𝑘𝑦 sin(𝛼𝑐)

𝑏 tan(𝛽𝑐) sin(𝛼)
+

𝑘𝑧

𝑐 sin(𝛽𝑐)
,

𝑔′k =

√︃
𝑘2𝑥
𝑎2

+

(︂
𝑘𝑦

𝑏 sin(𝛼)
− 𝑘𝑥

cot(𝛼)

𝑎

)︂2

,

and rewrite 𝑉k from (6b)

𝑉k = 𝜌

∞∫︁
0

𝑑𝑟𝑉 (𝑟)𝑟2 ×

×
𝜋∫︁

0

𝑑𝜃 sin(𝜃)

2𝜋∫︁
0

𝑑𝜙𝑒2𝜋i𝑟
(︀
𝑔k cos(𝜃)+𝑔′k cos(𝜙−𝛿𝜙k) sin(𝜃)

)︀
⏟  ⏞  

𝐼(𝜃)

.

Integrating over 𝜙, we get

𝐼(𝜃) = 2𝜋𝑒2𝜋i𝑔k𝑟 cos(𝜃)J0
(︀
2𝜋𝑔′k𝑟 sin(𝜃)

)︀
.

Then we substitute the last expression into the equation for 𝑉k

𝑉k = 2𝜋𝜌

∞∫︁
0

𝑉 (𝑟)𝑟2
𝜋∫︁

0

𝑒2𝜋i𝑔k𝑟 cos(𝜃) ×

× J0
(︀
2𝜋𝑔′k𝑟 sin(𝜃)

)︀
sin(𝜃)𝑑𝜃𝑑𝑟.

We will consider the screened Coulomb potential (7), which
means that the integration over 𝑟 can be performed. One may
use the relation [31]
∞∫︁
0

𝑒−𝛼𝑥J𝜈(𝛽𝑥)𝑥
𝜈+1𝑑𝑟 =

2𝛼(2𝛽)𝜈Γ
(︀
𝜈 + 3

2

)︀
√
𝜋(𝛼2 + 𝛽2)𝜈+3/2

,

ℜ(𝛼) > |ℑ(𝛽)|,ℜ(𝜈) > −1

and combine it with the equation for 𝑉k to get

𝑉k =

𝜋∫︁
0

2𝜋𝜌𝑞2 (1/𝜆D − 2𝜋i𝑔k cos(𝜃)) sin(𝜃)𝑑𝜃(︁
(1/𝜆D − 2𝜋i𝑔k cos(𝜃))2 +

(︀
2𝜋𝑔′k sin(𝜃)

)︀2)︁3/2 .
Changing the variable 𝑡 = cos(𝜃) and performing the integra-
tion over 𝑡, we will get

𝑉k =
4𝜋𝜌𝑞2

1/𝜆2
D + 4𝜋2𝑔2k + 4𝜋2𝑔′ 2k

.

The last expression is equivalent to (8). One may check this by
expanding 𝑔k and 𝑔′k.

6.5. Calculation of 𝐸s

for the screened Coulomb potential

We will start with Eq. (5c) and assume that 𝜌sp is a very
“sharp” function (example 2 2.2). With this assumption, we can
change the integration limits to infinite ones. In turn, this will
allow us to perform a change of the variable, as we did in (5):

𝐸s =

∫︁∫︁∫︁
R3

∫︁∫︁∫︁
R3

𝑉 (|r′|)𝜌sp(r)𝜌sp(r+ r′)𝑑3r′ 𝑑3r. (24)

First of all, we perform some mathematical transformations
with (3) (in the Cartesian coordinate system) and get

𝜌sp(r)𝜌sp(r+ r′) =
1

8𝜋3𝑠6
𝑒−[r+r′/2]2/𝑠2−r ′ 2/(4𝑠2).

Now, we substitute this expression into (24) and perform the
integration over r. Writing the result in a spherical coordinate
system and integrating over angles, we immediately get (10).

Since we know the explicit expression for 𝑉 (7), we can
substitute it into (10) and perform the integration, by using
the definition of the complementary error function [32]

erfc(𝑥) =
2

√
𝜋

∞∫︁
𝑥

𝑒−𝑡2𝑑𝑡. (25)

As a result, we get

𝐸s =
𝑞2
√
𝜋𝑠

(︂
1−

𝑠
√
𝜋

𝜆D
𝑒𝑠

2/𝜆2
Derfc(𝑠/𝜆D)

)︂
. (26)

We may obviously suppose that 𝑠 is very small compared to
the screening distance. Then 𝑠 ≪ 𝜆D. So, we can approximate
the last equation and, as a result, get (11).

6.6. Approximation of 𝐸int − 𝐸s

for the screened Coulomb potential

We start with expression (9) for 𝐸int. But one may see that
it contains the expressions 𝑠2�̂� and �̂�𝑇 . Components of the
�̂��̂�𝑇 matrix in (9) are proportional to various products of
inverse distances in a lattice, e.g., 1/𝑎2, 1/(𝑎𝑏), and so on
(see (1d)). Since 𝑠 ≪ 𝑎, 𝑠 ≪ 𝑏, and 𝑠 ≪ 𝑐 (assumption about
“sharp Gaussian”), we expect

⃒⃒⃒
𝑠2�̂��̂�𝑇

⃒⃒⃒
≪ 1. This means that

the exponent “starts acting” only for terms with very large

226 ISSN 2071-0194. Ukr. J. Phys. 2017. Vol. 62, No. 3



Potential Energy Analysis for Particles in a Bravais Lattice

|k|. In this section, we will try to rewrite the equations to get
even a better convergence than we have.

First of all, we rewrite the expression for 𝐸int as follows:

𝐸int =
2𝜌𝑞2

𝜋
𝑒𝑠

2/𝜆2
D

∞∫︁
2𝜋𝑠

s𝑒−s2/(2𝜋𝜆D)2
∑︁
k∈Z3

𝑒−s2k𝑇 �̂��̂�𝑇 k𝑑s.

One may easily integrate this expression and check that it is
equal to (9).

We note that the variable s takes values much smaller than
the mean distance (12), as well as much bigger. Thus, we split
this integral into two. First integration is executed from 2𝜋𝑠 to
𝑙 and the second one from 𝑙 to infinity.

We assume that the lattice is not too degenerate (Sec-
tion 2 2.4), which means that the angles 𝛼 and 𝛽𝑐 should not
significantly differ from 𝜋/2. So, we may expect elements of
s2�̂��̂�𝑇 to be less than 1 for the first integral and greater than
1 for the second one. If so, then the second integration may be
performed, and we end up with the sum that converges much
better than (9),

𝐸int =
2𝜌𝑞2

𝜋
𝑒𝑠

2/𝜆2
D

𝑙∫︁
2𝜋𝑠

s𝑒−s2/(2𝜋𝜆D)2
∑︁
k∈Z3

𝑒−s2k𝑇 �̂��̂�𝑇 k

⏟  ⏞  
Θ(0;s2�̂��̂�𝑇 )

𝑑s+

+4𝜋𝜌𝑞2
∑︁
k∈Z3

𝑒𝑠
2/𝜆2

D−𝑙2(1/[2𝜋𝜆D]2+k𝑇 �̂��̂�𝑇 k)

1/𝜆2
D + 4𝜋2k𝑇 �̂��̂�𝑇k

.

From (1d), one may check with Sylvester’s criterion [33]
that �̂� (1d) is a positive definite matrix. Obviously, we expect
�̂�𝑇 and their product �̂��̂�𝑇 to be positive definite matrices as
well. Since s takes only positive values, s2�̂��̂�𝑇 is positive as
well. This means the highlighted sum in the last equation is
the Riemann theta function [34] at the point 𝑧 = 0. So, we
appropriately designate it with Θ

(︁
0; s2�̂��̂�𝑇

)︁
.

Using the modular transformation [34]

Θ(𝑧;𝐴) =
𝜋𝑑/2√︀
det𝐴

Θ(𝐴−1𝑧;𝐴−1), (27)

where 𝑑 is the number of dimensions (3 in this case), we get

Θ
(︁
0; s2�̂��̂�𝑇

)︁
=

𝜋3/2

s3 det �̂�
Θ

(︁
0; �̂�−1𝑇 �̂�−1/s2

)︁
.

We used the fact that det �̂� = det �̂�𝑇 and that the multipli-
cation by s2 is equal to the multiplication by a diagonal matrix,
which has all elements equal to s2. The explicit expression for
�̂�−1 may be used from (17). In addition, we note that

det �̂� =
1

𝑎𝑏𝑐 sin(𝛼) sin(𝛽𝑐)
= 𝜌 (28)

and rewrite the expression for 𝐸int as

𝐸int = 2
√
𝜋𝑞2𝑒𝑠

2/𝜆2
D

∑︁
k∈Z3

𝑙∫︁
2𝜋𝑠

𝑒−s2/(2𝜋𝜆D)2−|�̂�−1k|2/s2 𝑑s
s2⏟  ⏞  

𝐼(k)

+

+4𝜋𝜌𝑞2
∑︁
k∈Z3

𝑒
𝑠2/𝜆2

D−𝑙2
(︁
1/[2𝜋𝜆D]2+|�̂�𝑇 k|2

)︁
1/𝜆2

D + 4𝜋2k𝑇 �̂��̂�𝑇k
.

Now, we can perform the integration and find 𝐼 (k). Since
the result is very complicated, we introduce two helper func-
tions

𝜑(𝐿) =
𝑒−𝐿2/(2𝜋𝜆D)2

𝐿
−

1

2
√
𝜋𝜆D

erfc

(︂
𝐿

2𝜋𝜆D

)︂
,

𝑓𝛼(𝐿) = 𝑒𝛼|�̂�
−1k|/(𝜋𝜆D)erfc

⎡⎣
⃒⃒⃒
�̂�−1k

⃒⃒⃒
𝐿

+
𝛼𝐿

2𝜋𝜆D

⎤⎦,
and present the result in terms of these functions as

𝐼 (k = 0) = 𝜑(2𝜋𝑠)− 𝜑(𝑙),

𝐼 (k ̸= 0) =
√
𝜋 (𝑓−1(𝑙)− 𝑓−1(2𝜋𝑠)) /

⃒⃒⃒
4�̂�−1k

⃒⃒⃒
+

+
√
𝜋 (𝑓+1(𝑙)− 𝑓+1(2𝜋𝑠)) /

⃒⃒⃒
4�̂�−1k

⃒⃒⃒
.

Using the precise expression (26) for 𝐸s, one may get

𝐸s = 2
√
𝜋𝑞2𝑒𝑠

2/𝜆2
D𝜑(2𝜋𝑠).

So, subtracting 𝐸s from 𝐸int simply means the neglect of this
term.

Our previous calculations do not rely on any approximation,
but the expression for 𝐼 (k ̸= 0) is very complicated, so we need
to perform one. Before we do, one should show it is acceptable
to approximate this sum. Subsequent calculations are divided
into two parts: uniform convergence proof and approximation
itself.

Proof of uniform convergence. We will use the Cauchy
criterion for the sequence of functions 𝑓𝑖(𝑥) in the domain 𝐸

to achieve this goal: ∀𝜀 > 0 ∃𝑁 ∀𝑚 ≥ 𝑛 > 𝑁 : ∀𝑥 ∈ 𝐸 :⃒⃒∑︀𝑚
𝑖=𝑛 𝑓𝑖(𝑥)

⃒⃒
< 𝜀. Further,

∑︀
k∈Z3 𝐼 (k) acts as a sequence

for the checking of convergence and the entries of �̂�−1, as well
as 𝑠, 𝑙, and 𝜆D are treated as variables from the domain of
admissible parameters. We have already examined properties
of �̂�−1 and will not get into details again.

First of all, we use 𝑠 < 𝑙 < 𝜆D. This relation holds for the
physical system under consideration, and we will use it in all
subsequent calculations. This means 𝑓𝛼(𝑙) > 𝑓𝛼(2𝜋𝑠). Thus,
all terms in the sum will be positive, and we can avoid using the
absolute value. The second thing that appears is the following
bound:

0 <
∑︁

k∈Z3∖{0}

𝐼 (k) <
∑︁

k∈Z3∖{0}

𝑓−1(𝑙) + 𝑓+1(𝑙)⃒⃒⃒
4�̂�−1k

⃒⃒⃒ √
𝜋.

Then we use relation erfc(𝑥) ≤ 𝑒−𝑥2
for 𝑥 > 0 [35] and re-

place erfc in 𝑓±1(𝑙). Expanding the squares in exponents and
performing a simplification, we get

∑︁
k∈Z3∖{0}

𝐼 (k) <
∑︁

k∈Z3∖{0}

exp

(︂
−|�̂�−1k|2

𝑙2
− 𝑙2

4𝜋2𝜆2
D

)︂
⃒⃒⃒
�̂�−1k

⃒⃒⃒ .

In addition, 2
√
𝜋 < 4 was used.
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Now, we can use the known relation min‖x‖2=1 ‖𝐴x‖2 =

=
√
𝜆min, where 𝜆min is the minimal eigenvalue of 𝐴†𝐴,

and † designates the Hermitian adjoint [36]. We know that
det �̂�−1 = 1/𝜌 > 0. Thus, �̂�−1 †�̂�−1 has nonzero eigenval-
ues. Taking the minimal 𝜆min and designating 𝑔 =

√
𝜆min, we

claim
⃒⃒⃒
�̂�−1k

⃒⃒⃒
≥ 𝑔 |k|.

Now, we should change the multidimensional summation to
a one-dimensional one. Since all summands are positive, we can
rearrange them in any convenient order. Thus, we will perform
the summation over “cube surfaces”. First of all, let us desig-
nate
K𝑛 =

{︀
k ∈ Z3

⃒⃒
|𝑘𝑥| ≤ 𝑛 ∧ |𝑘𝑦 | ≤ 𝑛 ∧ |𝑘𝑧 | ≤ 𝑛

}︀
.

Then the total sum can be expressed as∑︁
k∈Z3∖{0}

𝐼 (k) =

+∞∑︁
𝑛=1

∑︁
k∈K𝑛∖K𝑛−1

𝐼 (k),

where the number of summands in K𝑛 ∖K𝑛−1 can be easily
calculated as (2𝑛 + 1)3 − (2𝑛 − 1)3 ≡ 24𝑛2 + 2. The minimal
length for the index vector in this set of indices is 𝑛.

Collecting together the results of previous calculations, we
get∑︁
k∈Z3∖K𝑚

𝐼 (k) <

+∞∑︁
𝑛=𝑚+1

(24𝑛2 + 2) exp

(︂
− 𝑔2𝑛2

𝑙2
− 𝑙2

4𝜋2𝜆2
D

)︂
𝑔𝑛

.

The further proof is supposed to be obvious, and, thus, we
avoid it. The proof of uniform convergence for the first sum-
mand in 𝐸int can be performed much more easily by the pre-
sented scheme and, thus, it is avoided as well. Instead, one use-
ful remark should be done. The series converges better, when
𝑔/𝑙 is bigger. Taking the physical meaning of these variables
into account, we get following statement: if we project the
vectors a, b, and c on the axes 𝑋, 𝑌, and 𝑍, respectively (see
Fig. 2) and divide by the mean distance in the lattice 1/3

√
𝜌, we

will get measure of how a good current series converges or, by
the physical meaning, how close is the lattice to a cubic one.

Approximation. We take into account that 𝑠 ≪ 𝑙 ≪ 𝜆D,
neglect all terms containing 𝑙/𝜆D and 𝑠/𝜆D in erfc, and ap-
proximate erfc(𝑥 → ∞) by ∼ 𝑒−𝑥2

/(𝑥
√
𝜋) [37]. Obviously,

𝑓𝛼(𝑙) ≫ 𝑓𝛼(2𝜋𝑠), and, thus, all 𝑓 with 2𝜋𝑠 arguments are
neglected. In addition, we neglect all small terms in the expo-
nent and denominators. To make this procedure more clear, we
state

⃒⃒⃒
�̂�−1k

⃒⃒⃒
/𝑙 > 𝑙/𝜆D. It means that the screening distance

is big enough not to feel a deviation of the lattice from a cubic
one. This leads us to the equations

𝜑(𝑙) ≈
1

𝑙
, 𝐼 (k ̸= 0) ≈

𝑙

2
⃒⃒⃒
�̂�−1k

⃒⃒⃒2 𝑒−|�̂�−1k|2/𝑙2.

To get the first one, the identity erfc(𝑥) = 1 − erf(𝑥) and the
approximation erf(𝑥 → 0) ∼ 2𝑥/

√
𝜋 [37] were used.

Now, the approximate equation (13) can be written.
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G.E. Morfill, V. Molotkov, V. Fortov. Structural proper-
ties of 3D complex plasmas under microgravity conditions.
Europhys. Lett. 92 (1), 15003 (2010) [DOI: 10.1209/0295-
5075/92/15003].

17. B.A. Klumov, G.E. Morfill. Structural properties of
complex (dusty) plasma upon crystallization and melt-
ing. JETP Lett. 90 (6), 444 (2009) [DOI: 10.1134/
S002136400918009X].

18. B.I. Lev, A.G. Zagorodny. Structure formation in system
of Brownian particle in dusty plasma. Phys. Lett. A 373,
1101 (2009) [DOI: 10.1016/j.physleta.2009.01.044].

19. B.I. Lev, V.B. Tymchyshyn, A.G. Zagorodny. Brownian
particle in non-equilibrium plasma. Condens. Phys. 12,
593 (2009) [DOI: 10.5488/CMP.12.4.593].

20. H. Thomas, G.E. Morfill, V. Demmel, J. Goree, B. Feuer-
bacher, D. Mohlmann. Plasma crystal: Coulomb crystal-

228 ISSN 2071-0194. Ukr. J. Phys. 2017. Vol. 62, No. 3



Potential Energy Analysis for Particles in a Bravais Lattice

lization in a dusty plasma. Phys. Rev. Lett. 73, 652 (1994)
[DOI: 10.1103/PhysRevLett.73.652].

21. P. Ewald. Die Berechnung optischer und elektrostatischer
Gitterpotentiale. Ann. Phys. 369 (3), 253 (1921) [DOI:
10.1002/andp.19213690304].

22. J.H. Chu, Lin I. Direct observation of Coulomb crys-
tals and liquids in strongly coupled rf dusty plasmas.
Phys. Rev. Lett. 72, 4009 (1994) [DOI: 10.1103/ Phys-
RevLett.72.4009].

23. A. Melzer, T. Trottenberg, A. Piel. Experimental deter-
mination of the charge on dust particles forming Coulomb
lattices. Phys. Lett. A 191, 301 (1994) [DOI: 10.1016/0375-
9601(94)90144-9].

24. S.V. Vladimirov, S.A. Khrapak, M. Chaudhuri, G.E. Mor-
fill. Superfluidlike motion of an absorbing body in a colli-
sional plasma. Phys. Rev. Lett. 100, 055002 (2008) [DOI:
10.1103/PhysRevLett.100.055002].

25. H. Ikezi. Coulomb solid of small particles in plasmas. Phys.
Fluids 29, 1764 (1986) [DOI: 10.1063/1.865653].

26. A. Melzer, A. Homann, A. Piel. Experimental investigation
of the melting transition of the plasma crystal. Phys. Rev.
E 53, 2757 (1996) [DOI: 10.1103/PhysRevE.53.2757].

27. A.G. Sitenko, A.G. Zagorodny, V.N. Tsytovich. Fluctua-
tion phenomena in dusty plasmas. AIP Conf. Proc. 345,
311 (1995) [DOI: 10.1063/1.49020].

28. S.A. Brazovsky. Phase transition of an isotropic system to
a nonuniform state. Sov. Phys. JETP 41 (1), 85 (1975).

29. B.I. Lev, H. Yokoyama. Selection of states and fluctuation
under the first order phase transitions. Int. J. Mod. Phys.
B 17, 4913 (2003) [DOI: 10.1142/S021797920302274X].

30. H. Totsuji, T. Kishimoto, C. Totsuji. Structure of confined
Yukawa system (dusty plasma). Phys. Rev. Lett. 78, 3113
(1997) [DOI: 10.1103/PhysRevLett.78.3113].

31. I.S. Gradshteyn, I.M. Ryzhik. Tables of Integrals, Series,
and Products (Academic Press, 2007).
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АНАЛIЗ ПОТЕНЦIАЛЬНОЇ ЕНЕРГIЇ
СИСТЕМИ ВЗАЄМОДIЮЧИХ ЧАСТИНОК,
УПОРЯДКОВАНИХ У ҐРАТКУ БРАВЕ

Р е з ю м е

Запропоновано метод визначення типу ґратки, утвореної
порошинками у запиленiй плазмi та оцiнки їх потенцiальної
енергiї. Основоположною складнiстю цiєї задачi є мiжча-
стинковий потенцiал, що вiдноситься до “катастрофiчних”.
Такi потенцiали потребують особливих пiдходiв, щоб уни-
кнути розбiжностей в процесi обчислення потенцiальної
енергiї. У данiй роботi розвинено необхiдну для поставле-
ної мети модифiкацiю вiдповiдних методiв. Показано, що
отриманi таким чином вирази для потенцiальної енергiї мо-
жна застосувати для визначення параметрiв ґратки, а та-
кож, що знайденi значення параметрiв вiдповiдають вiдо-
мим експериментальним даним.
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