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APPLICATION OF THE GENERALIZED
ABSORPTANCE FOR ACCOUNTING THE RECOIL
AND DOPPLER EFFECTSPACS 42.50.-p

A method of calculation of the absorption coefficient in the terms of quantum optics with regard
for the quantization of the electromagnetic field and the Doppler effect is presented. It is shown
that the local value of the absorption coefficient non-linearly depends on the atomic density
and initial intensity. The analytically derived results are demonstrated in graphs for the the
local absorption coefficient as a function of the frequency. The relatively strong dependence
of the absorptance on the path length of an optical light beam is caused by the interatomic
coupling through the intermediary of an electromagnetic field. The splitting of the absorption
line induced by the Doppler effect in the system placed between mirrors is demonstrated.
K e yw o r d s: absorption coefficient, quantum optics, Doppler effect, commutation relation,
approximate evaluation.

1. Introduction

We present an example of the analytical evaluation of
the quantum optically defined absorption coefficient
with regard for the Doppler effect. As was shown in
the previous work [1], the absorption coefficient can
be defined by the commutation relation between the
model Hamiltonian and the operator of intensity. The
estimation technique for the averaged commutators is
demonstrated below.

In comparison with other models (e.g., in works
[2–5]), we use a time-independent model Hamilto-
nian formally allowing us to represent the general so-
lution in a fairly compact form without discussing
the chronology of events in the system. In addi-
tion, the “single-atom” methods such as the equa-
tion of motion for the one-particle population ma-
trix applied to find the number of quanta imbibed
by atoms or liberated into the environment per unit
time are not used here. On certain assumptions, it is
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enough to know the information about the distribu-
tion of states of the system at the given initial mo-
ment of time for the calculation of the coefficient of
absorption.

The presented calculations will demonstrate the al-
ternative method of estimation for the line broaden-
ing arising from the photon exchange between atoms
([6–12]) and the ensemble statistic properties in com-
parison with the commonly used method of solv-
ing the corresponding integro-differential form of the
Maxwell–Bloch equations (see, e.g., [13]). The devel-
oped method can be used in quantum nonlinear optics
(e.g., [14]) for the description of the spectral distri-
butions of the transmitted and reflected signals mod-
ified by the dynamical Lorentz shift (see [13]) and
the non-stationary pump-probe interaction between
short laser pulses propagating in a resonant optically
dense coherent medium ([15]), when nonlinear col-
lective response is formed by light wave packets of
different group velocities under the interatomic inter-
action, etc.
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2. Model

Let, during the infinitesimal time intervals, the state
function of 𝑁 atoms occupying the volume 𝑉 acquire
the infinitesimal change determined by the following
Hamiltonian:

ℋ̂ = ℋ̂𝐴 + ℋ̂𝐹 + ℋ̂𝐴𝐹 . (1)

Here, the first term acting on the eigenvector |𝜀, r, 𝛼⟩𝑖
gives the sum of translational kinetic 𝜀𝑖 and intrin-
sic ~𝜔𝛼𝑖 energies for the 𝑖-th atom. The quantum of
energy equals the energy of a valent electron (elec-
trons) on the energy level indexed by the symbol 𝛼𝑖,
𝑖 = 1, ..., 𝑁 (𝛼 = 𝑏 or 𝑎). The second term repre-
sents the energy of the free electromagnetic field in
the volume 𝑉el. The third term is the energy of in-
teraction between the atoms and the electromagnetic
field expressed by the standard dipole-field coupling

ℋ̂𝐴𝐹 = −
𝑁∑︁
𝑖=1

𝑑𝑖 · ℰ (r𝑖), where the dipole moment op-

erator for the 𝑖-th atom is denoted by 𝑑𝑖.
The electromagnetic field ℰ (r𝑖) can be defined

through the superposition of its modes, 𝑞, deter-
mined by the corresponding Fock states |𝑛𝑞⟩. The
modes of the electromagnetic field correspond to Fock
states (or number states with a well-defined number
of quanta) formally obtained through the standard
procedure of quantization in the volume 𝑉el > 𝑉 .
Then the total “free” field energy can be represented
through the sum of corresponding quanta of energy.
Note that the symbol 𝑞 denotes the mode of the elec-
tromagnetic field with the propagation wave vector
k and the 𝑗-th polarization with 𝑗 = 1, 2 (see de-
tails, e.g., in [16]). Accordingly, the Fock states de-
noted by |𝑛𝑞⟩ are the eigenvectors of the correspond-
ing number operators. Recall that the state |𝑛𝑞⟩ de-
termines the number of photons 𝑛 corresponding to
the mode 𝑞.

Therefore, we can introduce a pure quantum state
of the system as a superposition of the basis states
𝑁∏︀
𝑖=1

|𝜀, r, 𝛼⟩𝑖
∏︀
𝑞
|𝑛𝑞⟩ with 𝑞 ≡ (k, 𝑗), and { } ≡

≡ {𝜀} , {𝛼} , {𝑛𝑞}. Note that the number of Fock
states (photons) indexed by 𝑛𝑞 is not limited above.

In the case of the Hamiltonian independent of time,
in accordance with the accepted model of a device
counting photons (see, e.g., [16] and [17]), the local

absorption coefficient can be defined as follows:

𝛼tot ≈
𝛿

𝛿𝑧
ln
∑︁
Ψ

⟨Ψ|0
(︂
ℐ̂ +

𝑖

~
𝜏
[︁
ℋ̂, ℐ̂

]︁
+

+
1

2

(︂
𝑖

~
𝜏

)︂2 [︁
ℋ̂,
[︁
ℋ̂, ℐ̂

]︁]︁)︃
𝜌Ψ|Ψ⟩0, (2)

where ℐ̂ = ℰ+ℰ− with ℰ+ (r) =
∑︀

𝑞 𝑒𝑞ℰ𝑞𝑒−𝑖k𝑞·r𝑎†𝑞 and
ℰ− (r) =

∑︀
𝑞′ 𝑒𝑞′ℰ𝑞′𝑒

𝑖k𝑞′ ·r𝑎𝑞′ . It is assumed that the
optical pathway inside the sample is parallel to the
𝑍-axis; therefore, 𝑟 = 𝑧. The statistical distribution
over the pure states of the system |Ψ⟩ at the initial
moment of time 𝑡 = 0 is given by the operator 𝜌Ψ.
The symbol |Ψ⟩0 implies the value of state function
at the initial moment of time. Note that the statis-
tical operator 𝜌Ψ can be put, in general, in front of
the exponential function 𝑒−

𝑖
~ ℋ̂𝑡 and, therefore, can

be discussed as a function of the time 𝑡. Then expres-
sion (2) has to be considered as approximate over a
given interval of time 𝜏 in comparison with the com-
monly used representation of the operator of statisti-
cal distribution.

3. Example of Evaluation
for the Absorption Coefficient

In what follows, we discuss the averaged commutator
of the operators associated with the atom-field inter-
action and the intensity. After the substitution of the
value of state function |Ψ⟩ at the initial moment of
time, we have∑︁
Ψ

⟨Ψ|0
[︁
ℋ̂

′𝐴𝐹 , ℐ̂
]︁
𝜌Ψ|Ψ⟩0 → ⟨Ψ̄|𝑌 |Ψ̄⟩, (3)

where ⟨Ψ̄| =
∑︀
{ }′

𝒞*
{ }′ (0)

𝑁∏︀
𝑖′=1

⟨𝜀, r, 𝛼′ |𝑖′
∏︀
𝑞′
⟨𝑛𝑞′ |, and

𝑌 =

𝑁∑︁
𝑖=1

ℱ Ŝ𝑖 ·
∑︁
𝑞,𝑞

𝑒𝑞ℰ2
𝑞 (𝑒𝑞 · 𝑒𝑞) ℰ𝑞 ×

×
(︁
𝑒𝑖(k𝑞−k𝑞)·r𝑒𝑖k𝑞·r𝑖𝑎𝑞 −𝐴𝑑𝑗.

)︁
. (4)

Here, the symbol ℱ Ŝ𝑖 redefines the dipole moment
operator 𝑑𝑖 indicating the necessity to consider the
corresponding Doppler frequency shift in the dipole-
field coupling.

We now make certain guesses. At the initial mo-
ment of time, the system states are assumed to be
thermally distributed. Therefore, the following ap-
proximations take place. First, the splitting

𝒞{ }(0) = 𝒞{𝜀},{𝛼}(0)𝒞{𝑛𝑞}(0); 𝒞{𝑛𝑞} = 𝒞𝑛𝑞
... 𝒞𝑛′

𝑞′
... (5)
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with the initial thermal distribution of photons in the
volume 𝑉𝑒𝑙 given by

𝒞*
𝑛𝑞
(0)𝒞𝑛𝑞

(0) = 𝜌𝑞

[︁
1− 𝑒−~𝜈𝑘/𝑘B𝑇𝑠

]︁
𝑒−𝑛~𝜈𝑘/𝑘B𝑇𝑠 , (6)

where 𝜌𝑞 is some distribution of frequencies modeling
the density of states for a light beam passed through a
monochromator. Note that, in our case, the distribu-
tion describes the light beam with a quite narrow fre-
quency band and the linear polarization. Accordingly,
we accept that the introduced “weighted” coefficients
𝒞𝑛𝑞

are real. Hence,

𝒞𝑛𝑞
(0) =

(︁
𝒞*
𝑛𝑞

(0) 𝒞𝑛𝑞
(0)
)︁1/2

. (7)

Neglecting the possibility of the existence of atomic
bounded states and the difference between particles,
the initial distribution of atoms over kinetic energies
takes the form of the Maxwell–Boltzmann distribu-
tion

′∑︁
{𝜀},{𝛼}

𝑁∑︁
𝑖=1

𝒞*
{𝜀},{𝛼} (0) 𝒞𝜀,{𝛼} (0) → 𝑁𝒞*

𝜀 (0) 𝒞𝜀 (0), (8)

where 𝒞*
𝜀 (0) 𝒞𝜀 (0) ∼ exp (−𝜀/𝑘B𝑇 ) , and the prime

sign above the summation
∑︀′

means that the sum-
mation is made over all states having energy 𝜀 for a
particle. In other words, the summation is performed
excluding, for instance, the 𝑗-th atom

′∑︁
{𝜀}

=
∑︁

𝜀1,𝜀2...𝜀𝑗−1,𝜀𝑗+1...𝜀𝑁

.

Accordingly, this approximation assigns that 𝒞𝜀 (0) =
=
(︀
1
𝑍

)︀1/2
exp (−𝜀/2𝑘B𝑇 ). Here, in the case of transi-

tion from the “discrete” summation to the integra-
tion over the space of translational momenta (for-
mally, the states with the energy 𝜀 = p2/(2𝑀) are
degenerate with respect to the direction of the mo-
mentum p), the normalization factor 𝑍 is set to be

𝑉
(2𝜋~)3 (2𝜋𝑀𝑘B𝑇 )

3/2.
In addition, such splitting as 𝒞𝜀,𝛼 = 𝒞𝜀𝒞𝛼 is

valid. Moreover, the following approximation holds
for such values of the source temperature 𝑇𝑆 that
𝑘B𝑇𝑆 ≤ 1.2~𝜔0 with maximum relative error less than
0.25 at 𝑘B𝑇𝑆 = 1.2~𝜔0:

𝒞*
𝑎𝒞𝑏 = 𝑒

− ~𝜔0
2𝑘B𝑇𝑆

√︁
1− 𝑒

− ~𝜔0
𝑘𝐵𝑇𝑆 ≈ 𝑒

− ~𝜔0
2𝑘B𝑇𝑆 . (9)

Suppose now that the initial state of the field is
completely defined by the wave vector k directed
along the symmetry axis of the volume filled by
atoms. A correlation between the field and atoms can
be neglected at the initial moment of time.

Recall that, in our notation, the introduced state
vectors such as |r⟩𝑖 are the eigenvectors of the free
particle Hamiltonian operator (do not confuse with
the eigenvectors for the coordinate operator r̂) and,
therefore, can be represented through the correspond-
ing wavefunction in the form |r⟩𝑖

def
= 1√

𝑉
𝑒

𝑖
~p𝑖·r𝑖 .

Then, in the calculation of the average quantity of
the commutator, we use the following property:

1

𝑉

∫︁
𝑑r𝑖 𝑒

𝑖k𝑞·r𝑖𝑒
𝑖
~p𝑖·r𝑖𝑒−

𝑖
~p

′
𝑖·r𝑖 = 𝛿p′

𝑖,p𝑖+~k. (10)

In the volume 𝑉, the momentum of the 𝑖-th parti-
cle can have the values p𝑖 = p𝑛 = 2𝜋~

𝑉 1/3n, where
n is the collection of three natural numbers n =
= (𝑛1, 𝑛2, 𝑛3). In the below-given expression, it is as-
sumed for simplicity that the dipole matrix elements
introduced in the operator 𝑆𝑖 for 𝑖 = 1, ..., 𝑁 dur-
ing the transitions between the two energy levels 𝑏
and 𝑎 (or vice versa) follow the direction parallel to
the polarization vector 𝑒𝑞 of the emitted or absorbed
quantum of energy. This is in compliance with the
classical sense of the irradiation by a uniform linear
antenna (and the law of conservation of the angu-
lar momentum). In view of the indistinguishability of
the particles of one kind (in unbound states or bound
states), the notation |𝑆| is therefore used for the in-
ner product 𝑆𝑖 · 𝑒𝑞 in the representation of averages
below.

Thus, using the approximations defined in (5) - (9),
the averaged commutator (3) can be represented in
the following way:∑︁
Ψ

⟨Ψ| (0)
[︁
ℋ̂

′𝐴𝐹 , ℐ̂
]︁
𝜌Ψ|Ψ⟩ (0) ∼= 𝑁 (𝐼1𝐼2 − 𝐼1−𝐼2−).

(11)
Here,
𝐼1 = |𝑆|

∑︁
𝜀′ ,𝜀,𝜔

𝛿𝜀′ ,𝜀+Δ𝜀𝛿𝜔,𝜔0+Δ𝜔𝛿p′ ,p+~k𝜔
×

×𝒞*
𝜀′,𝑎 (0) 𝒞𝜀,𝑏 (0) ℰ2

𝜔𝑒
−𝑖k𝜔·r; (12)

𝐼1− = |𝑆|
∑︁
𝜀′ ,𝜀,𝜔

𝛿𝜀′ ,𝜀−Δ𝜀𝛿𝜔,𝜔0+Δ𝜔𝛿p′ ,p−~k𝜔
×

×𝒞*
𝜀′,𝑏 (0) 𝒞𝜀,𝑎 (0) ℰ2

𝜔𝑒
𝑖k𝜔·r, (13)
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where 𝛿𝜀′ ,𝜀+Δ𝜀, 𝛿𝜔,𝜔0+Δ𝜔 are the Kronecker deltas
with the defined variables: p±~k = p

′
with plus sign

for absorption and minus for emission, Δ𝜀 = ~𝜔0
�̂�·p
𝑀 𝑐 ,

Δ𝜔 ≃
(︁
2 �̂�·p
𝑀 𝑐

)︁
𝜔0;

𝐼2 =
∑︁
𝑛𝑞

𝒞*
𝑛𝑞−1 (0) 𝒞𝑛𝑞

(0) ℰ𝑞
√
𝑛𝑞𝑒

𝑖k𝑞·r, (14)

𝐼2− =
∑︁
𝑛𝑞

𝒞*
𝑛𝑞+1 (0) 𝒞𝑛𝑞

(0) ℰ𝑞
√︀
𝑛𝑞 + 1𝑒−𝑖k𝑞·r. (15)

Let us start with the evaluation of the first kind
of sums, 𝐼1 and 𝐼1−. After the limit transition from
the summation to the integration over the energies
or momenta, we derive the following expression 𝐼1 ≡
≡ 𝐼1(𝒦, 𝑘):

𝐼1(𝒦, 𝑘) ≈ 𝐾1
1

(𝜋 𝑎)
3/2

𝑒
− ~𝜔0

2𝑘𝐵𝑇𝑠 𝑒−𝑖
𝜔0
𝑐 r·�̂� ×

×
∫︁

𝑑p𝜔0

(︃
1 + 2

𝑘 · p
𝑀 𝑐

)︃
𝑒−

𝑝2

𝑎 𝑒−𝒦p·�̂�, (16)

where 𝐾1 = ~ |𝑆|
2 𝜀0 𝑉el

, 𝑎 = 2𝑀𝑘B𝑇 , 𝒦 = ~𝜔0

𝑀𝑐 𝑏 +

+2𝑖𝜔0
(r·�̂�)
𝑀𝑐2 , and 𝒦− = ~𝜔0

𝑀𝑐 𝑏− − 2𝑖𝜔0
(r·�̂�)
𝑀𝑐2 with 𝑏 =

= 1
2𝑘B𝑇 + 2 1

2𝑘B𝑇𝑠
and 𝑏− = − 1

2𝑘B𝑇 + 2 1
2𝑘B𝑇𝑠

.
It can be shown that the above-introduced integral

𝐼1 has the following value:

𝐼1 = 𝐾1𝜔0

[︁
1−𝒦 𝑎

𝑀𝑐

]︁
𝑒
− ~𝜔0

2𝑘B𝑇𝑠 𝑒−𝑖
𝜔0
𝑐 r·�̂�𝑒

𝑎
4𝒦

2

;

𝐼1− ≡ 𝐼1(𝒦−,−𝑘).

(17)

The second-kind integrals appearing in presenta-
tion (3) are denoted by 𝐼2 and 𝐼2−. Below, we demon-
strate how the values of the integrals can be esti-
mated. First, we make the limit transition from sum-
mation to integration:

𝐼2 ∼=
𝜋1/2

2

𝑉el

(2𝜋~)3

(︂
1

2𝜀0𝑉el

)︂1/2
×

×
∫︁

𝑑k𝑒𝑖k·r (~𝜈)
1
2

{︁
1− 𝑒

− ~𝜈
𝑘B𝑇𝑠

}︁(︂𝑘B𝑇𝑠

~𝜈

)︂3/2
𝜌 (k). (18)

Suppose that, for a defined direction of propaga-
tion 𝑘, the initial distribution of the modes over their
directions of propagation and frequencies can be in-
terpolated by the normal (or Gaussian) distribution
𝒩 with the mean 𝜈 and its variance Δ𝜈2:

𝜌(k) ≡ Norm𝒩 (𝜈,Δ𝜈2)𝛿(�̂� − 𝑘), (19)

where �̂� is a unit vector, 𝛿(�̂� − 𝑘) is the Dirac delta
function for the solid angle (being a certain limit of
the corresponding Gaussian distribution). By defini-
tion, we have

𝒩 (𝜈,Δ𝜈2) =
1√

2𝜋Δ𝜈2
𝑒−

(𝜈−𝜈)2

2Δ𝜈2 . (20)

The constant Norm is defined to normalize the transi-
tion from the summation over modes 𝑞 and quantum
numbers 𝑛𝑞 to the integration over frequencies and
numbers for the probability to find the system in any
state |𝑛𝑞⟩:

∑︀
𝑛𝑞

𝒞*
𝑛𝑞

(0) 𝒞𝑛𝑞
(0) →

∫︀
𝑑 𝜈 𝑑𝑛 ... = 1. So

that

Norm =
(2𝜋~)3

𝑉el

𝑐3

𝜈2 +Δ𝜈2
. (21)

Note that if
(︁

~𝜈
𝑘B𝑇𝑠

< 1
)︁
, then 1 − 𝑒

− ~𝜈
𝑘B𝑇𝑠 ≈ ~𝜈

𝑘B𝑇𝑠

with an accuracy of 1
2

(︁
~𝜈

𝑘B𝑇𝑠

)︁2
as for the alternating-

sign Taylor series. Let the frequency distribution at
the initial time moment be quite narrow, so that
𝜈/

√
2𝜋Δ𝜈2 ≪ 10−5 for the beam with the mean fre-

quency satisfying
(︁

~𝜈
𝑘B𝑇𝑠

< 1
)︁
. Then this approxima-

tion can be used in the integral over the frequency
below in the text.

Hence, expression (14) can be represented or, in
other words, interpolated by the integration over the
continuum in the following way:

𝐼2 ≈ 𝐾2

∞∫︁
0

𝑑𝜈𝜈2𝑒𝑖𝜈�̂�·
r
𝑐𝒩

(︀
𝜈,Δ𝜈2

)︀
. (22)

Here,

𝐾2 =
1

𝜈2 +Δ𝜈2

(︂
𝜋 𝑘B 𝑇𝑠

8 𝜀0 𝑉el

)︂1/2
. (23)

For the condition (𝜈−𝜈)2

2Δ𝜈2 ≪ 1 that is valid for a
monochromator, we approximate the above expres-
sion in such a way that

∞∫︁
0

𝑑𝜈𝜈2𝑒𝑖𝜈�̂�·
r
𝑐𝒩

(︀
𝜈,Δ𝜈2

)︀
≃− 𝜕2

𝜕(𝑘 · r
𝑐 )

2
𝐹
(︀
𝒩
(︀
𝜈,Δ𝜈2

)︀)︀
,

(24)

where 𝐹
(︀
𝒩
(︀
𝜈,Δ𝜈2

)︀)︀
denotes the one-dimensional

Fourier transform of the Gaussian distribution with
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the parameter −𝑘 · r𝑐 . Using the known Fourier trans-
form of the normal distribution, we have

𝐹
(︀
𝒩
(︀
𝜈,Δ𝜈2

)︀)︀
= 𝑒𝑖�̂�·

r
𝑐𝜈𝑒−

Δ𝜈2(�̂�· r
𝑐 )

2

2 . (25)

Thus,

𝐼2 = Φ

[︂
−
(︁
−𝑖𝜈 +Δ𝜈2

(︁
𝑘 · r

𝑐

)︁)︁2
+Δ𝜈2

]︂
, (26)

where Φ = 𝐾2𝑒
𝑖�̂�· r𝑐𝜈𝑒−

Δ𝜈2(�̂�· r
𝑐 )

2

2 .
Inasmuch as, in our approximation, the coefficients

𝒞𝑛𝑞
are real, expression (15) can therefore be defined

through expression (22) with the parameter of nega-
tive sign: 𝐼2− = 𝐼*2 .

Having the estimated commutator (3), the other
commutators can also be found. For example, by
analogy with the provided above, we have∑︁
Ψ

⟨Ψ| (0)
[︁
ℋ̂

′𝐴𝐹 ,
[︁
ℋ̂

′𝐴𝐹 , ℐ̂
]︁]︁

𝜌Ψ (0) |Ψ⟩ ≈

≈ −𝑁 𝐼3 − 2𝑁 (𝑁 − 1) 𝐼1 𝐼1−, (27)

where the first sum in (27) can be represented in the
limit of continuous destribution as follows:

𝐼3 =

(︂
~𝜔0

2𝜀0𝑉

)︂2
|𝑆|2

(︂
1 +

2

𝑀2𝑐2
𝑎

)︂
. (28)

Then∑︁
Ψ

⟨Ψ| (0)
[︁
ℋ̂𝐹 ,

[︁
ℋ̂

′𝐴𝐹 , ℐ̂
]︁]︁

𝜌Ψ (0) |Ψ⟩ ≈

≈ −𝑁(𝐼1 𝐼
′

2 + 𝐼1− 𝐼
′

2−), (29)

where, by definition, 𝐼
′

2− = (𝐼
′

2)
* and

𝐼
′

2 = −𝑖~Φ
[︁
−𝑖𝜈 +Δ𝜈2

(︁
𝑘 · r

𝑐

)︁]︁
×

×
{︂[︁

−𝑖𝜈 +Δ𝜈2
(︁
𝑘 · r

𝑐

)︁]︁2
− 3Δ𝜈2

}︂
. (30)

Thus, substituting all above-found averaged com-
mutators into the averaged series (2) representing the
expression under the sigh of logarithm in (2), the total
absorption coefficient takes the following approximate
form:

𝛼tot ≈ ℜ
{︂
𝜕

𝜕𝑧
ln

(︂
𝐼 (0) +

𝑖

~
𝜏𝑁 𝐼(1) (r) −

−1

2

(︂
𝑖

~
𝜏

)︂2
𝑁𝐼(2) (r)

)︂}︂
, (31)

where ℜ denotes the real part of a quantity. The ini-
tial intensity 𝐼 (0) is determined by expression (2)
for 𝑡 = 0. Note that, at 𝑡 = 0, average (2) can
be expressed in terms of 𝐼2 and 𝐼2− as 𝐼 (0) ∝
∝ ⟨Ψ| (0) ℐ̂𝜌Ψ|Ψ⟩ (0) = 𝐼2𝐼2− ≈

(︁
𝜋 𝑘B 𝑇𝑠

8 𝜀0 𝑉el

)︁
. Moreover,

𝐼(1) (r) = 𝐼1𝐼2 − 𝐼1−𝐼2− and 𝐼(2) (r) = 𝐼3 + 2(𝑁 −
− 1)𝐼1𝐼1− + 𝐼1𝐼

′

2 + 𝐼1−𝐼
′

2−.
The real and imaginary parts of the derived ex-

pression under the sign of ℜ in (31) can formally be
related to a complex refractive index 𝑛 (see, e.g., [18]
and [19]). To demonstrate certain features that can be
deduced from (31) and can be proper for local absorp-
tion/reemission processes, we built the line shapes in
Figure.

The following values of parameters of the sys-
tem were chosen in the drawing of the curves be-
low. The accuracy of the graphs is set 0.024×10−1𝜔0,
Δ𝜈2 = 108 s−2. The values of volumes are set as
𝑉el = 0.1m3 and 𝑉 = 0.001m3. The atoms are ini-
tially in the thermodynamic equilibrium with the
walls having the temperature 𝑇 = 500 K, while
the source of light has the equivalent temperature
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relative frequency

Absorption coefficient as a function of the relative average
(mean) frequency of a light beam 𝜈

𝜔0
. The dashed curve is

constructed for the space displacement 𝑧 = 7 × 10−3 m, by
neglecting the terms of the second order (27) and (29) in (31)
in the time interval 𝜏 . The thin line is built for a vicinity of
𝑧 = 5×10−5 m. The bold line describes the response of the sys-
tem in the case of 𝑧 = 5× 10−6 m. The splitting of the dashed
line is induced by the Doppler effect. The source of light corre-
sponds to a “weak” laser beam with the equivalent temperature
9000K. The temperature of atomic system is 𝑇 = 500 K. The
time parameter is 𝜏 = 108 2𝜋

𝜔0
s
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around 9000 K (a weak laser beam). The number of
atoms in unit volume is equal to 6.022 × 1023/(5×
× 105) atoms per cubic meter. The time interval is
𝜏 = 108 2𝜋

𝜔0
s, and the resonant (cyclic) frequency

is 𝜔0 ≈ 0.102 × 1016 × 𝜋 Hz. The atomic mass
is approximately equal to the sodium atomic mass:
𝑀 = 𝑚Na ≈ 0.382 × 10−25 kg. In this case, the
transition dipole matrix element is defined by the
value |𝑆| ≈ 1.725 × 10−29 Cm, corresponding to
the sodium vapor 𝐷2 line induced by a 𝜋-polarized
laser beam. The approximate values of physical
constants are 𝜖0 ≈ 8.854 × 10−12 A × s/(V × m),
𝑘B ≈ 1.381× 10−23 J×K−1, and 𝑐 ≈ 299792458m/s.

The absorption coefficient represented by expres-
sion (31) as a function of the relative frequency 𝜈

𝜔0
is

shown in Figure for different space phases in different
approximations. The dashed curve is constructed for
the space displacement 𝑧 = 7×10−3 m, by neglecting
the second-order terms (27) and (29) in the time in-
terval 𝜏 in (31). The thin line is built for a vicinity of
𝑧 = 5× 10−5 m. The bold line describes the response
of the system in the case of 𝑧 = 5 × 10−6 m. The
splitting of the dashed line is induced by the Doppler
effect.

It is worth noting the following. On the definite as-
sumptions, as in the above-given example, the decay
phenomena giving a finite absorption line width in
the dipole approximation can be implicitly included
in the dynamics of the system. Furthermore, some
non-ideality is already imposed by the applied aver-
aging procedure (see the discussion, e.g., in [20] and
[21]) in expression (2) in comparison with the com-
monly used introduction of an explicit phenomeno-
logical non-Hermitian term (see, e.g., [22]). As can
be seen from the calculations in this work, the source
of non-ideality is the model statistical distribution for
atomic states. Mainly, the introduced integrals 𝐼1 and
𝐼1−, not being the complex conjugate, generate the
complex values. Physically, it can be expressed as fol-
lows. Inasmuch as the system is initially out of the
thermodynamic (and dynamic) equilibrium with the
electromagnetic field, the time evolution has to be
expected to proceed in the direction of a thermal or
dynamical balance.

4. Conclusion

As can be seen from the above-given example, the
formation of the common line shape can be due to the

coupling non-linear in atomic number (27). The non-
linearity can be not pronounced for a quite wide set of
initial conditions, corresponding to the so-called non-
coherent (collective) state of the system. It is not in
contradiction with the widely used Fermi golden rule
regarding the proportionality of the transition rate to
the square of the transition dipole matrix elements.
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ЗАСТОСУВАННЯ УЗАГАЛЬНЕНОГО
КОЕФIЦIЄНТА ПОГЛИНАННЯ ДЛЯ ВРАХУВАННЯ
ЕФЕКТIВ ДОППЛЕРА ТА ВIДДАЧI

Р е з ю м е

Подано приклад розрахунку коефiцiєнта поглинання у тер-
мiнах квантової оптики, враховуючи ефект Допплера. Для
локального коефiцiєнта поглинання отримано вираз, що ба-
зується на комутацiйному спiввiдношеннi мiж операторами
електричного поля та iнтенсивностi i нелiнiйно залежить
вiд атомної густини та початкової iнтенсивностi. Застосува-
ння аналiтичних результатiв продемонстровано графiками
залежностi коефiцiєнта поглинання вiд частоти скануючого
поля. Вiдносно сильна залежнiсть поглинальної здатностi
вiд довжини шляху променя свiтла спричинена мiжатом-
ною взаємодiєю за посередництвом електромагнiтного по-
ля. Продемонстровано розщеплення поглинальної лiнiї зав-
дяки ефекту Допплера у системi, розмiщенiй мiж двома
дзеркалами.
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