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A COMPLETE SET OF CONSERVATION LAWS
OF DYONS WITH THE CLIFFORD-OCTONION ALGEBRAPACS 02.10.De, 03.50.De

The Clifford-octonion algebra is the highest hypercomplex algebra over a real field with Clifford
coefficient (𝜀). The paper aims to apply the Clifford-octonion algebra (or simply called dual-
octonion algebra) to describe the consistence theory of generalized electromagnetism and its
conservation laws for dyons. The present paper describes the property of Lorentz invariance
symmetries of dyons and their corresponding conservation laws. Moreover, we have studied the
conservation of mass-energy, liner momentum, and angular momentum for four-dimensional
particle dyons with the Clifford-octonion algebra. In generalized Clifford-octonion electromag-
netic fields, we express the work-energy theorem and the linear momentum conservation the-
orem corresponding to the scalar and vector components of dyons, respectively. Finally, we
have constructed the dual octonion form of the angular momentum conservation law, which
represents an analog of the virial theorem in mechanics.
K e yw o r d s: dual octonion, dyons, angular momentum, conservation laws, virial theorem.

1. Introduction

In physics, the conservation laws are a fundamental
frame to the understanding of the physical world,
where we describe which physical processes can or
cannot occur in the Nature. In general, the total
quantity of the property governed by that law re-
mains unchanged during physical processes. If we
study the classical physics, the conservation laws in-
clude the conservation of mass (simply called mat-
ter), energy, linear momentum, angular momentum,
and electric charge. Keeping in mind the sixteen-
dimensional representation of the Clifford-octonion
algebra and its space-time structure, the present pa-
per describes the physical property of Lorentz in-
variance symmetries of dyons and their correspond-
ing conservation laws. Moreover, we have studied
the conservation of mass-energy, liner momentum,
and angular momentum for four-dimensional parti-
cle dyons with the Clifford-octonion algebra. To de-
scribe every fundamental physical theory such as clas-
sical mechanics, quantum mechanics, theory of rela-
tivity, etc., we use a mathematical structure called
Hilbert spaces (smooth manifolds) that are based on
the real numbers, although the actual measurements
of physical quantities are of finite accuracy and pre-
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cision. In hypercomplex algebras over reals, we have
only four sets of algebras, namely, the real algebra,
complex algebra, algebra of quaternions [1, 2] and
algebra of octonions [3, 4]. These four algebras are
normed division algebras [5] and also alternative. The
quaternion algebra is a four-dimensional algebra with
associativity. The octonion division algebra is the
highest normed division algebra. The octonionic al-
gebra shows the eight-dimensional space-time struc-
ture and shares many attractive mathematical prop-
erties [4, 5]. Octonions form a non-commutative non-
associative, but alternative algebra in mathemat-
ics. Moreover, Baez [6] discussed the octonion analy-
sis and its multiplication properties. Recently, many
authors [7–10] have already discussed the role of
the eight-dimensional octonionic algebra in various
branches of physics. Furthermore, a supersymmetric
model and its various physical problems [11, 12] have
been developed in terms of the octonion algebra. Let
us introduce the octonion algebra, where the octonion
variable 𝜉 ∈ O, is expressed as a set of eight-octons
(𝑒0 to 𝑒7),

𝜉 = 𝜉0𝑒0 +

7∑︁
𝑗=1

𝜉𝑗𝑒𝑗 , (1)

where 𝑒𝑗 (𝑗 = 1, 2, 3,..., 7) are imaginary octonion
unities and 𝑒0 is the real octonion unit element. The
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octonion unit element satisfies the following proper-
ties:

𝑒0 = 1, 𝑒2𝑗 = −1,

𝑒𝑗𝑒𝑘 = −𝛿𝑗𝑘𝑒0 + 𝑓𝑗𝑘𝑙𝑒𝑙 (𝑗, 𝑘, 𝑙 = 1, 2, ..., 7)

[𝑒𝑗 , 𝑒𝑘] = 2𝑓𝑗𝑘𝑙𝑒𝑙, {𝑒𝑗 , 𝑒𝑘} = −𝛿𝑗𝑘𝑒0,

(2)

where the structure constants 𝑓𝑗𝑘𝑙 are completely an-
tisymmetric and take value 1 for 𝑗𝑘𝑙 = (123); (471);
(257); (165); (624); (543); (736), and 𝛿𝑗𝑘 is the usual
Kronecker–Dirac delta-symbol.

2. Clifford-Octonion Algebra

The Clifford number [13] or simply called dual num-
ber defined by 𝑍𝐷, associated with a two-dimensional
commutative unital associative algebra over the real
numbers. If we introduce the Clifford number on the
octonion algebra, we obtain the Clifford-octonion al-
gebra or dual-octonion algebra. However, the Clif-
ford-octonion algebra is an extension of the octonion
algebra, having a sixteen-dimensional structure with
dual unity 𝜀 that helps to study unified theories in
physics. In order to study the dual-octonionic formal-
ism for the electromagnetic field of dyons and keeping
in mind the recent work on the dual octonion algebra
[14–16], let us start with the following dual form of
real numbers,

𝑍𝐷 = (𝑍 + 𝜀𝑍*) (∀𝑍, 𝑍* ∈ R), (3)

and the Clifford unity 𝜀 satisfies the following prop-
erties:

𝜀2 = 0, 𝜀 ̸= 0, 0𝜀 = 𝜀0 = 0, 1𝜀 = 𝜀1 = 𝜀. (4)

Moreover, the set of dual numbers forms a commu-
tative ring having 𝜀𝑍* as divisors of zero, i.e. not a
field. Using Eq. (3), we may write the dual-octonionic
function denoted by 𝑊𝐷 ∼ 𝑊{𝑂𝑗 , 𝜀𝑃𝑗 ; ∀𝑂𝑗 , 𝑃𝑗 ∈ O
& 𝑗 = 0, 1, 2, ..., 7} as

𝑊 =(𝑂0 + 𝜀𝑃0)𝑒0+

7∑︁
𝑗=1

(𝑂𝑗 + 𝜀𝑃𝑗)𝑒𝑗 = 𝑊0𝑒0 +𝑊𝑗𝑒𝑗 .

(5)

We can decompose both scalar and vector parts of
the dual-octonion function, respectively, as

𝑊0𝑒0 ∼= (𝑆𝑂 + 𝜀𝑆𝑃 ) = 𝑆𝐷 (Scalar part), (6a)

𝑊𝑗𝑒𝑗 ∼= (𝑉𝑂 + 𝜀𝑉𝑃 ) = 𝑉 𝐷 (Vector part). (6b)

Here, Eq. (6a) shows the real part of the dual-octo-
nion function 𝑊 associated with a dual-scalar num-
ber, whereas the vector part given by (6b) is associ-
ated with a dual vector. As such, the scalar multipli-
cation operation with the dual-octonion function 𝑊
can be written as

𝜆𝑊 = (𝜆𝑂) + 𝜀(𝜆𝑃 ), 𝜆 ∈ R; 𝑂,𝑃 ∈ O. (7)

Moreover, the octonion conjugate 𝑊̄ and dual conju-
gate 𝑊 𝜀 of Eq. (5) may then be expressed as

𝑊̄ = (𝑂0 + 𝜀𝑃0)𝑒0 −
7∑︁

𝑗=1

(𝑂𝑗 + 𝜀𝑃𝑗)𝑒𝑗 =

= 𝑊0𝑒0 −𝑊𝑗𝑒𝑗 , (8)

𝑊 𝜀 = (𝑂0 − 𝜀𝑃0)𝑒0 +

7∑︁
𝑗=1

(𝑂𝑗 − 𝜀𝑃𝑗)𝑒𝑗 =

= 𝑊 𝜀
0 𝑒0 +𝑊 𝜀

𝑗 𝑒𝑗 , (9)

where the dual property of the dual-octonionic func-
tion can be defined by{︃
𝑂0𝑒0 − 𝜀𝑃𝑗𝑒𝑗 = (𝑊̄ +𝑊 𝜀)/2,

𝜀𝑃0𝑒0 −𝑂𝑗𝑒𝑗 = (𝑊̄−𝑊 𝜀)/2.
(10)

3. Clifford-Octonionic Maxwell Equations

Now, we can apply the dual-octonionic function 𝑊 to
the electromagnetism of dyons. If we concern the clas-
sical electrodynamics of dyons (having both electric
and magnetic charges) in the four-dimensional space-
time world, the differential operator �, which has
four-dimensional Euclidean space-time components,
can be governed as

� = (𝜕/𝜕𝑥)𝑒1+(𝜕/𝜕𝑦)𝑒2+(𝜕/𝜕𝑧)𝑒3−𝑖(𝜕/𝜕𝑡)𝑒7, (11)

and the dual-octonion potential of dyons [14] becomes

𝑉 = [(𝜙𝑚 + 𝜀𝜙′
𝑚) + 𝑖𝑒7(𝜙𝑒 + 𝜀𝜙′

𝑒)]𝑒0 +

+

3∑︁
𝑗=1

[(𝐴𝑗 + 𝜀𝐴′
𝑗) + 𝑖𝑒7(𝐵𝑗 + 𝜀𝐵′

𝑗)]𝑒𝑗 , (12)

where (𝜙𝑒, 𝐴𝑗) = (𝜙𝑒,𝐴) and (𝜙𝑚, 𝐵𝑗) = (𝜙𝑚,𝐵)
define, respectively, the octonion electric and mag-
netic potential components of dyons, while (𝜙′

𝑒′𝐴
′
𝑗) =

= (𝜙′
𝑒′ ,𝐴

′) and (𝜙′
𝑚′𝐵′

𝑗) = (𝜙′
𝑚′ ,𝐵′) indicate the

Clifford components of the electric and magnetic po-
tential of dyons. As such, the dual octonion form of
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a generalized electromagnetic field (Ψ) can be ex-
pressed by the relation (�̄𝑉 ) = Ψ. Here,

Ψ =

3∑︁
𝑗=1

(H𝑗 + 𝑖𝑒7E𝑗)𝑒𝑗 =

=

3∑︁
𝑗=1

[(𝐻𝑗 + 𝜀𝐻 ′
𝑗) + 𝑖𝑒7(𝐸𝑗 + 𝜀𝐸′

𝑗)]𝑒𝑗 . (13)

In relation (13), the components E𝑗 := (𝐸𝑗+𝜀𝐸′
𝑗) and

H𝑗 := (𝐻𝑗+𝜀𝐻 ′
𝑗) define, respectively, the generalized

dual-octonion components of the electric and mag-
netic fields of dyons. Here, the scalar components of
the dual-octonionic generalized electromagnetic field
vanish, if we apply the Lorentz gauge conditions, re-
spectively, for the dynamics of the electric and mag-
netic charges of dyons. The dual-octonionic electric
and magnetic field vectors can be expressed, respec-
tively, as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝐸𝑗 + 𝜀𝐸′
𝑗) =

(︂
−∇𝜙𝑒 −

𝜕𝐴

𝜕𝑡
− (∇×𝐵)

)︂
+

+ 𝜀

(︂
−∇𝜙′

𝑒 −
𝜕𝐴′

𝜕𝑡
− (∇×𝐵′)

)︂
,

(𝐻𝑗 + 𝜀𝐻 ′
𝑗) =

(︂
−∇𝜙𝑚 − 𝜕𝐵

𝜕𝑡
+ (∇×𝐴)

)︂
+

+ 𝜀

(︂
−∇𝜙′

𝑚 − 𝜕𝐵′

𝜕𝑡
+ (∇×𝐴′)

)︂
.

(14)

From the definition of dual octonion current source
given by the equation (�Ψ) = ℑ, where ℑ ∈ 𝑊 is a
dual octonion generalized current, we have

ℑ = [−(𝜌𝑚 + 𝜀𝜌′𝑚) + 𝑖𝑒7(𝜌𝑒 + 𝜀𝜌′𝑒)]𝑒0 +

+

3∑︁
𝑗=1

[(𝐽𝑗 + 𝜀𝐽 ′
𝑗) + 𝑖𝑒7(𝐾𝑗 + 𝜀𝐾 ′

𝑗)]𝑒𝑗 , (15)

where the charge density and current density terms,
respectively, (𝜌𝑒 + 𝜀𝜌′𝑒), (𝐽𝑗 + 𝜀𝐽 ′

𝑗), and (𝜌𝑚 + 𝜀𝜌′𝑚),
(𝐾𝑗 +𝜀𝐾 ′

𝑗), are the dual-octonionic form of two four-
currents associated with the electric charge and the
magnetic charge (monopole) of dyons. Finally, we
obtain the differential equations

(∇ ·𝐸) + 𝜀(∇ ·𝐸′) = (𝜌𝑒 + 𝜀𝜌′𝑒), (16a)

(∇ ·𝐻) + 𝜀(∇ ·𝐻 ′) = (𝜌𝑚 + 𝜀𝜌′𝑚), (16b)

(∇×𝐸) + 𝜀(∇×𝐸′) =

= −
(︂
𝜕𝐻

𝜕𝑡
+ 𝜀

𝜕𝐻 ′

𝜕𝑡

)︂
− (𝐾 + 𝜀𝐾 ′), (16c)

(∇×𝐻) + 𝜀(∇×𝐻 ′) =

=

(︂
𝜕𝐸

𝜕𝑡
+ 𝜀

𝜕𝐸′

𝜕𝑡

)︂
+ (𝐽 + 𝜀𝐽 ′), (16d)

which presents the well-known generalized Dirac–
Maxwell’s equations in terms of the dual octonion
algebra [16]. Therefore, the dual-octonionic Hilbert
space formulation is compact and consistent.

4. Energy and Linear
Momentum Conservation Laws

In this section, we represent the role of the dual-oc-
tonion algebra in symmetry and conservation laws.
Since the forms of the laws of conservation of energy
and momentum are important for the electromagnetic
field [16], let us start with the dual-octonionic field
equation Ψ(�Ψ) = Ψℑ, where the left-hand term is

Ψ(�Ψ) = 𝑆𝐷(𝛼, 𝛽) + 𝑉 𝐷(Γ,Λ) ≡

≡ (𝛼𝑒0 + 𝛽𝑒7) +

3∑︁
𝑗=1

(Γ𝑒𝑗 +Λ𝑒𝑗+3), (17)

where 𝑆𝐷(𝛼, 𝛽) denotes a dual scalar function, while
𝑉 𝐷(Γ,Λ) denotes a dual vector function in the gen-
eralized dual-octonion field. Thus, the components
are

𝛼 = H · 𝜕H
𝜕𝑡

+E · 𝜕E
𝜕𝑡

+H · (∇×E)−E · (∇×H), (18a)

𝛽 = H · 𝜕E
𝜕𝑡

+E · 𝜕H
𝜕𝑡

−H ·(∇×H)+E ·(∇×E), (18b)

Γ = H× 𝜕E
𝜕𝑡

− E× 𝜕H
𝜕𝑡

−H× (∇×H)−

−E× (∇× E) +H(∇ ·H) + E(∇ · E), (18c)

Λ = E× 𝜕E
𝜕𝑡

−H× 𝜕H
𝜕𝑡

−H× (∇× E)−

−E× (∇×H)−H(∇ · E) + E(∇ ·H). (18d)

Similarly, the right-hand side of the dual-octonionic
field equation, Ψℑ, may be expressed in terms of the
dual-scalar and dual-vector parts, i.e.

Ψℑ = 𝑆𝐷(𝛼′, 𝛽′) + 𝑉 𝐷(Γ′,Λ′) ≡

≡ (𝛼′𝑒0 + 𝛽′𝑒7) +

3∑︁
𝑗=1

(Γ𝑒𝑗 +Λ′𝑒𝑗+3), (19)
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where the components become

𝛼′ = H ·K+ E · J, (20a)

𝛽′ = H · J+ E ·K, (20b)

Γ′ = 𝜌𝑚H+ 𝜌𝑒E−H× J− E×K, (20c)

Λ′ = 𝜌𝑒H− 𝜌𝑚E+H×K− E× J. (20d)

Since the energy is a scalar quantity, we equate, in
this case, the scalar components of the dual-octonion
coefficients 𝛼 = 𝛼′ and obtain the total rate of doing
work by the fields in a finite volume 𝑑𝜏 ,∫︁ [︂

1

2

𝜕E2

𝜕𝑡
+

1

2

𝜕H2

𝜕𝑡
+∇ · (E×H)

]︂
𝑑𝜏 =

=

∫︁
(H ·K+ E · J)𝑑𝜏. (21)

The above equation (21) shows the work-energy the-
orem simply called the Poynting theorem for the gen-
eralized dual-octonion electrodynamics of dyons. As
such, the dual-octonionic energies due to electric and
magnetic fields are defined, respectively, as

Ω𝑒 =
1

2

∫︁
E2𝑑𝜏, Ω𝑚 =

1

2

∫︁
H2𝑑𝜏. (22)

Accordingly, the total energy density in the general-
ized dual-octonion electromagnetic fields of dyons can
be represented as

Ω𝑒𝑚 =
1

2

∫︁
(E2 +H2)𝑑𝜏. (23)

In Eq. (21), the term (E×H) → S shows the dual-oc-
tonionic Poynting vector, which represents the direc-
tional energy flux density of the generalized electro-
magnetic field of dyons. Therefore, the conservation
of energy is governed by the following equation:

𝑑Ω

𝜕𝑡
=

𝜕Ω𝑒𝑚

𝜕𝑡
+∇ · S− (H ·K+ E · J). (24)

On the other hand, we know that the momentum is
a vector quantity so that, in view of the conservation
of momentum for the generalized electrodynamics of
dyons, we may equate the vector components of the
dual-octonionic coefficients, Γ = Γ′, and get the fol-
lowing equation:

−𝜕S
𝜕𝑡

+
1

2
∇(E2 +H2)− (H ·∇)H− (E ·∇)E−

−H(∇ ·H)− E(∇ · E) =
= 𝜌𝑚H+ 𝜌𝑒E−H× J− E×K. (25)

The divergence of the Maxwell stress tensor (∇ ·
↔
𝑇 )

is associated with its 𝑗th component as

∇ ·
↔
𝑇 =

[︂
(∇ · E)E𝑗 + (E ·∇)E𝑗 −

1

2
∇𝑗(E2)

]︂
+

+

[︂
(∇ ·H)H𝑗 + (H ·∇)H𝑗 −

1

2
∇𝑗(H2)

]︂
, (26)

and the generalized Lorentz force density for dyons,
suggested by this symmetry, is expressed as

𝑓𝑒𝑚 = (𝜌𝑒E+ J×H) + (𝜌𝑚H−K× E). (27)

Finally, from Eq. (25), we obtain the following com-
pact relation, which leads to the conservation of mo-
mentum for dyons in case of the dual-octonion struc-
ture:

∇
↔
𝑇 +

𝜕S
𝜕𝑡

+ 𝑓𝑒𝑚 = 0. (28)

Furthermore, if no external forces are applied, i.e.
𝑓𝑒𝑚 = 0, we obtain the local statement of the con-
servation of momentum of the electromagnetic field
of dyons and the continuity equation. On the other
hand, if we compare the remaining dual-octonion co-
efficients 𝛽 = 𝛽′, and Λ = Λ′, we find a complete set
of generalized Dirac–Maxwell equations of dyons.

5. Angular Momentum Conservation Law

In order to express the dual-octonionic conservation
law of angular momentum for dyons, let us start with
the components of the stress tensor,

𝑇𝑘𝑙 = 𝛿𝑘𝑙Ω𝑒𝑚 − E𝑘E𝑙 +H𝑘H𝑙. (29)

Here, we have to note that the stress tensor is sym-
metric, i.e. 𝑇𝑘𝑙 = 𝑇𝑙𝑘, which is required in order to
obtain a local conservation law for angular momen-
tum. As such, the trace of the stress tensor

↔
𝑇 (the

sum of the diagonal elements 𝑇𝑘𝑘) is simply defined
in terms of the energy density Ω𝑒𝑚 as

Tr(
↔
𝑇 ) =

∑︁
𝑘

𝑇𝑘𝑘 = Ω𝑒𝑚. (30)

Moreover, in the tensor form, the conservation rela-
tion (28) becomes

∇𝑙𝑇𝑙𝑘 +
𝜕S𝑘
𝜕𝑡

+ 𝑓𝑒𝑚
𝑘 = 0. (31)
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The torque 𝜏 for dyons in terms of the dual-octonionic
form can be written as

𝜏 = 𝑟 × 𝐹 =

∫︁
(𝑑𝑟) 𝑟 × 𝑓𝑒𝑚. (32)

Correspondingly, the torque density (force density
moment) can be written in the component form as

(𝑟 × 𝑓𝑒𝑚)𝑖 = 𝜖𝑖𝑗𝑘𝑥𝑗𝑓
𝑒𝑚
𝑘 , (33)

where 𝜖𝑖𝑗𝑘 denotes the Levi–Civita tensor, which is
totally antisymmetric, i.e.

𝜖𝑖𝑗𝑘 = −𝜖𝑗𝑖𝑘 = −𝜖𝑘𝑗𝑖 = −𝜖𝑖𝑘𝑗 = 𝜖𝑗𝑘𝑖, (34)

is normalized by 𝜖123 = 1, and vanishes if any two
indices are equal. Thus, the dual-octonionic torque
density for dyons can be obtained by taking the mo-
ment of the force density,

∇𝑗(𝑥𝑗𝑇𝑙𝑘) +
𝜕

𝜕𝑡
(𝑥𝑗S𝑘)− 𝑇𝑗𝑘 + 𝑥𝑗𝑓

𝑒𝑚
𝑘 = 0, (35)

where we have used that ∇𝑙𝑥𝑗 = 𝛿𝑙𝑗 . Finally, we get

∇𝑙(𝜖𝑖𝑗𝑘𝑥𝑗𝑇𝑙𝑘) +
𝜕

𝜕𝑡
(𝜖𝑖𝑗𝑘𝑥𝑗S𝑘) + 𝜖𝑖𝑗𝑘𝑥𝑗𝑓

𝑒𝑚
𝑘 = 0. (36)

We note that 𝑇𝑘𝑙 is symmetric. Thus, this symmetry
is required for the existence of a local conservation law
of angular momentum. Therefore, we identify the fol-
lowing electromagnetic angular momentum quantities
in the dual-octonionic form:

ℑ = 𝑟 × S,

(ℑ → dual octonionic angularmomentumdensity),

(37a)
ℜ𝑖𝑗 = 𝜖𝑗𝑘𝑙𝑥𝑘𝑇𝑖𝑙,

(ℜ → dual octonionic angularmomentumflux density).

(37b)

Furthermore, if 𝑗 = 𝑘, then we obtain the following
important equation:

∇ · (
↔
𝑇 · 𝑟)− 𝜕

𝜕𝑡
(𝑟 · S)− Ω𝑒𝑚 + 𝑟 · 𝑓𝑒𝑚 = 0. (38)

Equation (38) represents the electromagnetic virial
theorem in the dual-octonionic formulation, which is
an analog to the mechanical virial theorem of Rudolf
Clausius [17]. The advantage of the Clifford-octonion

algebra is that it also can be used in quantum com-
putation systems (quantum computers) that make di-
rect use of quantum-mechanical phenomena [18], such
as superposition and entanglement, to perform the
operations on data. On the other hand, in view of
the 16-dimensional representation, the sedenion [19]
is another powerful alternative hypercomplex algebra
satisfying the non-associative and non-commutative
property over reals. We also can use the sedenion al-
gebra for the unification of fundamental forces in a
single framework.

6. Conclusion

In mathematical physics, the Clifford-octonion al-
gebra is a generalized version of octonion algebra,
which exhibits the 16-dimensional structure of Euc-
lidean space-times in the universe. This 16-dimen-
sion algebra represents some classical field equations
of physical variables. Here, we have assumed that
the dual-octonion (higher dimensional structure) re-
presentation presents a possibility to show the exis-
tence of a magnetic monopole along with the elec-
tric charge. We have studied the generalized EM-
field equations and the current source equations of
dyons in terms of dual-octonions. Therefore, we have
investigated the compact form of symmetric gener-
alized Dirac–Maxwell’s equations of dyons with the
dual-octonion algebra. The dual-octonion form of the
work-energy theorem or Poynting theorem of dyons
has been developed. The beauty of the dual octonion
representations is that the scalar coefficient repre-
sents the Poynting theorem, and the vector coeffi-
cient shows the conservation of liner momentum. In
view of the rotational symmetry, we have discussed
the angular momentum conservation laws for dyons
in a compact way with the dual-octonion algebra. We
also have given the electromagnetic virial theorem in
the dual-octonionic formulation, which is analogous
to the mechanical virial theorem. The important con-
clusion of the dual-octonion formulation is the exis-
tence of a monopole and dyons in a higher dimen-
sional Grand Unified Theory (GUT). Like the octo-
nion formalism [20, 21], the presented 16-dimensional
theoretical model can also be used in various branches
of physics, e.g., elementary particle physics, nuclear
physics, gravitational physics, etc.
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Б.С.Чанял

ПОВНИЙ НАБIР ЗАКОНIВ ЗБЕРЕЖЕННЯ
ДЛЯ ДIОНIВ В АЛГЕБРI КЛIФФОРДА ОКТОНIОНIВ

Р е з ю м е

Алгебра Клiффорда октонiонiв (або просто дуальна алге-
бра октонiонiв) – це вища гiперкомплексна алгебра над дiй-
сним полем з коефiцiєнтом Клiффорда (𝜀). Алгебру засто-
совано для опису узгодженої теорiї узагальненого електро-
магнетизму i його законiв збереження для дiонiв. Описа-
но властивiсть симетрiй Лоренц-iнварiантностi i вiдповiднi
закони збереження для дiонiв. Вивчено збереження маси-
енергiї, лiнiйного iмпульсу i кутового моменту для чотири-
вимiрних дiонiв. Для узагальнених електромагнiтних полiв
доведено теорему роботи-енергiї i теорему лiнiйного iмпуль-
су, що вiдповiдають скалярнiй i векторнiй компонентам дiо-
нiв, вiдповiдно. Побудовано дуальну октонiонну форму за-
кона збереження для лiнiйного iмпульсу, що являє аналог
теореми вирiала в механiцi.
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