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An efficient algorithm for the calculation of high-order reducible cluster integrals on the basis
of irreducible integrals (virial coefficients) has been proposed. The algorithm is applied to study
the behavior of the well-known virial expansions of the pressure and density in power series of
activity up to very high-order terms, as well as recently derived symmetric power expansions
in the reciprocal activity, in the framework of a specific lattice gas model. Our results are
consistent with those obtained in other modern studies of the partition function in terms of
the density. They disclose the physical meaning of the divergence that the mentioned expansions
demonstrate in the condensation region.
K e yw o r d s: lattice gas, virial coefficients, reducible cluster integrals, activity, equation of
state, condensation.

1. Introduction

A new statistical approach has been proposed re-
cently [1–3] for a wide range of lattice gas models,
in which the “particle-hole” symmetry inherent in
such models is used. For the general well-known virial
equation of state (VEOS) [4, 5]
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whose applicability is limited to low particle density
𝜌, a symmetric VEOS (SVEOS) equation was ob-
tained [1]:
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Unlike Eq. (1), the validity of this equation is lim-
ited to high-density states (the low hole density 𝜌′ =
𝜌0 − 𝜌, where 𝜌0 is the close-packing density of a lat-
tice gas, and 𝑢0 the energy of the close-packing state
per one particle. Both Eqs. (1) and (2) also include
the same mutual set of irreducible cluster integrals,
{𝛽𝑘}, which are related to the corresponding virial
coefficients [5].

There is a rather considerable experience in cal-
culating such irreducible integrals {𝛽𝑘}, i.e. the virial
coefficients, for a variety of intermolecular interaction
models [6–14]. However, modern researches [3, 15–18]
testify that, at subcritical temperatures, the limit
of applicability of VEOS (1) is a point, where the
isothermal bulk modulus of the system vanishes,
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i.e. the value of density 𝜌𝐶 is determined by the equa-
tion∑︁
𝑘≥1

𝑘𝛽𝑘𝜌
𝑘
𝐶 = 1. (3)

The quantity 𝜌𝐶 also determines the maximum hole
density 𝜌′ (and the corresponding minimum density
𝜌 = 𝜌0 − 𝜌′), at which SVEOS (2) remains valid.

In work [2], the same “particle-hole” symmetry was
used to consider another pair of symmetric equations
of state in the form of power series expansions of the
pressure and density in the activity 𝑧 [this quantity
is associated with the chemical potential 𝜇 and the
de Broglie wavelength of molecules 𝜆 by the formula
𝑧 = 𝜆−3 exp (𝜇/𝑘B𝑇 )]:
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)︂
is the quantity reciprocal to the activity.

The coefficients 𝑏𝑛 in Eqs. (4) and (5) are the so-
called reducible cluster integrals [5], which are ex-
actly expressed, provided an unconfined integration
volume, in terms of irreducible ones,

𝑏𝑛 = 𝑛−2
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where {𝑗𝑘} are all possible sets of 𝑘 numbers that
satisfy the condition

𝑛−1∑︁
𝑘=1

𝑘𝑗𝑘 = 𝑛− 1. (6a)

The series expansions of the pressure and density in
Eqs. (4) and (5) directly express the logarithm of the
grand partition function and its derivative with re-
spect to the chemical potential. Therefore, they have
a more rigorous statistical substantiation in compar-
ison with the virial series expansions (1) and (2); un-
like the VEOS, they were obtained on the basis of
the Mayer cluster expansion [5] without additional
restrictions on the density. Unfortunately, the usage
of such parametrical equations remained to be con-
nected for a long time with certain mathematical and
technical difficulties, so that it was VEOS (1) that
obtained a wider practical application.

On the one hand, the series for the pressure and
density in Eq. (4) can diverge in dense states (with
high activity values) [19, 20]. On the other hand, re-
searches of the behavior of high-order terms in those
series remain almost impossible because of an extreme
complexity of practical applications of relation (6)
together with condition (6a). For example, in work
[21], by expanding the van der Waals equation in a
power series in the density, the behavior of the equa-
tion of state with reducible cluster integrals was an-
alyzed, but only for systems with very small dimen-
sions. In work [2], the reducible cluster integrals for
a lattice gas in the Lee–Young model [22] were cal-
culated only to the seventh order, and a comparison
with the behavior of the corresponding VEOS and
SVEOS showed a considerable difference even for den-
sitys much lower that 𝜌𝐶 . For an adequate compari-
son to be done between the behaviors of series expan-
sions in powers of the density [Eqs. (1) and (2)] and
activity [Eqs. (4) and (5)] – and, even more so, for
the research of the series divergence in Eqs. (4) and
(5) – the latter should include much larger number of
terms (𝑛 → ∞): the VEOS and SVEOS, even with
the finite {𝛽𝑘} set, correspond to power expansions
in the activity with an unconfined set of all reducible
integrals {𝑏𝑛}, which can be determined, in general,
in Eq. (6) on the basis of the same finite set of irre-
ducible integrals {𝛽𝑘}.

In this work, a more convenient, in comparison with
formula (6), relation between the reducible, {𝑏𝑛}, and
irreducible, {𝛽𝑘}, cluster integrals is considered (Sec-
tion 2). In Section 3, this relation is used to study
the behavior of expansions (4) and (5) with regard
for high-order reducible integrals, in particular, the
character of their divergence at large 𝑧 and 𝜂, res-
pectively.
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2. Algorithm for the Calculation
of Reducible Cluster Integrals

Mathematically, Eqs. (6) and (6a) mean that the
quantity 𝑛2𝑏𝑛 is a coefficient in front of 𝑥𝑛−1 in the
series expansion of the function
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Writing down function (7) in the form
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one can see that its derivative of the 𝑖-th order is
determined by the following recursive relation:
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the derivative of the 𝑘-th order of the internal func-
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Let us introduce the notation
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Then Eq. (9) is transformed into the formula

𝐵𝑖 = 𝑛

𝑖∑︁
𝑘=1

𝑘

𝑖
𝛽𝑘𝐵𝑖−𝑘, (10)

where 𝐵0 = 1.
According to Eq. (8),
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From the mathematical viewpoint, such a definition
of an arbitrary reducible cluster integral 𝑏𝑛 (11) in
terms of irreducible cluster integrals {𝛽𝑘} with the use
of the recursive relation (10) remains to be identical
to Eq. (6) with condition (6a). At the same time, it
is much more convenient and makes it possible to
efficiently perform numerical calculations of reducible
cluster integrals even of very high orders.

3. Character of Divergence
in the Power Expansions in the Activity

The behavior of the pressure and density expansions
in Eqs. (4) and (5) was studied, by using the specific
model of a lattice gas as an example, for which the ex-
act values of gas-liquid phase transition parameters,
namely, the pressure 𝑃0 and the densities at the boil-
ing point, 𝜌𝐿, and dry saturated vapor point, 𝜌𝐺, are
known [22]:
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2 .

In this two-dimensional Lee–Young model, abso-
lutely hard particles attract only those particles that
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Fig. 1. Isotherms of Eqs. (4) (on the left) and (5) (on the
right) (the maximum order of reducible integrals is indicated),
and VEOS (1) and SVEOS (2) (the corresponding dashed
curves) for the Lee–Young lattice gas at the subcritical tem-
perature 𝑇 = 0.4𝜀/𝑘B with regard for the first five irreducible
integrals. The horizontal dash-dotted segment corresponds to
the Lee–Young solution (12)
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Fig. 2. Isotherms of Eq. (5) with reducible integrals to the
800-th order for the Lee–Young lattice gas at the subcritical
temperature 𝑇 = 0.4𝜀/𝑘B with regard for different numbers of
irreducible integrals (the maximum order is indicated). The
horizontal dash-dotted segment corresponds to the Lee–Young
solution (12)

are located in four neighbor cells of a square lat-
tice (the square-well potential with the depth 𝜀), and
the energy per one particle in the close-packing state
equals 𝑢0 = −2𝜀 [this parameter enters Eqs. (2) and
(5)].

For this model, the irreducible cluster integrals
{𝛽𝑘} were calculated in work [2] up to the sixth or-
der (the virial coefficients to the seventh order). On
the basis of this information and with the use of the
algorithm presented in the previous section, we cal-
culated the corresponding reducible cluster integrals
{𝑏𝑛} in order to use them in Eqs. (4) and (5).

Figure 1 demonstrates the VEOS [Eq. (1)] and
SVEOS [Eq. (2)] isotherms obtained with regsrd for
the first five irreducible integrals {𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5},
as well as the isotherms of Eqs.(4) and (5), which in-
clude the reducible cluster integrals {𝑏𝑛} of various
orders calculated on the basis of the same set. In the
regions where the VEOS and SVEOS are adequate
(𝜌 < 𝜌𝐶 and 𝜌′ < 𝜌𝐶 , respectively), the isotherms of
virial power expansions in the density [Eqs. (1) and
(2)] and activity [Eqs. (4) and (5)] have expectedly a
good convergence. But beyond the zero point of the
isothermal bulk modulus 𝜌𝐶 , when it is exceeded by
the particle density 𝜌 in Eqs. (1) and (4), and by
the hole density 𝜌′ in Eqs. (2) and (5), the behav-
iors of those expansions start to differ substantially
(see Fig. 1). With the growth of the order of expan-
sions in the activity [Eqs. (4) and (5)], their isotherms
become more planar in this region rather than ap-
proach the isotherms of the corresponding VEOS (1)
and SVEOS (2).

On the one hand, very rapid variations of the den-
sity, when the activity 𝑧 in Eq. (4) or the reciprocal
activity 𝜂 in Eq. (5) approaches a certain value cor-
responding to the density 𝜌𝐶 in Eq. (3), testify to
the divergence of Eqs. (4) and (5) in a vicinity of the
point 𝜌𝐶 . Furthermore, the rate of divergence of the
density expansions (i.e. the rate of density variation
with the activity growth) in those equations should
considerably exceed the rate of divergence of the cor-
responding pressure expansions, which results in the
observable pressure constancy along the isotherms.

On the other hand, such a behavior agrees well with
the results of modern researches dealing with the clus-
ter expansion of the partition function in terms of the
density [3, 15–18], where the dependence on the ac-
tivity was excluded. First, the inadequacy of VEOS
(and SVEOS) beyond the zero point of the isothermal
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bulk modulus 𝜌𝐶 was confirmed. Second, the pressure
invariance along the isotherms points to the conden-
sation in the corresponding region.

It should be noted that a similar behavior is ob-
served, if various numbers of irreducible integrals (vi-
rial coefficients) are taken into account. Unfortunate-
ly, the limitation of the known coefficient set results
in a still appreciable difference between the results of
calculations and the Lee–Young solution (12). Howe-
ver, with the extension of this set, the isotherms grad-
ually (although in a complicated way) come closer to
the exact solution (see Fig. 2).

In addition, at the qualitative level, the mathemat-
ical divergence of the series expansions in Eqs. (4) and
(5) corresponds to thermodynamic ideas about the
first-order phase transitions and, in particular, to the
Maxwell rule; namely, the density is changed against
the practically constant values of pressure and activ-
ity (i.e. the chemical potential).

4. Conclusions

The recursive relation between the reducible and ir-
reducible cluster integrals on the basis of Eqs. (10)
and (11) is much more efficient than the conven-
sional relation (6). In particular, it allows the re-
ducible integrals {𝑏𝑛} of rather high orders (hun-
dreds and even thousands) to be calculated on the
basis of any known set of irreducible integrals {𝛽𝑘}
(virial coefficients). This relation allows comprehen-
sive researches of the behavior of the well-known
equation of state (4) to be carried out in the form
of the pressure and density expansions in the powers
of activity with regard for the terms of very high or-
ders, which was earlier associated with considerable
difficulties.

In particular, for the known Lee–Young model of a
lattice gas [22], the behaviors of Eq. (4) together with
the recently obtained symmetric equation of state (5)
were studied in the region, where the validity of the
corresponding virial power expansions in the density
[Eqs. (1) and (2)] becomes doubtful. Notwithstanding
a very limited set of known irreducible integrals (virial
coefficients) and appreciable quantitative deviations
of the calculated isotherms from the exact solution
(12), our researches allow a number of important con-
clusions to be drawn at a qualitative level.

First of all, the applicability of the well-known
VEOS (1), which was obtained from the very begin-

ning as a replacement of Eq. (4) with the purpose
to avoid the problems associated with the divergence
of its series expansion in the activity [4, 5, 20], turns
out to be confined to the region, where those series
converge, namely, by the point 𝜌𝐶 [Eq. (3)], where
the isothermal bulk modulus vanishes, which quite
agrees with the results of modern researches concern-
ing the cluster expansion of a partition function in
terms of the density [3, 15–18]. The same is valid for
the symmetric equations (2) and (5) for the dense
states of a lattice gas: SVEOS (2) is applicable only
in the convergence region of the more general equa-
tion (5).

The expansions of the pressure and density in the
power series of activity in Eqs. (4) and (5) with re-
gard for terms of high orders directly demonstrate
a divergence in a vicinity of the point 𝜌𝐶 . However,
the character of this divergence does not testify to
the mathematical inadequacy of the cluster expan-
sion of the partition function (as was considered ear-
lier [4]), but, on the contrary, has a rather clear phys-
ical sense corresponding to the convensional thermo-
dynamic ideas about the gas-liquid phase transition,
namely, the density of the system is changed at the
constant values of temperature, pressure, and chemi-
cal potential.

Hence, our research of the actual behavior of power
expansions in the activity with a considerable num-
ber of terms confirms qualitatively the assumption
of some researchers [19, 20] about the connection be-
tween the condensation and the divergence of those
expansions. Again, this result agrees well with the re-
sults of other researches [3, 15–18, 21], which identify
the density 𝜌𝐶 as the condensation point (a binodal
point).

Moreover, the observed behavior of Eqs. (4) and
(5) – which, in essence, are nothing else but the log-
arithm of the grand partition function (the series for
pressure) and its derivative with respect to the chem-
ical potential (the series for density) – gives a pos-
sible statistical explanation to the condensation pro-
cess (and the inverse boiling process). Namely, the
mathematical divergence of the series means a prin-
cipal increase of the contribution made by high-order
terms to the total sum (i.e. the growth of the sta-
tistical weight of corresponding high-order reducible
integrals in the partition function) and therefore a
qualitative growth of the probability for large clus-
ters to exist. For Eq. (4), this means the appearance
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of liquid droplets (large clusters of particles) in the
gas phase, i.e. the beginning of the condensation. For
Eq. (5), this means the appearance of gas bubbles
(large clusters of “holes”) in the liquid phase, i.e. the
beginning of the boiling.
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М.В.Ушкац, Л.А.Булавiн, В.М.Сисоєв, С.Ю.Ушкац

КОНДЕНСАЦIЯ ҐРАТКОВОГО ГАЗУ
ТА ЇЇ ЗВ’ЯЗОК З РОЗБIЖНIСТЮ ВIРIАЛЬНИХ
РОЗКЛАДIВ ЗА СТЕПЕНЯМИ АКТИВНОСТI

Р е з ю м е

Представлено ефективний алгоритм розрахунку звiдних
групових iнтегралiв високих порядкiв на основi набору не-
звiдних iнтегралiв (вiрiальних коефiцiєнтiв). За його допо-
могою для специфiчної моделi ґраткового газу була дослi-
джена поведiнка вiдомих вiрiальних розкладiв тиску й гу-
стини за степенями активностi та нещодавно отриманих си-
метричних розкладiв за степенями оберненої активностi з
урахуванням доданкiв дуже великих порядкiв. Отриманi
результати узгоджуються з iншими сучасними дослiджен-
нями статистичної суми в термiнах густини та розкривають
фiзичний змiст розбiжностi вказаних розкладiв в областi
конденсацiї.
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