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The theoretical analysis of structures of the bound and resonance states in 8Li and 8B nuclei
is performed within a three-cluster microscopic model. In the framework of this model, 8Li
and 8B nuclei are considered as three-cluster configurations 4𝐻𝑒+3 𝐻 + 𝑛 and 4𝐻𝑒+3 𝐻𝑒+
𝑝, respectively. A distinguished peculiarity of the model is that it allows us to consider the
polarizability of weakly bound nuclei such as 7Li composed of an alpha particle and a triton
or 7Be composed of an alpha particle and 3He. Gaussian and oscillator bases are used to
expand the three-cluster wave function and to represent the many-channel Schrödinger equation
in a matrix form. The main attention of the present study is paid to the effects of cluster
polarization on the spectrum of bound and resonance states of 8Li and 8B and on the elastic
and inelastic 𝑛 +7 𝐿𝑖 and 𝑝 +7 𝐵𝑒 scattering. It is shown that the cluster polarization has a
great impact on parameters of the bound and resonance states in 8Li and 8B. For instance, it
decreases the energy of resonance states by 0.7–2.0 MeV and increases their lifetime by more
than three times. The roles of spin-orbital and Coulomb interactions in the formation of the
spectrum of excited states in nuclei 8Li and 8B are studied in detail. In particular, it is found
out that the Coulomb forces shift up the energy of resonance states in 8B with respect to the
position of corresponding resonance states in 8Li and increases their widths.
K e yw o r d s: cluster model, resonance state, cluster polarization.

1. Introduction

The analysis of astrophysical data on the abundance
of light atomic nuclei in the Universe stimulated new
and more detailed experimental and theoretical in-
vestigations of the reactions induced by the interac-
tion of light nuclei. For the astrophysical applications,
one has to know the cross-section of a reaction at the
low-energy region, which amounts several keV in the
entrance channel of the reaction. This energy region
can be easily achieved at experimental facilities for
the reactions induced by the interaction of neutrons
with light nuclei. However, it is not the case for the
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interaction of light nuclei containing one or more pro-
tons. The Coulomb interaction between nuclei makes
it very difficult to measure the cross-section. In this
case, the theoretical methods are an invaluable tool
to determine or to evaluate the cross-section of im-
portance.

Since many of the light nuclei are weakly bound,
they could easily change their size or shape, while in-
teracting with neutrons, protons, or other light nuclei.
This phenomenon is called the polarization. A micro-
scopic three-cluster model was formulated in Ref. [1]
to take the polarizability of interacting clusters into
account. We refer to it as “cluster polarization”. It
was shown in Refs. [1–4] that the cluster polarization
plays an important role in the formation of bound



V.S. Vasilevsky, N.Zh. Takibayev, A.D. Duisenbay

and resonance states in seven nucleon systems. It was
also shown that the cluster polarization has a large
impact on the reactions of different types in 7Li and
7Be nuclei. It was also established that the cluster
polarization has the largest impact on the structures
of seven nucleon systems among other types of polar-
ization, which have been used previously in the lit-
erature. In addition, the cluster polarization, as was
demonstrated in [3, 4], increases the astrophysical 𝑆
factor of the radiative capture reactions in 7Li and
7Be nuclei by a few times.

Within the present paper, the effects of cluster po-
larization will be studied in light mirror nuclei 8Li and
8B. We will also study how the cluster polarization af-
fects the interaction of a neutron with 7Li and a pro-
ton with 7Be. Note that both 7Li and 7Be nuclei have
well-established two-cluster structure: 4He+ 3H and
4He+ 3He, respectively. This fact is taken into ac-
count in the present model. We are going to consider
the bound and resonance states of mirror nuclei 8Li
and 8B within a three-cluster microscopic model. We
will consider the resonance states created by two-
cluster and three-cluster configurations. These nuclei
are of interest, because they are nuclei with large ex-
cess of neutrons and protons, respectively. They ex-
hibit the halo properties, since the radius of the pro-
ton (neutron) cloud is much smaller than for the neu-
tron (proton) cloud in bound states of 8Li (8B).

Properties of mirror nuclei 8Li and 8B have been
intensively investigated in microscopic [5–14] and
semimicroscopic models [15–19]. In addition, different
experimental methods [20–30] were used to determine
the structures of 8Li and 8𝐵 and nuclear reactions in
these nuclei. In particular, new resonance states of 8B
have been recently discovered in [24,28] in the elastic
7Be + p scattering.

The novelty of our approach is that it allows us
to consider cluster polarizations. This means that,
within the proposed model, the size and shape of clus-
ters are not fixed, but depend on the distance between
interacting clusters. In the present case, we consider
how the size of 7Li(7Be) is changed, when a neutron
(proton) moves toward 7Li( 7Be).

The microscopic method used in this paper pursues
two goals: (1) it aims at studying the polarizability
of nuclei with the distinguished cluster structure in-
duced by the incident cluster; (2) it also aims at a
more advanced description of the resonance states in
three-cluster compound systems.

The paper is structured in the following way. Sec-
tion 2 shortly describes the microscopic method to
study the cluster polarization in light nuclei. Section
3 presents details of selecting the input parameters of
calculations and the results of theoretical analysis of
bound and resonance states in 8Li and 8B.

2. Method and Model Space

We shall consider 8Li as a three-cluster configuration
8Li = 𝛼 + t + n and nucleus 8B as the configura-
tion 8B = 𝛼 +3 He + p. These configurations are dy-
namically distinguished from other three-cluster con-
figurations, since they have minimal threshold en-
ergy compared to other three-cluster configurations
in 8Li and 8B. By using such three-cluster config-
urations, we can consider the following set of two-
cluster channels: 7Li + n, 5He+ 3H, 4H+ 4He in 8Li
and 7Be + p, 5Li+ 3He, 4Li+ 4He in 8B. Moreover,
with such three-cluster configurations, we can con-
sider nuclei 7Li, 5He, 4H, 7Be, 5Li, and 4Li as two-
cluster systems,
7Li = 𝛼+ t, 5He = 𝛼+ n, 4H = t + n,
7Be = 𝛼+3 He, 5Li = 𝛼+ p, 4Li =3 He + p,

and can provide a more advanced description of the
internal structure of these nuclei.

To describe the selected three-cluster configura-
tions, we employ the Algebraic Model with Gaussian
and Oscillator Basis (AMGOB) [1–4]. Actually, this
model is a matrix form of quantum theory of many-
channel systems with correct boundary conditions.

We start with the construction of wave functions
for two-cluster subsystems and for compound three-
cluster system. For the sake of simplicity, we repre-
sent these functions in the 𝐿𝑆 coupling scheme. This
scheme will be used in the calculations of the bound
state spectrum. However, to study the continuous
spectrum states, we use the 𝑗𝑗 coupling scheme. The
two-cluster wave function Ψ

(𝛼)
𝐽𝛼

, describing the inter-
action of clusters with indices 𝛽 and 𝛾, can be writ-
ten as

Ψ
(𝛼)
𝐸𝛼𝐽𝛼

= ̂︀𝒜𝛽𝛾

{︁
[Φ𝛽 (𝐴𝛽 , 𝑠𝛽) Φ𝛾 (𝐴𝛾 , 𝑠𝛾)]𝑆𝛼

×

× 𝑔
(𝐸)
𝜆𝛼𝐽𝛼

(𝑥𝛼)𝑌𝜆𝛼 (̂︀x𝛼)
}︁
𝐽𝛼

, (1)

where the function 𝑔
(𝐸)
𝜆𝛼𝐽𝛼

(𝑥𝛼) represents a radial part
of the wave function of the two-cluster relative mo-
tion, and the spherical harmonic 𝑌𝜆𝛼(̂︀x𝛼) represents
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its angular part. The indices 𝛼, 𝛽, and 𝛾 form cyclic
permutations of 1, 2, and 3.

The wave function of discrete and continuous spec-
trum states of a three-cluster system is

Ψ𝐸,𝐽 = ̂︀𝒜{[Φ1 (𝐴1, 𝑠1) Φ2 (𝐴2, 𝑠2) Φ3 (𝐴3, 𝑠3)]𝑆 ×

×
3∑︁

𝛼=1

𝑓
(𝐸,𝐽)
𝜆𝛼𝑙𝛼,𝐿 (𝑥𝛼, 𝑦𝛼) {𝑌𝜆𝛼

(̂︀x𝛼)𝑌𝑙𝛼 (̂︀y𝛼)}𝐿
}︁
𝐽
, (2)

where Φ𝛼 (𝐴𝛼, 𝑠𝛼) is a many-particle shell-model
wave function describing the internal motion of the
cluster 𝛼 (𝛼 = 1, 2, 3) consisting of 𝐴𝛼 nucleons (1 ≤
≤ 𝐴𝛼 ≤ 4), and 𝑠𝛼 denotes the cluster spin.

Similarly to the case of three particles, we use three
Faddeev amplitudes 𝑓

(𝐸,𝐽)
𝜆𝛼𝑙𝛼,𝐿 (𝑥𝛼, 𝑦𝛼) and three sets

of Jacobi coordinates x𝛼 and y𝛼. The Jacobi coor-
dinates determine the relative position of the center-
of-mass of three clusters. In our notations, x𝛼 is the
Jacobi vector proportional to the distance between 𝛽
and 𝛾 clusters, while y𝛼 is the Jacobi vector connect-
ing the position of the cluster 𝛼 with the center-of-
mass of the 𝛽 and 𝛾 clusters. The vectors ̂︀x𝛼 and ̂︀y𝛼

denote unit vectors ̂︀x𝛼 = x𝛼/ |x𝛼| and ̂︀y𝛼 = y𝛼/ |y𝛼|.
The antisymmetrization operators ̂︀𝒜𝛽𝛾 and ̂︀𝒜 make
antisymmetric wave functions of two- and three-clus-
ter systems, respectively. Note that the shell-model
wave functions Φ𝛼 (𝐴𝛼, 𝑠𝛽) are antisymmetric. Thus,
the operators ̂︀𝒜𝛽𝛾 and ̂︀𝒜 permute nucleons from dif-
ferent clusters.

For 𝑠-shell nuclei, the wave function Φ𝛼 (𝐴𝛼, 𝑠𝛼)
can be represented as a product of the coordinate
and spin-isospin parts:

Φ𝛼 (𝐴𝛼, 𝑠𝛼) = exp

{︂
−1

2

(︁𝜌𝛼
𝑏

)︁2}︂
𝜒𝑠𝛼 (𝐴𝛼), (3)

where
𝜌𝛼 =

√︃∑︁
𝑖∈𝐴𝛼

(r𝑖 −R𝛼)
2
,

r𝑖 is a single-particle coordinate of the 𝑖th nu-
cleon, and R𝛼 =

∑︀
𝑖∈𝐴𝛼

r𝑖/𝐴𝛼 is the coordinate
of the center-of-mass of 𝐴𝛼 nucleons. The spin-
isospin part of the wave function 𝜒𝑠𝛼(𝐴𝛼) pro-
vides the antisymmetric properties of the wave func-
tion Φ𝛼(𝐴𝛼, 𝑠𝛼) and the normalization condition
⟨Φ𝛼(𝐴𝛼, 𝑠𝛼)|Φ𝛼(𝐴𝛼, 𝑠𝛼)⟩ = 1. If a cluster consists of
one nucleon only, then 𝜌𝛼 = 0, and the wave func-
tion Φ𝛼(𝐴𝛼, 𝑠𝛼) of the cluster is represented by the
spin-isospin function 𝜒𝑠𝛼(𝐴𝛼). The expectation value
ℰ𝛼 =

⟨
Φ𝛼 (𝐴𝛼, 𝑠𝛼)

⃒⃒⃒ ̂︀𝐻(1)
𝛼

⃒⃒⃒
Φ𝛼 (𝐴𝛼, 𝑠𝛼)

⟩
determines the

internal energy of cluster 𝛼. The sum
∑︀3

𝛼=1 ℰ𝛼 deter-
mines the three-cluster threshold energy.

One can see in Eq. (3) that the shell-model wave
function Φ𝛼 (𝐴𝛼, 𝑠𝛽) explicitly depends on the oscil-
lator length 𝑏. In different realizations of the many-
cluster model, this parameter is used as a variational
or adjustable parameter. As a rule, the oscillator
length is adjusted to minimize the bound-state energy
of clusters or to reproduce their size (i.e., the mass
or proton root-mean-square (rms) radius). Within all
our models, we use the common oscillator length for
all clusters involved in calculations.

The Faddeev amplitude 𝑓
(𝐸,𝐽)
𝜆𝛼𝑙𝛼,𝐿 (𝑥𝛼, 𝑦𝛼) in Eq. (2)

is marked by two partial orbital momenta 𝜆𝛼 and
𝑙𝛼. They are associated with the Jacobi vectors x𝛼

and y𝛼, respectively. In what follows, we assume that
𝜆𝛼 is the orbital momentum of the two-cluster subsys-
tem, and 𝑙𝛼 is the orbital momentum connected with
the rotation of the third cluster around the center-of-
mass of the two-cluster subsystem.

To complete definitions, we have to determine
single-, two-, and three-cluster Hamiltonians. Hamil-
tonian ̂︀𝐻(1)

𝛼 determining the internal structure of a
cluster with 𝐴𝛼 nucleons iŝ︀𝐻(1)

𝛼 = ̂︀𝑇𝛼 +
∑︁

𝑖<𝑗∈𝐴𝛼

̂︀𝑉 (𝑖𝑗),

where ̂︀𝑇𝛼 is the kinetic energy operator in the center-
of-mass system, and ̂︀𝑉 (𝑖𝑗) is a nucleon-nucleon po-
tential. The two-cluster Hamiltonian describing the
interaction of the clusters with indices 𝛽 and 𝛾 iŝ︀𝐻(2)

𝛼 = ̂︀𝐻(1)
𝛽 + ̂︀𝐻(1)

𝛾 + ̂︀𝑇𝑥𝛼
+

∑︁
𝑖∈𝐴𝛽 ,𝑗∈𝐴𝛾

̂︀𝑉 (𝑖𝑗),

and the three-cluster Hamiltonian can be represented
aŝ︀𝐻 = ̂︀𝐻(2)

𝛼 + ̂︀𝐻(1)
𝛼 + ̂︀𝑇𝑦𝛼

+

+
∑︁

𝑖∈𝐴𝛽 , 𝑗∈𝐴𝛼

̂︀𝑉 (𝑖𝑗) +
∑︁

𝑖∈𝐴𝛼, 𝑗∈𝐴𝛾

̂︀𝑉 (𝑖𝑗),

wherê︀𝑇𝑧 = − ~2

2𝑚
Δ𝑧

is the kinetic energy operator associated with the
Jacobi coordinate 𝑧 = 𝑥𝛼 or 𝑦𝛼. To solve correctly
the three-cluster problems, we need to solve the two-
cluster Schrödinger equation(︁̂︀𝐻(2)

𝛼 − 𝐸𝜎,𝛼

)︁
Ψ

(𝛼)
𝐸𝛼𝐽𝛼

= 0 (4)
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for three different two-cluster partitions 𝛼 (𝛼 = 1,
2, 3). The energies of two-cluster bound states 𝐸𝜎,𝛼

determine the threshold energy of two-body chan-
nels, and the wave functions Ψ

(𝛼)
𝐸𝛼,𝛼,𝐽𝛼

determine the
asymptotic form of three-body functions in the part
of the coordinate space, which was denoted by Fad-
deev and Merkuriev as Ω𝛼 (see pp. 134–135 of book
[31]), i.e. in the region, where the distance 𝑥𝛼 between
a selected pair of clusters is much smaller than the
distance between other pairs of clusters (𝑥𝛼 ≪ 𝑥𝛽 ,
𝑥𝛼 ≪ 𝑥𝛾).

Having solved the Schrödinger equations (4) for all
two-cluster subsystems, we can proceed with solv-
ing the Schrödinger equation for a three-cluster sys-
tem (see Eqs. (31) and (33) in Ref. [1]). It is well
known [32] that the Schrödinger equations for two-
and three-cluster systems can be reduced to two-
and three-body equations, respectively, with nonlocal
energy-dependent potentials. This needs a special at-
tention and should be taken into account. The most
simple way of overcoming this problem is to use a
square-integrable basis.

The essence of the model employed in the present
investigations is the application of a discretization
scheme with the help of a square-integrable ba-
sis. This allows us to reduce the Schrödinger equation
for the many-channel system to the system of alge-
braic equations, which can be easily solved numeri-
cally. In the present model, we use the Gaussian ba-
sis to describe the bound and pseudobound states of
two-cluster subsystems, and we employ the oscillator
basis to study the interaction of the third cluster with
the two-cluster subsystem. The explicit definition of
the Gauss and oscillator basis functions, derivation
of a system of linear equations for the wave function,
and formulation of boundary conditions for the wave
function in the discrete representation are presented
in Refs. [1, 2].

Before proceeding to the numerical solution of
the two- and three-cluster Schrödinger equations, we
need to discuss some important properties of three-
cluster wave functions. In the present model, when
the three-cluster system is projected onto the set of
binary configurations (partitions), the three-cluster
wave function turns out to be the many-component
wave function, each component being associated with
a binary channel 𝑐. The index 𝑐 is a multiple index
𝑐 = {𝐸𝜎,𝛼, 𝐽𝛼, 𝑙𝛼}, which is comprised of the energy
𝐸𝜎,𝛼 and the angular momentum 𝐽𝛼 of a “target”-

two-cluster subsystem, and the orbital momentum 𝑙𝛼
of the third cluster – “projectile”. Within our model,
the number of components of the three-cluster func-
tion is substantially increased as the total spin 𝑆 and
total orbital momentum 𝐿 of the compound system
are not quantum numbers. The total spin 𝑆 of 8Li and
8B within the present model is a vector sum of the
spins of 3H and 𝑛 and 3He and 𝑝, respectively. This
gives us the total spin 𝑆 = 0 and 𝑆 = 1. Thus, the
state with total angular momentum 𝐽 is created by
a combination of four different values of the total or-
bital momentum 𝐿 and the total spin 𝑆:

|𝐽⟩ = |(𝐿 = 𝐽, 𝑆 = 0)⟩+ |(𝐿 = 𝐽 − 1, 𝑆 = 1)⟩+

+ |(𝐿 = 𝐽, 𝑆 = 1)⟩+ |(𝐿 = 𝐽 + 1, 𝑆 = 1)⟩.

There are two exceptions from this rule. First, for the
total angular momentum equal to zero, we have a
combination of two 𝐿𝑆 states: |𝐽 = 0⟩ = |(𝐿 = 0, 𝑆 =
= 0)⟩ + |(𝐿 = 1, 𝑆 = 1)⟩. Second, the total angular
momentum 𝐽 = 1 consists of four components

|𝐽 = 1⟩ = |(𝐿 = 1, 𝑆 = 0)⟩+ |(𝐿 = 0, 𝑆 = 1)⟩+

+ |(𝐿 = 1, 𝑆 = 1)⟩+ |(𝐿 = 2, 𝑆 = 1)⟩

for positive parity states and of three components

|𝐽 = 1⟩ = |(𝐿 = 1, 𝑆 = 0)⟩+ |(𝐿 = 1, 𝑆 = 1)⟩+

+ |(𝐿 = 2, 𝑆 = 1)⟩

for negative parity states, as it is impossible to con-
struct the wave functions of negative parity states
with the zero value of the total orbital momentum 𝐿.

All four combinations (𝐿, 𝑆) are involved in cal-
culations of the Hamiltonian and wave functions of
bound and scattering states. Moreover, these quan-
tum numbers will be included in the collection of
five quantum numbers, which unambiguously enu-
merate channels of the compound system 𝑐 =
= {𝐸𝜎,𝛼, 𝐽𝛼, 𝑙𝛼, 𝐿, 𝑆}, provided that the quantum
numbers 𝐿, 𝑆 are compatible with the given value
of the total angular momentum 𝐽 and parity 𝜋.

3. Structure of 8Li and 8B

To obtain the spectrum of discrete and continuous
spectrum states of 8Li and 8B, we use two nucleon-
nucleon potentials: the Minnesota potential (MP)
(central components are taken from [33], VI version of
the spin-orbital component from [34]), and modified
Hasegawa–Nagata potential (MHNP) from [35, 36].
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The oscillator length 𝑏, which is common for all clus-
ters, is adopted to minimize the threshold energy of
the three-cluster channel. In this way, we optimize the
description of the internal structure of all clusters.
For the MP and the MHNP, we have 𝑏 = 1.3451 fm
and 1.362 fm, respectively.

In present calculations, we use the Majorana pa-
rameter 𝑚 of the MHNP [35,36] and the parameter 𝑢
of the MP [33] as adjustable ones. These parameters
are slightly changed to reproduce the bound-state en-
ergy of 8B. This is done in order to be consistent with
the experimental situation in 8Li and 8B nuclei.

3.1. Bound states

In Table 1, we show the spectra of the 8Li and
8B bound states, which are obtained with two sets
of nucleon-nucleon potentials (NNP) and with the
“optimal” input parameters. Experimental data are
from Ref. [20]. The energies of bound states in 8Li
and 8B are reckoned from the two-cluster thresholds
7Li + n and 7Be + n, respectively. One can see that
the MHNP provides a more correct description of the
bound state spectrum in 8Li. Meanwhile, the optimal
input parameters of the MP lead to a very close po-
sition of the ground 2+ state and the first excited
1+ state.

To achieve the convergence of the energies of the
8Li and 8B bound states as functions of the numbers
of Gaussian and oscillator functions, we investigated
in detail how the energies of bound and resonance
states depend on the number of basis functions. We
found that 4 Gaussian functions and 50 oscillator
functions provide an acceptable precision of micro-
scopic calculations of the energy and other parame-
ters of the bounds states such as, for instance, the
root-mean-square proton, neutron, and mass radii. It
is also established that 4 Gaussian functions and 130
oscillator functions guarantee a necessary precision
of the calculations of the scattering matrix and the
energies and widths of resonance states.

In Table 2, we display the proton, neutron, and
mass rms radii in the ground state of 8Li and 8B
nuclei. Experimental data are taken from Ref. [23].
Theoretical results are in a good agreement with the
experimental data. One can see that our results con-
firm the existence of the neutron halo in 8Li and the
proton halo in 8B, as the neutron (proton) rms ra-
dius is larger than the proton (neutron) rms radius in

8Li (8B). This is confirmed by the last column of the
Table, where the difference between the proton and
neutron rms radii Δ𝑅 is displayed. Our results are
also in a good agreement with the results, obtained
in similar microscopic models [5, 9].

As was pointed out above, a wave function of each
states (bound or unbound one) consists of four com-
ponents with different values of the total orbital mo-
mentum 𝐿 and total spin 𝑆. One could expects that
contribution of these components to the total wave
function depends on energy and value of total an-
gular momentum 𝐽 . In Table 3 we show a contribu-
tion 𝑊 (𝐿, 𝑆) of states with different values of the
total orbital momentum 𝐿 and total spin 𝑆 to the
wave function of bound states in 8Li and 8B. The 2+

ground state of the 8Li nucleus is mainly represented
by the state with 𝑆 = 𝐿 = 1, meanwhile excite 1+

states are represented by two combinations of the to-
tal spin and total orbital momentum: (𝐿 = 1, 𝑆 = 0)

Table 1. Optimal input parameters
and the spectrum of bound states in 8Li and 8B.
Energies 𝐸 (MeV) of the bound states
are determined from the 7Li + n and 7Be + p

thresholds in 8Li and 8B, respectively

Nucleus 8Li 8B

NNP MP MHNP Exp. MP MHNP Exp.

𝑏, fm 1.3451 1.3620 1.3451 1.3620
𝑚 (𝑢) 0.9600 0.4157 0.9600 0.4157

𝐽𝜋 𝐸

2+ −1.958 −1.908 −2.032 −0.1368 −0.1393 −0.1375

1+ −1.607 −0.977 −1.051

Table 2. Proton (𝑅𝑝), neutron (𝑅𝑛), and mass
(𝑅𝑚) rms radii and the difference Δ𝑅 = |𝑅𝑝 − 𝑅𝑛|
(in fm) in the ground states of 8Li and 8B

Nucleus NNP 𝑅𝑝 𝑅𝑛 𝑅𝑚 Δ𝑅

8Li MP 2.174 2.516 2.394 0.342
MHNP 2.174 2.548 2.415 0.374
Exp. 2.266± 0.02 2.446± 0.02 2.376± 0.02

8B MP 2.724 2.217 2.546 0.507
MHNP 2.756 2.244 2.576 0.512
Exp. 2.496± 0.03 2.336± 0.03 2.436± 0.03
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Fig. 1. Correlation function of the 8Li ground state as a
function of the distances between 3H and 4He clusters and
between neutron and 7Li

Fig. 2. Correlation function of the 8B ground state as a func-
tion of distances between 3He and 4He clusters and between
proton and 7Be

and (𝐿 = 1, 𝑆 = 1). There is a negligible small contri-
bution of the state (𝐿 = 3, 𝑆 = 1) to the wave func-
tion of the 2+ ground state and contribution of the
state (𝐿 = 0, 𝑆 = 1) to the wave function of the 1+ ex-
cited states. Presented results are obtained with the
Minnesota potential, and they are close to results ob-
tained with the MHNP. As we see that the wave func-
tion of the 2+ bound state in 8B and wave function of

that state in 8Li is mainly represented by component
(𝐿 = 1, 𝑆 = 1). The weight of this component is more
than 92%. It is interesting to note that the structure
of the 2+ bound states in terms of 𝑊 (𝐿, 𝑆) in 8Li and
8B is similar despite that the 2+ bound state in 8Be is
weakly bound contrary to the 2+ state in 8Li. Table
3 demonstrates that the spin-orbital components of
the nucleon-nucleon forces play an important role in
formation of bound states in 8Li and 8B.

The wave functions of bound states allow us to
study the structure and peculiarities of 8Li and 8B in
these states. First, we can calculate the probability
distribution of relative positions of interacting clus-
ters. In Fig. 1, we display a correlation function (see
the definition in Ref. [1]) for the ground 2+ state in
8Li, which is calculated with the MP. This figure indi-
cates that the most probable configuration of the 8Li
ground state is an acute triangle with a base ≈1.8 fm
(the distance between 3H and 4He forming 7Li) and
a height ≈1.2 fm (remoteness of a neutron from 7Li
nuclei). There is also the second maximum in Fig. 1,
which corresponds to a very dispersed three-cluster
configuration with the distance between clusters 3H
and 4He more than 4 fm and the n+7Li distance ex-
ceeding 3 fm. However, the probability for the com-
pact configuration is approximately two times smaller
than for the “principal” configuration. These domi-
nant configurations justify the existence of a neutron
halo in 8Li.

The correlation function for the 2+ ground state
in 8B presented in Fig. 2 shows that the 8B ground
state is more dispersed in space than the ground state
of 8Li. Indeed, the most probable distance between
3H and 4He is approximately 5 fm, and the distance
between a proton and 7Be is more than 3 fm. Such
form of the triangle is due to the Coulomb interac-

Table 3. Weight 𝑊 (𝐿, 𝑆) of 𝐿𝑆 states
in the wave function of bound states in 8Li and 8B

Nucleus 8Li 8B

𝐽𝜋 2+ 1+ 1+ 2+

𝐸, MeV –2.011 –1.926 –0.461 –0.137

𝑊 (𝐽, 0) 2.29 80.52 16.62 3.72

𝑊 (0, 1) 0.05 0.27
𝑊 (1, 1) 95.07 15.75 82.94 92.91
𝑊 (2, 1) 2.62 3.69 0.17 3.31
𝑊 (3, 1) 0.02 0.06
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tion, which reduces the bound-state energy from –
1.908 MeV in 8Li to –0.139 MeV in 8B.

3.2. Resonance states
and 𝑛+7Li and 𝑝+7Be scattering

Let us now turn our attention to the resonance
states. Resonance states in 8Li and 8B, generated by
the interaction of a neutron with 7Li and a proton
with 7Be, respectively, are demonstrated in Tables 4
and 5. Experimental parameters of resonance states
are taken from Ref. [20]. As one can see, the ener-
gies and widths of resonance states strongly depend
on the shape of a nucleon-nucleon potential. For in-
stance, the energy of the first 3+ resonance state in
8Li obtained with the MHNP potential is 12 times
larger than one calculated with the MP, and the width
is almost 50 times larger than the width calculated
with the MP. There is one exception where the pa-
rameters of a resonance state calculated with both
potentials are very close to each other. This is the
3+ resonance state in 8B. In this case, the energies
and widths of the resonance states do not differ so
dramatically, as for other resonance states.

Comparing the theoretical and experimental pa-
rameters of resonance states, we come to the con-
clusion that the MHNP provides a more precise de-
scription of resonance states of 8Li and 8B than the
MP. One can see from Tables 4 and 5, the energies
and widths of the 1+ and 2− resonance states of 8B
and the 1+ resonance state of 8Li calculated with the
MHNP are close to experimental values. However, the
MP provides a fairly good description of parameters
of the 4+ resonance state of 8Li and 3+ resonance
state of 8B.

3.3. Effect of cluster polarization

The above-mentioned results are obtained with tak-
ing the cluster polarization into account. To see ex-
plicitly the effects of the cluster polarization, the
polarizability of clusters is switched-off. We demon-
strate the effects of the cluster polarization only
for two bound states and two resonance states
determined with the MHNP. By switching-off the
cluster polarization in 8Li, we obtain the ener-
gies of the bound states 𝐸 (2+) = −1.247 MeV
and 𝐸 (1+) = −0.538 MeV, which should be com-
pared with 𝐸 (2+) = −2.001 MeV and 𝐸 (1+) =
= −1.308 MeV. As we see, the cluster polariza-

tion decreases significantly the energies of the bound
states in 8Li. Let us turn our attention to the reso-
nance states. Note that the most part of resonance
states of 8Li (8B) displayed in Tables 4 and 5 are
determined in the 7Li + n (7Be + p) elastic scatter-

Table 4. Spectrum of resonance states in 8Li.
Energies of resonances are given in MeV (Theory)
or in MeV± keV (Experiment). Theoretical
and experimental widths of resonance states
are indicated in keV

8Li

𝐽𝜋 MP MHNP Exp.

3+ 𝐸 0.049 0.610 0.223± 3
Γ 3.472 165.68 33± 6

1+ 𝐸 1.5351 1.002 1.178
Γ 826.50 1433.45 ≈1000

1+ 𝐸 4.6194 2.129 3.368
Γ 21.81 912.54 ≈650

3+ 𝐸 2.4580 3.625
Γ 2635.50 760.30

4+ 𝐸 4.486 3.190 4.498± 20
Γ 63.997 1.84 35± 15

2− 𝐸 3.494
Γ 365.17

Table 5. Spectrum of resonance states in 8B.
Energies of resonances are given in MeV (Theory)
or in MeV± keV (Experiment). Theoretical
and experimental widths of resonance states
are indicated in keV

8B

𝐽𝜋 MP MHNP Exp.

3+ 𝐸 2.480 2.560 2.183± 20
Γ 495.09 572.14 350± 30

1+ 𝐸 0.090 0.615 0.632± 2.5
Γ 0.40 43.70 35.6± 0.6

1− 𝐸 1.441 1.132
Γ 989.38 1827.79

0+ 𝐸 1.644 1.128
Γ 870.34 299.01

2− 𝐸 4.209 3.363 3.363± 500
Γ 631.72 4142.80 8000± 4000
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Fig. 3. Spectrum of two bound states and one resonance state
of 8Li obtained without (N) and with (Y) the cluster polariza-
tion

Fig. 4. Phase shifts of n +7 Li scattering with the total angu-
lar momentum 𝐽𝜋 = 3+

ing. Consider the 1+ resonance state of 8B. By ne-
glecting the cluster polarization, we obtain the pa-
rameters of the resonance state: 𝐸 = 0.940 MeV and
Γ = 163 keV. Comparing these parameters with the
corresponding results in Tables 4 and 5, we come to
the conclusion that the cluster polarization decreases
1.5 times the energy and almost 4 times the total
width of the 1+ resonance state. Stronger effects of
the cluster polarization are observed in the 3+ reso-
nance state of 8Li. The energy of the resonance state
is decreased from 2.4380 MeV to 0.610 MeV, and the
width is reduced from 1227 keV to 166 keV due to the
cluster polarization.

Figs. 3 and 4 show effects of the cluster polariza-
tion on the scattering of neutrons from the 7Li. These

Fig. 5. Inelastic parameters of the n +7 Li scattering with the
total angular momentum 𝐽𝜋 = 3+

results are obtained with the MHNP. In Fig. 4, the
orbital momentum 𝑙1 denotes the orbital momentum
of a neutron with respect to 7Li nucleus. One can see
that the cluster polarization influences significantly
the phase shift 𝛿 of the n +7 Li scattering with the
orbital momentum of a neutron 𝑙1 = 1. However, the
effects of the cluster polarization on the n+7Li scat-
tering with 𝑙1 = 3 are very small. As for the inelastic
parameters 𝜂, the effects of the cluster polarization
are more pronounced (see Fig. 5) than for the phase
shifts of the n+7Li scattering.

It is worth to note that, by solving the system of
dynamic equations for continuous spectrum states, we
obtain a full set of matrix elements 𝑆𝑐,̃︀𝑐 of the scatter-
ing 𝑆-matrix. The indices 𝑐 and ̃︀𝑐 enumerate channels
of the compound system. The obtained 𝑆-matrix con-
tains the complete information about all elastic and
inelastic processes in the system. We use two differ-
ent parametrizations of the 𝑆-matrix in order to an-
alyze the dynamics of the processes and to determine
important physical quantities such as the total and
partial widths of resonance states. In the first repre-
sentation, the complex 𝑆-matrix is expressed through
the real phase shifts 𝛿𝑐,̃︀𝑐 and inelastic parameters 𝜂𝑐,̃︀𝑐
𝑆𝑐,̃︀𝑐 = 𝜂𝑐,̃︀𝑐 exp {2𝑖𝛿𝑐,̃︀𝑐}.
Usually, we analyze only the diagonal (𝑐 = ̃︀𝑐) phase
shifts and inelastic parameters, as was shown in Figs.
3 and 4. These quantities allow us to study the gen-
eral properties of elastic and inelastic processes. To
obtain the 𝑆-matrix in the second representation,
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we need to reduce this matrix to the diagonal form,
which is called the representation of eigenchannels
or representation of effective uncoupled channels. We
use this representation to determine the total and
partial widths of compound systems (for more details,
see Ref. [37]).

There is another way for the visualization of a clus-
ter polarization. As was suggested in [1], we can cal-
culate how the average distance between two selected
clusters depends on the distance to the third cluster,
by using the wave function of a bound state of the
compound system. For instance, we can calculate the
average distance R(7Li = 𝛼+ t) (R(7Be = 𝛼+ 3He))
between an alpha particle and a triton (3He) as
a function of the distance R(n− 7Li) (R(p− 7Be)),
when a neutron (proton) is moving toward 7Li
(7Be). This quantity is displayed in Fig. 6 for the
ground 2+ and first excited 1+ states of 8Li. When a
neutron is far away from 7Li, the average distance be-
tween an alpha particle and a triton is approximately
4.5 fm. When a neutron approaches 7Li, the average
distance is reduced slightly, and then it is significantly
stretched, if the distance R(n− 7Li) is between 1.5
and 9 fm. It seems that, for such distances R(n− 7Li),
nucleus 7Li changes its orientation with respect to a
neutron, which results in such tremendous size of the
system 𝛼+t. Finally, when a neutron is very close to
the center-of-mass of 7Li, it is compressed to a min-
imal size of 1.6 fm. Thus, this figure demonstrates
that 7Li as a two-cluster system is strongly affected
by the incident neutron. A somewhat different picture
is observed for the ground state of 8B. The effect of
the incident proton on the distance between an al-
pha particle and 3He is demonstrated in Fig. 7. The
incident proton gradually decreases the size of 7Be,
which is due to a combination of the nuclear forces
and the Coulomb interaction. The “phase transition”
observed in bound states of 8Li in a wide range of
distances R(n− 7Li) now takes place in a very small
range of R(p− 7Be) distances. However, the ampli-
tude of the “phase transition” in 8B is much more
than in 8Li. It should be noted that, without polar-
ization, all curves in Figs. 6 and 7 are transformed
into planar lines, i.e., the two-cluster subsystem ra-
dius is independent of the position of the third cluster
when the polarization is neglected.

It was pointed out at the beginning of the paper
that many different methods have been used to study
the structure of 8Li and 8B. To show the consistence

Fig. 6. Average distance between 𝛼 particle and a triton as a
function of the distance between a neutron and 7Li. Calcula-
tions are made with the MHNP

Fig. 7. Dependence of the average distance between an al-
pha particle and 3He on the distance to a proton. Results are
obtained with the MHNP

of our model with other models, we compare our re-
sults with those obtained by Csótó within a micro-
scopic three-cluster model, which uses the analytic
continuation to the complex plane to determine a res-
onance pole of the 𝑆-matrix. Both methods involve
the same part of the total Hilbert space and make
use of the same nucleon-nucleon potential, namely,
the MHNP. The main difference of the methods is
related to the way to determine the resonance pa-
rameter. In addition, the model by Csótó does not
take the cluster polarization into account. In Table 6,
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Fig. 8. Effects of the Coulomb forces on the positions of res-
onance states in 8Li and 8B

Table 6. Low-energy spectrum of 8B
and 8Li obtained by different methods. The energy
and width are in MeV

Nucleus 𝐽𝜋
Csótó [6] AMGOB

𝐸 Γ 𝐸 Γ

8B 2+ −0.215 −0.139

1+ 0.632 0.034 0.615 0.044
1+ 1.278 0.564 1.305 0.600
3+ 2.98 0.808 2.560 0.572
1+ 4.33 1.5

8Li 2+ −2.021 −1.908

1+ −0.975 −0.977

1+ 0.037 0.006 0.014 0.002
3+ 0.937 0.327 0.610 0.166
1+ 2.29 1.0 2.129 0.913

Table 7. Spectrum of resonance states in 8B
calculated with the MP and MHNP potentials
and compared with new experimental data.
The energy and width are in MeV

𝐽𝜋

Experiment Theory

[24, 28] MP MHNP

𝐸 Γ 𝐸 Γ 𝐸 Γ

1+ 0.630(4) 0.027(6) 0.090 0.0004 0.615 0.044
0+ 1.76(1) 0.53+0.6

−0.1 1.644 0.870 1.128 0.299
3+ 2.17(2) 0.33(3) 2.480 0.495 2.560 0.572
2+ 2.36(4) 0.27(4) 1.710 1.760 3.321 1.139
1+ 3.16(2) 3.2(9) 1.372 0.842 1.305 0.600

we compare our results (marked as AMGOB) with
results obtained by Csótó [6]. It is difficult to deter-
mine the exact values of parameters of the NN po-
tential, which was used by Csótó. The differences in
parameters of the resonance states can be ascribed
to effects of the cluster polarization. The results col-
lected in Table 6 indicate that our model is consistent
with other three-cluster models.

3.4. Effects of Coulomb forces

Let us now consider how the Coulomb interaction af-
fects the spectrum of bound and resonance states in
the mirror nuclei 8Li and 8B. As we saw above (see,
e.g., Table 3), the Coulomb interaction diminishes
the number of bound states of 8B with respect to
8Li. Thus, the effective interaction between clusters
is reduced by the Coulomb interaction, and this re-
sults in decreasing the energy of the 2+ ground state
and moving the 1+ excited state up to the continu-
ous spectrum (i.e., transforming the 1+ bound state
into a resonance state). More interesting and intrigu-
ing is the influence of the Coulomb forces on the en-
ergies and widths of resonance states. As was shown
in Ref. [38], the effects of the Coulomb forces on
resonance states even in two-cluster systems are not
trivial. Here, we deal with the three-cluster system
projected onto a set of two-cluster channels. In Fig.
8, we compare the spectrum of bound and resonance
states of 8Li and 8B calculated with the MHNP. The
dot-dashed lines connect the states with the same
value of the total angular momentum 𝐽 and parity
𝜋. We can see that the Coulomb interaction shifts
the energies of all bound and resonance states. The
effects of the Coulomb interaction are the same for all
states, except for the 3+ and 2− resonance states. As
we can see, the 2− state has the smallest impact of the
Coulomb interaction on its energy, while the largest
impact is observed for the 3+ resonance state. The
main result of our consideration is that the Coulomb
forces substantially increase the widths of resonance
states of 8B relative to the corresponding resonance
states of 8Li.

3.5. Theory and new experiments

In the previous sections, we compared our results
with the available experimental data. It was done
both for bound and resonance states. We used the
classical or well-established experimental data from
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Ref. [20]. Recently, Mitchell et al. in [28] presented
the new results on resonance states of 8B obtained
by studying the p+ 7Be scattering. New resonance
states have been discovered in [28] and in work
[24]. These results are presented in Table 7, where
we compare them with our results.

Our results confirm the existence of the 0+ reso-
nance state in 8B. Moreover, the energy and width
of the resonance state calculated with the MP are
close to the results by Mitchell et al. [28]. However,
the parameters of the 3+ and second 1+ resonance
states differ considerably from the new experimental
results.

4. Conclusions

We have applied a three-cluster microscopic model to
studying the structure of bound and resonance states
of 8Li and 8B and the elastic and inelastic n+ 7Li
and p+ 7Be scatterings. The model involves the po-
larizability of interacting clusters. It is demonstrated
that the cluster polarization has a large impact on
the properties of bound and resonance states and on
the elastic scattering of a neutron on 7Li and a proton
on 7Be. The present model provides a fairly good de-
scription of the bound and resonance states in mirror
nuclei 8Li and 8B. We have investigated the effects of
the spin-orbital and Coulomb forces on the structure
of bound and resonance states.

This work is partially supported by the Ministry
of Education and Sciences of the Republic of Kaza-
khstan, the Research Grant IPS 3106/GF4.

1. V.S. Vasilevsky, F. Arickx, J. Broeckhove, and T.P. Ko-
valenko. A microscopic three-cluster model with nuclear
polarization applied to the resonances of 7Be and the re-
action 6Li(p,3 He)4He. Nucl. Phys. A 824, 37 (2009).

2. A.V. Nesterov, V.S. Vasilevsky, T.P. Kovalenko. Effect of
cluster polarization on the spectrum of the 7Li nucleus and
on the reaction 6Li(n,3 H)4He. Phys. Atom. Nucl. 72, 1450
(2009).

3. A.V. Nesterov, V.S. Vasilevsky, T.P. Kovalenko. Micro-
scopic model of the radiative capture reactions with cluster
polarizability. Application to 7Be and 7Li. Ukr. J. Phys.
56, No. 7, 645 (2011).

4. V.S. Vasilevsky, A.V. Nesterov, T.P. Kovalenko. Three-
cluster model of radiative capture reactions in seven-
nucleon systems. Effects of cluster polarization. Phys.
Atom. Nucl. 75, No. 7, 818 (2012).
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МIКРОСКОПIЧНИЙ ОПИС ЯДЕР 8Li
ТА 8B У РАМКАХ ТРИКЛАСТЕРНОЇ МОДЕЛI

Р е з ю м е

У рамках трикластерної моделi виконано теоретичний ана-
лiз структури зв’язаних та резонансних станiв ядер 8Li i
8B. В цiй моделi ядро 8Li розглядається як трикластер-
на конфiгурацiя 4He+ 3H+n, а ядро 8B – як конфiгура-
цiя 4He+ 3He+p. Особливiсть даної моделi полягає у то-
му, що вона дає можливiсть враховувати поляризовнiсть
слабкозв’язаних ядер, таких як ядро 7Li, яке складається
iз альфа-частинки i тритона, або ядро 7Be, яке складає-
ться iз альфа-частинки i 3He. Гаусiвський та осциляторний
базиси використовуються для розкладу трикластерної хви-
льової функцiї та для представлення у матричнiй формi
рiвняння Шредiнгера для багатоканальної системи. Голов-
на увага даних дослiджень придiляється впливу кластер-
ної поляризацiї на спектр зв’язаних та резонансних станiв
ядер 8Li i 8B та на пружне i непружне розсiяння n+ 7Li
i p+ 7Be. Показано, що кластерна поляризацiя має вели-
кий вплив на параметри зв’язаних та резонансних станiв
ядер 8Li i 8B. Наприклад, вона зменшує енергiю резонан-
сних станiв на 0,7–2,0 МеВ та збiльшує їх час життя бiльш
нiж у три рази. Детально дослiджена роль спiн-орбiтальної
та кулонiвської взаємодiй у формуваннi спектра збуджених
станiв ядер 8Li i 8B. Зокрема, виявлено, що кулонiвськi си-
ли зсувають вгору енергiю резонансних станiв в ядрi 8B по
вiдношенню до положень вiдповiдних резонансних станiв в
8Li, а також збiльшують їх ширину.
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