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Radial distributions of electron concentration and electrostatic potential in perfect clusters
and clusters with a centered monovacancy have been calculated self-consistently in the frame-
work of the stabilized jellium model and using the Kohn–Sham method, which allowed the
total energy of neutral and charged clusters containing a defect to be determined for the first
time. On the basis of the results obtained, the dissociation, cohesive, and monovacancy for-
mation energies, the electron affinity, the ionization potential, and the electric capacitance are
directly calculated. The results of numerical calculations for Na, Mg, and Al are compared with
asymptotic dependences and with the results obtained for defect-free clusters. The quantum-
size dependences of the energy of monovacancy formation driven by either the Schottky or the
“bubble blowing” mechanism, as well as their asymptotics, are determined. Strong fluctuations
of this quantity as a function of the cluster size are revealed. The asymptotic dependences ob-
tained for two indicated mechanisms are shown to differ from each other, but depend weakly
on the number of atoms in a cluster.
K e yw o r d s: metal clusters, cohesion, dissociation, energy of vacancy formation, work func-
tion, ionization potential, electron affinity.

1. Introduction
One of the models describing the melting of solids [1]
predicts that the concentration of vacancies should in-
crease in a jump-like manner at the triple point, and
the energy of their formation should decrease, as the
vacancy concentration grows. At the melting point,
the concentration of vacancies in metals amounts to
a few tenths of percent. Despite such low concentra-
tions, vacancies substantially affect the properties of
solids.

In order to estimate the equilibrium concentration
of vacancies, one has to know the vacancy forma-
tion energy. The magnitude of this parameter can be
obtained by analyzing the annihilation spectrum of
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positrons injected into a metal. It was found experi-
mentally that the melting temperature of free clusters
and clusters on a substrate decreases as their size di-
minishes. A significant number of works were devoted
to the interpretation and the modeling of this meso-
scopic phenomenon [2–7].

Modern mass spectrometric and calorimetric meth-
ods make it possible to comprehensively study the
processes of premelting and melting in metal clus-
ters consisting of a denumerable number of atoms
[8–11]. In works [8, 10], it was shown that the melt-
ing temperature, besides size-induced oscillations, has
also size-induced anomalies – e.g., for Al – that are
not described by simple models. Furthermore, it was
found that, at the melting, the diffusion of surface
vacancies into the bulk is more beneficial for clusters



Size Dependences of the Energy Parameters

with unfilled electron shells than for clusters with the
magic number of atoms [9]. Those facts stimulate the
enhanced interest to understanding the phase tran-
sition from the solid state into the liquid one as a
configurational excitation of vacancies in the clusters.

From the thermodynamic viewpoint [12–14], the
vacancy formation energy near the melting tempera-
ture should be lower for smaller clusters, whereas the
vacancy concentration should be independent of the
cluster size. However, thermodynamics gives no in-
structions concerning the mechanism of vacancy for-
mation, so that the issues about the size dependence
of the vacancy formation energy, vacancy concentra-
tion, and connection between vacancies and the melt-
ing process remain open.

Despite that the energy parameters of continu-
ous (defect-free) metal clusters were calculated many
times and in various models (see, e.g., works [15–
17] and the references therein), self-consistent cal-
culations concerning the vacancy formation energy
in clusters and how the quantization of the elec-
tron spectrum affects this quantity have not been
performed till now. Moreover, one of the challenging
problems is to study the size effect for the ionization
potential of clusters containing a monovacancy. The
obtained dependences can be useful for the analysis
of the results of photoionization experiments and for
the determination of the size dependence of the va-
cancy concentration, in particular, near the melting
temperature.

The aim of this work was to calculate the energy
characteristics of clusters with a vacancy in the frame-
work of the stabilized jellium model using the Kohn–
Sham method and to analyze the size behavior of the
vacancy formation energy, as well as its dependence
on how this vacancy was formed.

2. Basic Relations

Let us consider a spherical metal cluster. We will
compare the parameters of the spheres with the same
number of atoms, 𝑁 , at zero temperature. The radii
of the solid spheres, 𝑅𝑁 , and the spheres with a
monovacancy at the center, 𝑅𝑁,𝑣, are different:

𝑅𝑁 = 𝑁1/3𝑟0,

𝑅𝑁,𝑣 = (𝑁 + 1)1/3𝑟0,
(1)

where 𝑟0 is the radius of a unit (i.e. Wigner–Seitz)
cell per one atom.

In the framework of the stabilized jellium model,
a monovacancy looks like a spherical neutral hole
with the radius 𝑟0 embedded into a homogeneous
positively charged background. Using the Heaviside
𝜃-function, the distribution of the ionic charge in a
cluster with a vacancy can be written in the form

𝜌𝑣(𝑟) = �̄�𝜃(𝑟 − 𝑟0)𝜃(𝑅𝑁,𝑣 − 𝑟), (2)

where �̄� = 3𝑍/(4𝜋𝑟30) is the electron concentration in
a uniform electron gas, and 𝑍 the metal valency. For
a continuous (defect-free) cluster, 𝜌(𝑟) = �̄�𝜃(𝑅𝑁 −𝑟).

The total energy of a metal sphere with a centered
vacancy is written in the form of a functional of the
electron concentration 𝑛𝑣(𝑟),

𝐸𝑁,𝑣 = 𝑇𝑠,𝑣 +
𝑒

2

∫︁
𝑑3𝑟 𝜑𝑣(𝑟)[𝑛𝑣(𝑟)− 𝜌𝑣(𝑟)] +

+

∫︁
𝑑3𝑟 𝑛𝑣(𝑟)𝜀xc(𝑟)−Δ𝜀

∫︁
𝑑3𝑟 𝜌𝑣(𝑟)+

+ ⟨𝛿𝑣⟩WS

∫︁
𝑑3𝑟 𝜃(𝑟 − 𝑟0)𝜃(𝑅𝑁,𝑣 − 𝑟)𝑛𝑣(𝑟), (3)

where 𝑒 > 0 is the elementary charge, and

𝑇𝑠,𝑣 =

𝑁𝑒∑︁
𝑖=1

𝜀𝑖,𝑣 −
∫︁
𝑑3𝑟 𝑛𝑣(𝑟)𝑣eff,𝑣(𝑟) (4)

is the kinetic energy of 𝑁𝑒 = 𝑍𝑁 noninteracting elec-
trons.

The spatial distribution of the electrostatic poten-
tial, 𝜑𝑣(𝑟), is determined from the Poisson equation

∇2𝜑𝑣(𝑟) = −4𝜋𝑒[𝑛𝑣(𝑟)− 𝜌𝑣(𝑟)] (5)

under the condition
∞∫︁
0

𝑑𝑟 4𝜋𝑟2[𝜌𝑣(𝑟)− 𝑛𝑣(𝑟)] = 𝑄/𝑒, (6)

where 𝑄 is the total charge of the cluster.
In the stabilized jellium model [18], the energy per

electron in bulk, 𝜀, consists of the unstabilized jellium
component 𝜀J, Madelung energy 𝜀M, and pseudopo-
tential contribution 𝑤R:

𝜀 = 𝜀J +Δ𝜀, 𝜀J = 𝑡𝑠 + 𝜀xc,

Δ𝜀 = 𝜀M + 𝑤R, ⟨𝛿𝑣⟩WS = 𝜀+Δ𝜀,

𝑤R = 2𝜋𝑒2�̄�𝑟2𝑐 , 𝜀M = −9𝑍𝑒2

10𝑟0
, 𝜀 = −2

3
𝜀M,
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Fig. 1. Self-consistent profiles of the electron concentration
and effective potential distributions in a defect-free cluster
(solid curves) and a cluster with a centered vacancy (dashed
curves). The both clusters contain the same number of atoms,
𝑁 = 12. The excess charge of the cluster 𝑄 = −𝑒 (1 ), 0 (2 ),
and +𝑒 (3 )

where 𝑡𝑠 and 𝜀xc are the kinetic and exchange-
correlation energies, respectively; 𝑤R is the differ-
ence between the ion pseudopotential and the elec-
trostatic potential of the positively charged homo-
geneous background averaged over a Wigner–Seitz
cell; 𝑟𝑐 the radius of Ashcroft pseudopotential; 𝜀M
the Madelung energy of point-like ions with the va-
lency 𝑍 imbedded into the homogeneous negatively
charged background; and 𝜀 the intrinsic electrostatic
energy of the homogeneous negatively charged back-
ground in the cell (see also work [19]).

In the Kohn–Sham method, the profile of the elec-
tron concentration distribution 𝑛𝑣(𝑟) in the cluster
with a vacancy is expressed with the use of one-
electron wave functions,

𝑛𝑣(𝑟) =

𝑁∑︁
𝑖=1

|𝜓𝑖,𝑣(𝑟)|2. (7)

The latter, together with the energy eigenvalues 𝜀𝑖,𝑣,
are determined by solving the system of Kohn–Sham
equations

− ~2

2𝑚
∇2𝜓𝑖,𝑣(𝑟) + 𝑣eff,𝑣(𝑟)𝜓𝑖,𝑣(𝑟) = 𝜀𝑖,𝑣𝜓𝑖,𝑣(𝑟) (8)

with the effective one-electron potential

𝑣eff,𝑣(𝑟) = 𝑒𝜑𝑣(𝑟) + 𝑣xc(𝑟)+

+ ⟨𝛿𝑣⟩WS 𝜃(𝑟 − 𝑟0)𝜃(𝑅𝑁,𝑣 − 𝑟). (9)

This potential includes the electrostatic, 𝜑𝑣(𝑟), and
exchange-correlation, 𝑣xc[𝑛𝑣(𝑟)], potentials in the lo-
cal density approximation (LDA). The energy is reck-
oned from the vacuum level, i.e. from the energy of an
immovable electron located at a large distance from
the specimen (𝑟 ≫ 𝑅𝑁,𝑣), where the external charges
are absent.

The system of Kohn–Sham equations together with
the Poisson equation was solved numerically, by us-
ing the Numerov method. The increment step for the
variable 𝑟 was approximately equal to 0.002 times the
Bohr radius 𝑎0.

In Fig. 1, the profiles of the electron concentra-
tion and effective potential distributions calculated
for a continuous cluster and a cluster with a cen-
tered vacancy, each containing the same number of
atoms (𝑁 = 12), are depicted. The radii of vacancies
and clusters are indicated in the figure: 𝑍 = 1 and
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𝑟0 = 3.99 𝑎0 for Na, 𝑍 = 2 and 𝑟0 = 3.34 𝑎0 for Mg,
and 𝑍 = 3 and 𝑟0 = 2.99 𝑎0 for Al. The radii of con-
tinuous and defect clusters with the same 𝑁 are dif-
ferent in accordance with determination (1). The in-
sets in the figure demonstrate the profiles of electron
concentrations and potentials at large distances from
the clusters. Despite that the electron concentrations
quickly decrease, the potential tails extend far away
from the cluster (the calculation was carried out up
to 𝑟 ≈ 𝑅𝑁 + 900 𝑎0). For the charged clusters, the
electrostatic potential asymptotically falls down out-
side the cluster surface as 1/𝑟. For large clusters, the
spatial distribution of the electron concentration be-
comes similar to that near the surface of a semiinfinite
metal and contains a considerable number of Friedel
oscillations. The obtained profiles allow the total en-
ergy of the cluster to be calculated [see Eq. (3)].

3. Ionization Potential
and Electron Affinity

Atomic clusters possess a structural periodicity,
which is not a translational one, but looks like a
“spherical periodicity” associated with the spherical
layers of atoms (the coordination spheres). Analo-
gously, for the clusters with a vacancy, it is pos-
sible to introduce the minimum number of atoms,
𝑁 = 12, corresponding to the spherical geometry of
the problem.

Another peculiarity is only typical of metal clus-
ters. It is associated with the filling degree of elec-
tron shells, as the number of atoms increases. In par-
ticular, clusters with filled electron shells are char-
acterized by an enhanced stability in comparison to
clusters with other sizes and partially filled shells. As
𝑁 → ∞, the difference between the magic and non-
magic clusters disappears.

The ionization potential (IP) and the electron affin-
ity (EA) are defined as the differences of total energies

IP𝑁,𝑣 = 𝐸𝑁𝑒−1
𝑁,𝑣 − 𝐸𝑁𝑒

𝑁,𝑣,

EA𝑁,𝑣 = 𝐸𝑁𝑒

𝑁,𝑣 − 𝐸𝑁𝑒+1
𝑁,𝑣 ,

(10)

where 𝐸𝑁𝑒−1
𝑁,𝑣 and 𝐸𝑁𝑒+1

𝑁,𝑣 are the energies of a sphere
with the radius 𝑅𝑁,𝑣 and the excess charges 𝑄 = 𝑒

and −𝑒, respectively ; and 𝐸𝑁𝑒

𝑁,𝑣 is the energy of a
neutral sphere (𝑄 = 0). In Fig. 2, the calculated de-
pendences of IP and EA on 𝑁−1/3 are shown. They
allow the difference between the continuous and de-

fect clusters to be traced, and a comparison with ex-
perimental data to be made. As the parameter 𝑁 in-
creases above 12, this difference can reach 0.1–0.5 eV
for Na, and approximately twice as large for Al. The
letters s, p, d, f, g, h, i, j, k, and l correspond to the
orbital numbers 𝑙 = 0 to 9, respectively. The max-
imum difference between the continuous and defect
clusters is observed, when the transition from a com-
pletely filled shell to an empty one takes place. With
the increase of 𝑁 , this difference disappears.

For the clusters with a monovacancy, the vacancy
concentration 𝑐𝑣 = 1/𝑁 . From whence, we obtain the
relation 𝑁−1/3 = 𝑐

1/3
𝑣 , with 𝑐𝑣 → 0 as 𝑁 → ∞. In

the case where the vacancy is not single but multiple,
but the vacancy concentration is low (so that the va-
cancies do not interact with one another), our figures
can be used to qualitatively trace the dependences of
energy characteristics on the vacancy concentration.

Figure 2 also exhibits the asymptotics of IP and
EA,
IP𝑁 = −𝜇0 + 𝛼𝑒2/𝑅𝑁 ,

EA𝑁 = −𝜇0 − 𝛽𝑒2/𝑅𝑁 ,
(11)

which are written down in accordance with the ex-
pansion of the electron chemical potential in a series
in 𝑅−1

𝑁 :
𝜇(𝑅𝑁 ) = 𝜇0 + 𝜇1/𝑅𝑁 +𝑂(𝑅−2

𝑁 ),

where 𝜇0 = −𝑊0, and 𝑊0 is the work function of a
metal as 𝑅𝑁 → ∞. The coefficients 𝛼 = 1/2− 𝜇1/𝑒

2

and 𝛽 = 1/2 + 𝜇1/𝑒
2 contain the parameter 𝜇1 =

= 2𝜎0/�̄�, which is typical of every material; and 𝜎0
is the specific energy of a plane surface (𝑁 → ∞)
[20, 21].

The ionization potential and the electron affinity
demonstrate a strongly oscillating behavior, which is
associated with the spherical shell structure. They
asymptotically tend to 𝑊0 rather slowly, which is
a result of the orbital degeneration and large angu-
lar quantum numbers 𝑙. Experimental oscillations are
considerably weaker. If the calculations are carried
out in the local spin density approximation (LSDA),
the amplitude of oscillations is smaller.

Using Koopmans’ theorem, formulas (10) can be
rewritten in the form

IP𝑁,𝑣 = −𝜀HO
𝑁,𝑣 +

𝑒2

2𝐶+
𝑁,𝑣

,

EA𝑁,𝑣 = −𝜀LU𝑁,𝑣 −
𝑒2

2𝐶−
𝑁,𝑣

,

(12)
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Fig. 2. Ionization potential and electron affinity calculated by formulas (10) for contin-
uous clusters (∙) and clusters with a monovacancy (∘). Symbols + and × correspond to
experimental data. Asymptotics (12) are shown by dash-dotted curves

where 𝜀HO
𝑁,𝑣 and 𝜀LU𝑁,𝑣 are the energies of the highest oc-

cupied and lowest unoccupied, respectively, electron
orbitals of the cluster, and 𝐶±

𝑁,𝑣 the corresponding
electric capacities.

Figure 3 illustrates effects associated with the
filling of electron shells in continuous Na, Mg,
and Al clusters, as the number of atoms in them

grows. Dashes in the figure mark the filled electron
levels, and points correspond to the empty (virtual)
ones.

For partially filled shells, 𝜀HO
𝑁,𝑣 = 𝜀LU𝑁,𝑣 ≈ 𝜇(𝑅𝑁,𝑣).

The maximum values of 𝜀HO
𝑁,𝑣 correspond to com-

pletely occupied shells, whereas the magic atomic
numbers 𝑁* for continuous spherical clusters and
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spherical clusters with a vacancy do not coincide in
all cases. For Na, the obtained values for 𝑁* are 2, 8,
18, 20, 34, 40, 58, 68, 90, 92, 106, 132, 138, 168, 186,
196, 198, (230), 232, (252), and 254. For Mg, 𝑁* = 4,
9, 10, 17, 20, 29, 34, 45, 46, 53, 66, 69, 78, 93, 98, (99),
115, (116), 126, 127, 134, 153, 156, 169, 178, 199, 204,
and 219. For Al, 𝑁* = 6, (30), 44, 46, 52, 62, {66}
(84), (102), {104}, {136}, 146, {154}, (180), (202),
and 204. The numbers in parentheses mean those 𝑁*

values for defect clusters that do not coincide with
the corresponding values for continuous clusters, and
the numbers in braces mean the inverse case.

With the growth of 𝑅𝑁,𝑣, the quantities −𝜀HO
𝑁,𝑣

and −𝜀LU𝑁,𝑣 oscillate, by approaching −𝜇(𝑅𝑁,𝑣) as
𝑅→ ∞. Their oscillation amplitudes decrease as ap-
proximately 1/𝑅3

𝑁,𝑣.
Let us come back to Fig. 2 and introduce the no-

tation Δ(IP𝑁 ) = IP𝑁,𝑣 − IP𝑁 . At first glance, the
positive sign of Δ(IP𝑁 ) (the circles in the figure are
located above the points for the same 𝑁) seems un-
expected. Exceptions include clusters with such 𝑁
values, at which the maximum contribution is pro-
vided by levels with small 𝑙 (𝑠-, 𝑝-, and, partially, 𝑑-
orbitals). In Fig. 2, those narrow intervals are located
between vertical dash-dotted lines.

The main vacancy dependence of the asymptotic
behavior of IP𝑁,𝑣 and IP𝑁 is contained in the work
function 𝑊0(𝑐𝑣) < 𝑊0(𝑐𝑣 = 0) [24]. Therefore, it was
supposed that Δ(IP𝑁 ) < 0 every time.

In the case of small clusters with a monovacancy,
the perturbation from vacancies with the concentra-
tion 𝑐𝑣 ∼ 1/𝑅3

𝑁 becomes considerable. As follows
from the behavior of 𝑣eff,𝑣(𝑟) in Fig. 1, electrons are
“squeezed out” by the vacancy from the cluster cen-
ter toward the surface, and they are mainly accumu-
lated in a spherical layer with 𝑟0 < 𝑟 < 𝑅𝑁 . When
integrating in Eq. (3) in the spherical coordinates,
this is a region that gives the main contribution
to the energy. This fact is confirmed by the spec-
tral values of energies that correspond to points (cir-
cles) in Fig. 2. As an example, the values of 𝜀𝑛𝑟,𝑙,
where 𝑛𝑟 and 𝑙 are the radial and orbital quantum
numbers, respectively, are quoted below. For Na12:
𝜀𝑛𝑟=0, 𝑙=0 = −4.925, (−4.577) eV; 𝜀0,1 = −3.871,
(−3.831) eV; and 𝜀HO,LU

0,2 = −2.595, (−2.708) eV. For
Na18: 𝜀0,0 = −5.073, (−4.755) eV; 𝜀0,1 = −4.177,
(−4.135) eV; 𝜀HO

0,2 = −3.119, (−3.189) eV; and 𝜀LU1,0 =
= −2.787, (−2.048) eV.

Fig. 3. Spectra of continuous clusters. The highest occupied,
𝜀HO
𝑁 (∙) , and the lowest unoccupied, 𝜀LU

𝑁 (∘), energy levels are
marked

With the growth of 𝑁 , the contribution of the clus-
ter bulk becomes more substantial, so that points and
circles in the asymptotics in Fig. 2 switch their posi-
tions. In other words, the difference Δ(IP𝑁→∞) be-
comes negative.

The self-consistent values of IP, EA, 𝜀HO, and 𝜀LU
calculated by formulas (10) make it possible to use
expressions (10) in order to calculate the capacitances

𝐶+
𝑁,𝑣 =

𝑒2

2(IP𝑁,𝑣 + 𝜀HO
𝑁,𝑣)

,
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Fig. 4. Normalized capacitances of continuous clusters (the dotted, solid, and dashed curves
correspond to positively charged, neutral, and negatively charged clusters, respectively) and
clusters with a monovacancy (symbols M, ∘, and � correspond to positively charged, neutral,
and negatively charged clusters, respectively) calculated by formulas (13)

𝐶−
𝑁,𝑣 =

−𝑒2

2(EA𝑁,𝑣 + 𝜀LU𝑁,𝑣)
,

𝐶eff
𝑁,𝑣 =

𝑒2

IP𝑁,𝑣 + 𝜀HO
𝑁,𝑣 − EA𝑁,𝑣 − 𝜀LU𝑁,𝑣

. (13)

Analogous formulas for 𝐶𝑁 correspond to defect-
free clusters.

In classical electrostatics, the capacitances of
conducting spheres are determined by their radii
𝑅𝑁,𝑣. The surface roughness on the atomic scale
(atoms have a finite volume) does not allow the

boundary to be established accurately [25]. In the jel-
lium model, the boundary of the ionic frame is always
located at the coordinate 𝑟 = 𝑅𝑁,𝑣. However, if the
frame radius 𝑅𝑁,𝑣 decreases, the electron cloud goes
more and more beyond the frame limits. Moreover,
such a “spilling out”depends on the sign of the cluster
excess charge (Fig. 1). In this connection, the quan-
tities 𝐶eff

𝑁,𝑣, 𝐶
+
𝑁,𝑣, and 𝐶−

𝑁,𝑣 are equal to one another
only in the 𝑁 → ∞ limit.

Figure 4 demonstrates the results of calculations
obtained for the capacitances 𝐶𝑁 and 𝐶𝑁,𝑣 of the
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Na, Mg, and Al clusters normalized to the radius 𝑅𝑁

or 𝑅𝑁,𝑣, respectively (in atomic units). The largest
difference is observed in the intervals of 𝑁 , where
the 𝑠- and 𝑝-electron shells become filled. The sign-
alternating difference

𝐶𝑁,𝑣/𝑅𝑁,𝑣 − 𝐶𝑁/𝑅𝑁

is mainly determined by the ratio between the quan-
tities 𝜀HO and 𝜀LU for various 𝑙 in the continuous and
defect clusters, and this ratio can be changed depend-
ing on the principal quantum number. The capaci-
tance of defect clusters, when their shells with small
𝑙 are filled, is larger than that of continuous ones. For
large 𝑙, the situation is inverse.

For a Na atom (𝑁 = 1), using the corresponding
experimental data (IP1 = 5.14 eV, EA1 = 0.55 eV,
and 𝑅1 = 𝑟0), as well as the condition 𝜀HO

1 = 𝜀LU1 for
the unfilled shells, we obtain the test value 𝐶eff

1 /𝑟0 =
= 1.8. This value agrees well with the values calcu-
lated for the smallest clusters. In the case of unclosed
electron shells, the cluster can posess a lower symme-
try, e.g., the spheroidal one.

The charging effect consists in that the electric ca-
pacitance of cluster anions and cations depends on
the sign of excess charge. The normalization of the
capacitances makes it possible to give a simple inter-
pretation to the calculation results, Namely, the neg-
ative excess charge gives rise to an effective growth of
the electron cloud (its radius) in the cluster, whereas
the smaller number of electrons (the positive excess
charge) to a reduction of both the radius and the ca-
pacitance. This conclusion is qualitatively confirmed
by the behavior of electron profiles shown in Fig. 1.

In work [26], besides the measurement of heat ca-
pacities for anions and cations in Al35−70 clusters,
the ionization potential and the electron affinity were
calculated. The calculations were performed, by us-
ing the density functional method and by accounting
for the global minimum condition for the total energy
in various atomic configurations. The corresponding
results (see Fig. 9 in work [26]) were approximated
by us in the form

IP𝑁 = (4.17 + 3.97𝑁−1/3) eV,

EA𝑁 = (3.88− 3.05𝑁−1/3) eV.

Unfortunately, although the calculations were com-
plicated, the presented expressions did not repro-
duce the work function and the value of 𝜇1 in the

coefficients 𝛼 and 𝛽 in formula (11). We obtained
𝜇1 ≈ +0.067 a.u. from IP𝑁 and 𝜇1 ≈ −0.165 a.u from
EA𝑁 . It will be recalled that 𝜇1 ≈ +0.1 a. u. for Na
[27, 28].

4. Dissociation, Cohesive,
and Vacancy Formation Energies

The energy of dissociation of a neutral metal (Me)
cluster in accordance with the reaction Me𝑁 →
Me𝑁−1+Meat is determined as the difference of total
energies

𝜀dis𝑁 = [𝐸𝑁−1+𝐸at]−𝐸𝑁 = 𝑁𝜀coh𝑁 −(𝑁−1)𝜀coh𝑁−1. (14)

In the stabilized jellium model, the energy of the
atom, 𝐸at, is the total energy of a metal sphere with
the radius 𝑟0.

The dissociation energy of metal ions in the clusters
and the ionization potential of clusters were measured
repeatedly and commented in detail [15, 22, 23, 29,
30]. Those data are traditionally used to calculate the
cohesive energy of neutral clusters.

By definition, the cohesive energy 𝜀coh𝑁 is the bind-
ing energy of atoms in a cluster per one atom. The
cohesive energy 𝜀coh𝑁 is determined as the difference
between the cumulative energy of 𝑁 free atoms and
the energy of the cluster consisting of 𝑁 atoms:

𝜀coh𝑁 = (𝑁𝐸at − 𝐸𝑁 )/𝑁 = 𝐸at − 𝐸𝑁/𝑁. (15)

If 𝑁 → ∞, then 𝜀coh𝑁 → 𝜀coh∞ ≡ 𝜀coh(𝑟0). The values
𝜀coh(𝑟0) = 3.97 and 1.16 eV calculated by us for Al
and Na, respectively, agree well with the experimental
values 𝜀coh∞ = 3.39 and 1.11 eV, respectively (see work
[31] and the references therein).

The coupling equation looks like

𝜀coh𝑁 =
1

𝑁

𝑁∑︁
𝑛=2

𝜀dis𝑛 . (16)

The asymptotics of the cluster-size dependence of
the cohesive energy (15) is a well-known result [1]

𝜀coh𝑁 = 𝜀coh(𝑟0)−
2𝜎0

𝑛at𝑅𝑁
, (17)

where the last term can be rewritten in the form
−𝑍𝜇1/𝑅𝑁 .

Note that it was marked as long ago as in works
by Frenkel and Langmuir that the following universal
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relation is valid for some substances at low tempera-
tures:

4𝜋𝑟20 𝜎/𝑞 ≈ 2/3.

This relation includes the following observable quan-
tities: the average distance 𝑟0 between the atoms,
the specific surface energy 𝜎, and the evaporation
heat 𝑞 (see the table in work [25]). Using this rela-
tion, asymptotics (17) can be rewrittren in the form
that is convenient for making estimations:

𝜀coh𝑁 ≈ 𝜀coh(𝑟0)[1− (4/9)𝑁−1/3].

Then, using formulas (17) and (14), it is easy to reveal
the convergence of the asymptotics for 𝜀coh𝑁 and 𝜀dis𝑁 .

It is of interest to determine the influence of the
charging on the cohesive energy of clusters. Using
definition (15), the notations 𝐸+

𝑁 ≡ 𝐸𝑁𝑒−1
𝑁 , 𝐸−

𝑁 ≡
≡ 𝐸𝑁𝑒+1

𝑁 , and 𝜀coh,±𝑁 = 𝐸at − 𝐸±
𝑁/𝑁 , and formula

(10), the difference between the cohesive energies for
the charged and neutral clusters can be determined
as

Δ𝜀coh,+𝑁 ≡ 𝜀coh,+𝑁 − 𝜀coh𝑁 = − 1

𝑁
IP𝑁 ,

Δ𝜀coh,−𝑁 =
1

𝑁
EA𝑁 .

(18)

In Figs. 5 and 6, the dependences of the dissoci-
ation and cohesive, respectively, energies on the pa-
rameter 𝑁 are compared between the continuous and
defect (neutral and charged) clusters. It should be
noted that the positive or negative excess charge re-
sults in a reduction or growth, respectively, of the
dissociation and cohesive energies.

The size dependence of the dissociation energy ex-
hibited in Fig. 5 includes quantum oscillations around
the asymptotics. The values of 𝜀dis𝑁,𝑣 for a defect clus-
ter are larger at large 𝑙 and smaller at small 𝑙 than
those for a continuous cluster. For the continuous and
defect clusters with the same number of atoms 𝑁 , be-
sides a change in the filling order of electron levels,
a substantial difference between the behavior of the
dissociation energy should be emphasized: for small
𝑙, the dissociation energy of continuous clusters de-
creases and that of defect ones increases with the
growth of 𝑁 . A comparison of the data depicted in
Figs. 5 and 6 confirms the accuracy of formula (16)
and explains a distinction in the arrangement of lo-
cal maxima in those figures. The calculated depen-
dences of 𝜀coh𝑁,𝑣 are closer to the experimental values

obtained at 𝑇 = 150 K [30] than the dependences of
𝜀coh𝑁 . Furthermore, the values of 𝜀dis𝑁 determined from
the measurements of the melting temperature and the
latent heat of the transition can be negative near the
phase transition point [10].

Hence, a conclusion can be drawn that the most
stable defect-free clusters are those, in which the lev-
els with small 𝑙 are the last filled ones. In the case
of defect clusters, the situation is inverse. In exper-
iments, the size-induced oscillations of 𝜀dis𝑁 are most
probaly suppressed by temperature effects (see Fig. 9
in work [29]).

As is shown in Fig. 6, the cohesive energy of an-
ions and cations in charged clusters differs from that
in neutral clusters. The presence of a positive excess
charge results in a reduction of the cohesive energy
owing to an increase of electrostatic repulsion forces,
whereas the negative excess charge gives rise to the
opposite effect. The behavior of the cohesive energy
of ionized clusters is completely described by for-
mula (18).

It is reasonable to suppose that the cluster melting
temperature “traces” changes in the cohesive energy
(more exactly, the dissociation energy), i.e. the clus-
ter melting temperature can be controlled by means
of the charging. A comparison of Fig. 5 with the ex-
perimental size dependences of the melting heats for
anions and cations in Al35−70 clusters (see Fig. 4 in
work [26]) testified to their correlation.

A considerable number of works were devoted to ab
initio calculations of the vacancy formation energy in
metals [32]. In the stabilized jellium and liquid drop
models, the cohesive energy of an atom and the va-
cancy formation energy are presented in the form of
Padé expansions [31] (see also work [25]). In the no-
tations of work [25], the results of work [31] can be
presented as follows:

𝜀coh(𝑟0) = 4𝜋𝑟20𝜎0
(︀
1 + 𝛿1/𝑟0 + 𝛿2/𝑟

2
0

)︀
, (19)

𝜀vac(𝑟0) = 4𝜋𝑟20𝜎0
(︀
1− 𝛿1/𝑟0 + 𝛿2/𝑟

2
0

)︀
. (20)

The values 𝜀vac∞ ≡ 𝜀vac(𝑟0) = 0.33, 0.73, and 1.00 eV
calculated in work [33] for Na, Mg, and Al, respec-
tively, using the phases of electron wave scattering
at a vacancy potential value agree with the corre-
sponding experimental values of 0.335, 0 84, and
0.73 eV [31].

Using the quantities 𝜀coh(𝑟0) and 𝜀vac(𝑟0), as well
as the values 𝛿2/𝑟

2
0 = −0.13 (Na), −0.015 (Mg),
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Fig. 5. Dissociation energies 𝜀dis for neutral continuous (∙) and defect (∘) clusters, and their
asymptotics (17). Experimental values are shown by symbols ×

and +0.22 (Al) taken from work [31], we obtained
𝛿1/𝑟0 = 0.32 for Na, 0.54 for Mg, and 0.57 for
Al. The quantities 𝛿1 and 𝛿2 are required to con-
struct the asymptotics for the vacancy formation
energy.

No self-consistent calculations of 𝜀vac𝑁,𝑣 have been
performed for clusters because of the necessity to
work out the process of vacancy formation in de-
tail. Therefore, it is important to compare the expe-
dience of the vacancy formation driven by two mech-
anisms. According to the Schottky mechanism, an
atom is evaporated from a continuous sphere. In the
final state, there is a vacancy with the radius 𝑟0 at

the sphere center. In this case,

𝜀vac,Sh𝑁,𝑣 = [𝐸𝑁−1, 𝑣 + 𝐸at]− 𝐸𝑁 =

= 𝑁𝜀coh𝑁 − (𝑁 − 1)𝜀coh𝑁−1, 𝑣, (21)

where 𝐸𝑁−1, 𝑣 is the energy of a sphere with a cen-
tered vacancy (the layer located between 𝑟 = 𝑟0 and
𝑟 = 𝑅𝑁−1, 𝑣 contains 𝑁 − 1 atoms). The essence of
the second mechanism [25], at which the number of
atoms in the sphere does not change, consists in the
“blowing” of a bubble-vacancy with the radius 𝑟0 at
the sphere center. In this case,

𝜀vac,blow𝑁,𝑣 = 𝐸𝑁,𝑣 − 𝐸𝑁 = 𝑁
(︀
𝜀coh𝑁 − 𝜀coh𝑁, 𝑣

)︀
. (22)
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Fig. 6. Cohesive energy 𝜀coh of continuous clusters (the dotted, solid, and dashed curves cor-
respond to positively charged, neutral, and negatively charged clusters, respectively) and clusters
with a monovacancy (symbols M, ∘, and � correspond to positively charged, neutral, and negatively
charged clusters, respectively). Asymptotics (17) is shown by a dash-dotted curve. Experimental
values are shown by symbols ×. The corresponding results obtained for defect-free clusters in the
whole interval of calculated 𝑁 are shown in the insets

A comparison between formulas (21) and (22) demon-
strates the expedience of the second mechanism owing
to the relation

𝜀vac,Sh𝑁,𝑣 = 𝜀vac,blow𝑁,𝑣 + 𝜀dis𝑁,𝑣. (23)

Let us analyze the asymptotics of the vacancy for-
mation energy. Its size dependence is determined by
the difference between the total energies of spheres
calculated by formulas (21) and (22) as 𝑁 → ∞
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Fig. 7. Energies of the monovacancy formation 𝜀vac,Sh𝑁,𝑣 (21) and 𝜀vac,blow𝑁,𝑣 (22) in Na. Symbols
M, ∘, and � correspond to positively charged, neutral, and negatively charged clusters, respectively.
Asymptotics (24) and (23) are shown by dash-dotted curves. The horizontal dotted line corresponds
to 𝜀vac∞ ≡ 𝜀vac(𝑟0) = 0.33 eV

and is reduced to the difference between the total
surface energies. In the case of the vacancy “blow-
ing” mechanism, using relation (10) and the formula
𝑅𝑁,𝑣 = 𝑅𝑁

(︀
1 + 1

3𝜁
3
)︀
, where 𝜁 ≡ 𝑟0/𝑅𝑁 ≪ 1, and

holding the required expansion order, we obtain

𝜀vac,blow𝑁,𝑣 = 4𝜋𝑅2
𝑁,𝑣𝜎0

(︀
1 + 𝛿1/𝑅𝑁,𝑣 + 𝛿2/𝑅

2
𝑁,𝑣

)︀
+

+ 𝜀vac(𝑟0)− 4𝜋𝑅2
𝑁𝜎0

(︀
1 + 𝛿1/𝑅𝑁 + 𝛿2/𝑅

2
𝑁

)︀
=

= 𝜀vac(𝑟0)

(︂
1 +

2

3𝑁1/3(1− 𝛿1/𝑟0 + 𝛿2/𝑟20)

)︂
. (24)

For the Schottky mechanism, in accordance with
expression (23) and the formula 𝑅𝑁−1,𝑣 = 𝑅𝑁 , the

asymptotics is determined by the sum of expres-
sions (24) and (17). The asymptotic dependence of
𝜀vac,Sh𝑁,𝑣 weakly depends on 𝑁 , whereas dependence
(24) demonstrates a reduction of the vacancy for-
mation energy with the growth of 𝑁 . This behavior
agrees with the conclusions of work [34], but contra-
dicts the results of works [12–14].

Figures 7 to 9 exhibit the calculation results ob-
tained for the energy of the vacancy formation driven
by two mechanisms. The exhibited results confirm the
validity of formula (23), namely, the expedience of
the vacancy blowing. All dependences strongly oscil-
late. For some 𝑁 grouped into narrow intervals, espe-

ISSN 2071-0194. Ukr. J. Phys. 2017. Vol. 62, No. 9 801



V.V. Pogosov, V.I. Reva

Fig. 8. The same as in Fig. 7, but for Mg. The horizontal dotted line corresponds to 𝜀vac∞ = 0.72 eV

cially in the case of Al, the values of 𝜀vac,blow𝑁,𝑣 become
negative.

The difference between the vacancy formation ener-
gies in the charged and neutral clusters following both
mechanisms (𝐸±

𝑁 → 𝐸±
𝑁−1, 𝑣 + 𝐸at and 𝐸±

𝑁 → 𝐸±
𝑁, 𝑣,

respectively) can be presented in the form of relations

𝜀vac,Sh,+𝑁,𝑣 = 𝜀vac,Sh𝑁,𝑣 + IP𝑁−1,𝑣 − IP𝑁 ,

𝜀vac,blow,+
𝑁,𝑣 = 𝜀vac,blow𝑁,𝑣 + IP𝑁,𝑣 − IP𝑁 ,

𝜀vac,Sh,−𝑁,𝑣 = 𝜀vac,Sh𝑁,𝑣 − EA𝑁−1,𝑣 + EA𝑁 ,

𝜀vac,blow,−
𝑁,𝑣 = 𝜀vac,blow𝑁,𝑣 − EA𝑁,𝑣 + EA𝑁 .

(25)

The character of the cluster-size dependence of the
vacancy formation energy on the excess charge in the
cluster [Eqs. (25)] is completely confirmed by the re-
sults of direct calculations (Figs. 7 to 9). This char-
acter is determined by the behavior of IP and EA
shown in Fig. 2.

The presented results of calculations carried out in
the framework of LDA correspond to the zero temper-
ature. It is probable that strong oscillations of energy
characteristics will be partially suppressed at atomic
concentrations corresponding to finite temperatures,
for the lowered symmetry of the cluster shape, and
if applying the LSDA for the exchange-correlation
energy.
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Fig. 9. The same as in Fig. 7, but for Al. The horizontal dotted line corresponds to 𝜀vac∞ = 1.0 eV

In quasithermodynamics, the expedience for a va-
cancy to appear in a cluster at a finite temperature
𝑇 can be estimated from the variation condition for
the free energy,

Δ𝐹 vac,blow
𝑁,𝑣 = 𝜀vac,blow𝑁,𝑣 − 𝑇Δ𝑆vac,blow

𝑁,𝑣 ≤ 0. (26)

Since the number of ions in a cluster does not change
at the vacancy “blowing”, the entropic contribution
is only formed by the degenerate electron gas. The
corresponding expression looks like

𝑇Δ𝑆vac,blow
𝑁,𝑣 =

2𝜋5/3

32/3

(︂
𝑘B𝑇

𝑒2

)︂2
×

×
∞∫︁
0

𝑑𝑟 𝑟2
[︁
𝑛
1/3
𝑁,𝑣(𝑟)− 𝑛

1/3
𝑁 (𝑟)

]︁
. (27)

If formula (27) is applied to calculations, the equi-
librium profiles of the electron distribution obtained
in the stick-slip jellium model at the given 𝑁 and 𝑇
are used. The profiles corresponding to the case 𝑇 = 0
and 𝑁 = 12 are depicted in Fig. 1.

5. Conclusions

Self-consistent calculations of the radial distribution
profiles of the electron concentration and the electro-
static potential in continuous (defect-free) metal clus-
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ters and clusters with a vacancy have been performed
in the framework of the stabilized jellium model, by
using the Kohn–Sham method. As a result, the total
energies of a neutral and a charged defect cluster were
determined for the first time. The results obtained are
used to directly calculate the dissociation, cohesive,
and vacancy formation energies, the electron affin-
ity, the ionization potential, and the capacitance. The
results of calculations for Na, Mg, and Al are com-
pared with the asymptotics and the results obtained
for defect-free clusters. The computer code for calcu-
lations was created by the authors themselves.

The ionization potential for a small cluster with
a vacancy is larger than that for a continuous clus-
ter (approximately by 0.5 eV for Al and by 0.1 eV
for Na). The difference is maximum at the transition
from the completely filled shell to an empty one. As
the number of atoms in the cluster, 𝑁 , increases, this
difference vanishes. The magic atomic numbers for
continuous clusters and clusters with a vacancy are
different, especially in the case of Al clusters.

The normalized electric capacitances of clusters al-
ways exceed unity and contain size-induced quantum
fluctuations. For defect clusters with partially filled
electron shells, the capacitance is considerably larger
than that for continuous ones.

The size dependence of the cohesive energy con-
tains local maxima. The corresponding clusters are
more stable; i.e. they have larger values of binding,
dissociation, and vacancy formation energies than
their neighbors. For small clusters, those maxima
mark the termination of the filling of the next electron
shell with the growth of the parameter 𝑁 . The posi-
tions of the maxima for defect and defect-free clusters
are different, which is not only a result of the distinc-
tion between their dimensions, but is also associated
with the behavior of electron wave functions.

The cohesive energies of anions and cations in
charged clusters differ from those in neutral clus-
ters. The positive excess charge gives rise to the en-
ergy reduction owing to the growth of electrostatic
repulsion forces, whereas the negative excess charge
results in the opposite effect.

Quantum-size dependences of the energy of the va-
cancy formation driven by the Schottky and “bubble
blowing” mechanisms, as well as their asymptotic be-
havior, are determined for the first time. It is shown
that the cluster-size asymptotics for those two mech-
anisms differ from each other, but weakly depend on

the number of atoms in the cluster. The character of
the size dependence of the vacancy formation energy
on the excess charge in a cluster is governed by the
behavior of the cluster ionization potential and the
electron affinity energy.

In the sections between the maxima, the dissoci-
ation energy either increases with the growth of 𝑁
or has a local minimum. At the same time, the va-
cancy formation energy monotonically decreases in
those sections.

In this model, the relaxation of the cluster vol-
ume was not taken into consideration. The influence
of the self-compressing on the ionization potential
in large clusters was analytically described in works
[20, 21]. For small clusters, this issue was numerically
studied in work [16]. The relaxation of the ionic dis-
tribution in a cluster gives rise to a reduction in the
total energy of a specimen. More consistent, but more
complicated, are ab initio methods, in which the co-
ordinates of ions are selected to minimize the total
energy of the cluster. This procedure was realized in
work [26], but only for Al30−70 clusters, i.e. clusters
with a small number of atoms.

The authors express their gratitude to A.V. Koro-
tun for his help in the preparation of the manuscript
for the publication.

1. J. Frenkel. Kinetic Theory of Liquids (Dover, 1955).
2. A. Safaei. Cohesive energy and physical properties of

nanocrystals. Phil. Mag. 91, 1509 (2011).
3. W. Luo, K. Su, K. Li, G. Liao, N. Hu, M. Jia. Substrate

effect on the melting temperature of gold nanoparticles.
J. Chem. Phys. 136, 234704 (2012).

4. J. Chandra, K. Kholiya. Diameter-dependent thermody-
namic and elastic properties of metallic nanoparticles.
Mod. Phys. Lett. B 29, 1550025 (2015).

5. L.A. Bulavin, O.Yu. Aktan, Yu.F. Zabashta. The role of
vacancies of a highly deformed crystal in the melting pro-
cess. Fiz. Tverd. Tela 52, 662 (2010) (in Russian).

6. M.N. Magomedov. On the size dependence of the melting
parameters of silicon. Zh. Tekhn. Fiz. 86, 92 (2016) (in
Russian).

7. W. Qi. Nanoscopic thermodynamics. Acc. Chem. Res. 49,
1587 (2016).

8. G.A. Breaux, C.M. Neal, B. Cao, M.F. Jarrold. Melting,
premelting, and structural transitions in size-selected alu-
minum clusters with around 55 atoms. Phys. Rev. Lett. 94,
173401 (2005).

9. C. Hock, C. Bartels, S. Straßburg, M. Schmidt, H. Haber-
land, B. von Issendorff, A. Aguado. Premelting and post-
melting in clusters. Phys. Rev. Lett. 102, 043401 (2009).

804 ISSN 2071-0194. Ukr. J. Phys. 2017. Vol. 62, No. 9



Size Dependences of the Energy Parameters

10. A.K. Starace, B. Cao, O.H. Judd, I. Bhattacharyya,
M.F. Jarrold. Melting of size-selected aluminum nanoclus-
ters with 84–128 atoms. J. Chem. Phys. 132, 034302
(2010).

11. S. Zamith, P. Labastie, F. Chirot, J.-M. L’Hermite. Two-
step melting of Na+41. J. Chem. Phys. 133, 154501 (2010).

12. C.C. Yang, S. Li. Investigation of cohesive energy ef-
fects on size-dependent physical and chemical properties
of nanocrystals. Phys. Rev. B 75, 165413 (2007).

13. S.C. Hendy. A thermodynamic model for the melting of
supported metal nanoparticles. Nanotechn. 18, 175703
(2007).

14. G. Guisbiers. Size-dependent materials properties toward
a universal equation. Nanoscale Res. Lett. 5, 1132 (2010).

15. W.A. de Heer. The physics of simple metal clusters: Ex-
perimental aspects and simple models. Rev. Mod. Phys.
65, 611 (1993).

16. A. Vieira, M.B. Torres, C. Fiolhais, L.C. Balbás. Compari-
son of the spherically averaged pseudopotential model with
the stabilized jellium model. J. Phys. B 30, 3583 (1997).
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РОЗМIРНI ЗАЛЕЖНОСТI ЕНЕРГЕТИЧНИХ
ХАРАКТЕРИСТИК ЗАРЯДЖЕНИХ МЕТАЛЕВИХ
КЛАСТЕРIВ, ЩО МIСТЯТЬ МОНОВАКАНСIЮ

Р е з ю м е

Методом Кона–Шема у моделi стабiльного желе виконано
самоузгодженi розрахунки профiлiв радiальних розподiлiв
електронiв та потенцiалiв суцiльних кластерiв i кластерiв
iз центрованою моновакансiєю. Це дозволило вперше одер-
жати повну енергiю нейтральних та заряджених дефектних
кластерiв, на основi чого проведено прямi розрахунки енер-
гiй дисоцiацiї, когезiї, утворення вакансiї, спорiдненостi до
електрону, потенцiалу iонiзацiї, а також електричної ємно-
стi. Результати чисельних розрахункiв для кластерiв Na,
Mg i Al порiвнюються з асимптотиками i результатами для
бездефектних кластерiв. Розраховано квантово-розмiрнi за-
лежностi енергiї утворення вакансiї за механiзмами Шотткi
i “видування пухирця” i визначено їх асимптотичну поведiн-
ку. Виявлено сильнi розмiрнi флуктуацiї енергiї утворення
вакансiї в усiй областi розмiрiв кластерiв. Показано, що роз-
мiрнi асимптотики цих двох механiзмiв вiдрiзняються одна
вiд одної i слабко залежать вiд числа атомiв у кластерi. Об-
числення проводилися на кластерi СКIТ-3 Iнституту кiбер-
нетики iм. В.М. Глушкова НАН України (𝑅peak = 7,4𝑇flops).
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