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USING A CELL FLUID MODEL
FOR THE DESCRIPTION OF A PHASE TRANSITION
IN SIMPLE LIQUID ALKALI METALSPACS 51.30.+i, 64.60.fd

This article embraces a theoretical description of the first-order phase transition in liquid met-
als with the application of a cell fluid model. The results are obtained through the calculation
of the grand partition function without a usage of phenomenological parameters. The Morse
potential is used for the calculation of the equation of state and the coexistence curve. Specific
results for sodium and potassium are obtained. Comparison of the outcome of analytic expres-
sions with data of computer simulations is presented.
K e yw o r d s: cell fluid model, coexistence curve, collective variables, equation of state, first-
order phase transition.

1. Introduction

This article is based on the method we proposed in [8].
It enables one to obtain the equation of state of the
cell model in a wide range of temperatures below and
above the critical point. Particular analytic results
were conducted with the use of the Morse potential

𝑈(𝑟) = 𝜖𝑒−2(𝑟−𝑅0)/𝛼 − 2𝜖𝑒−(𝑟−𝑅0)/𝛼. (1.1)

The consequence of the approach [8, 10] is a restric-
tion of the ratio between the coordinate of minimum
𝑅0 and the effective reach 𝛼 of the interaction po-
tential 𝑅0/𝛼 < 4 ln 2. However, according to numer-
ical results [4, 12], this ratio exceeds 𝑅0/𝛼 = 4 ln 2
for real substances, in particular, for fluid metals. In
the present article, the method proposed in [8] and
slightly changed in [10] is modified by means of in-
troducing a temperature-free effective interaction po-
tential. This makes it applicable in the range 𝑅0/𝛼 >
4 ln 2 for a description of real metals in the region of
a first-order phase transition.

This paper is laid as follows: in Section 2, the
temperature-free effective interaction potential is in-
troduced, and the main steps of calculations toward
obtaining an exact representation of the grand parti-
tion function of the cell fluid model are shown. This
expression is restricted to 𝜌4-model and calculated in
the mean-field approximation in Section 3. Section 4
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is devoted to an equation of state of the cell fluid
applicable in a wide temperature region except for a
vicinity of the critical point. In Section 4, the analytic
result obtained in this work is compared with simu-
lation data [15] for parameters of the Morse potential
describing alkali metals 𝑁𝑎 and 𝐾. The discussion
and conclusions are presented in Section 5.

2. Representation of the Grand
Partition Function

The objective of our investigation is the description
of the behavior of a simple fluid in a wide tempera-
ture region. For this purpose within the grand canon-
ical ensemble, we will calculate the grand partition
function (GPF) of the cell fluid model as an approxi-
mation of the real continuous system and obtain the
result in the form of a function of the temperature
and the density.

The idea of the cell fluid [1, 2] consists in a fixed
partition of system’s volume 𝑉 , where 𝑁 particles re-
side, on 𝑁𝑣 mutually disjoint elementary cubes, each
of volume 𝑣 = 𝑉/𝑁𝑣. In a formalism of the cell model,
the GPF of a system of volume 𝑉 with 𝑁 particles
takes the form

Ξ =

∞∑︁
𝑁=0

(𝑧)𝑁

𝑁 !

∫︁
𝑉

(𝑑𝑥)𝑁exp

⎡⎣−𝛽

2

∑︁
j1,j2∈Λ

�̃�𝑗12𝜌j1(𝜂)𝜌j2(𝜂)

⎤⎦.
(2.1)

ISSN 2071-0194. Ukr. J. Phys. 2017. Vol. 62, No. 10 865



M.P. Kozlovskii, O.A. Dobush, I.V. Pylyuk

Here, 𝑧 = 𝑒𝛽𝜇 is the activity, 𝛽 is the inverse tem-
perature, and 𝜇 is the chemical potential. In this ex-
pression,

∫︀
𝑉
(𝑑𝑥)𝑁 =

∫︀
𝑉
𝑑𝑥1...

∫︀
𝑉
𝑑𝑥𝑁 denotes the in-

tegration over the coordinates 𝑥𝑖 = (𝑥
(1)
𝑖 , 𝑥

(2)
𝑖 , 𝑥

(3)
𝑖 )

of all particles in the system, 𝜂 = {𝑥1, ..., 𝑥𝑁} is the
set of coordinates, and 𝑗12 = |j1− j2| is the difference
between two cell vectors. The vectors j1 and j2 take
on values from the set ϒ defined as

ϒ =
{︁
j = (𝑗1, 𝑗2, 𝑗3)|𝑗𝑖 = 𝑐𝑚𝑖;𝑚𝑖 = 1, 2, ...𝑁𝑎;

𝑖 = 1, 2, 3; 𝑁𝑣 = 𝑁3
𝑎

}︁
.

Here, 𝑐 is the linear size of each cell, 𝑁𝑎 is the num-
ber of cells along each axis. Values 𝜌j(𝜂) are the oc-
cupation numbers of cells [6, 10, 14]. The interaction
potential has the form

�̃�𝑙12 = −𝑈𝑙12 +Ψ𝑙12 , (2.2)

Ψ𝑙12 = 𝐷𝑒−2(𝑙12−1)/𝛼𝑅 , 𝑈𝑙12 = 2𝐷𝑒−(𝑙12−1)/𝛼𝑅 ,

𝑙12 is the difference between two vectors l1 and l2 from
the set

Λ =
{︀
l = (𝑙1, 𝑙2, 𝑙3)|𝑙𝑖 = 𝑐𝑚𝑖/𝑅0; 𝑚𝑖 = 1, 2, ..., 𝑁𝑎;

𝑖 = 1, 2, 3; 𝑁𝑣 = 𝑁3
𝑎

}︀
.

Moreover, 𝑙12 = 𝑗12/𝑅0. 𝑅0 corresponds to the min-
imum of the function �̃�𝑙12 [�̃�(𝑙12 = 1) = −𝐷 is
the potential well depth]. For the sake of convenience
here and henceforth, we measure the length in 𝑅0-
units. Thus, 𝛼𝑅 = 𝛼/𝑅0 is the effective interaction
radius 𝛼 in 𝑅0-units.

Looking at (2.2), it becomes obvious that differ-
ent particles in the same cell interact with each
other equally and irrespective of the distance between
them. The interaction between constituents of differ-
ent cells is a function �̃�𝑙12 of the distance between
cells.

As we had shown in [10] in terms of the Fourier
representation, GPF (2.1) contains a sum of diago-
nal terms in the exponent. It can be expressed via
𝑁 integrals over the coordinates of particles and 𝑁𝑣

integrals over the collective variables (CV) 𝜌k

Ξ =

∞∑︁
𝑁=0

(𝑧)𝑁

𝑁 !

∫︁
𝑉

(𝑑𝑥)𝑁exp

[︃
−𝛽

2

∑︁
k∈ℬ𝑐

�̃�(𝑘)𝜌k𝜌−k

]︃
×

×
∫︁
(𝑑𝜌)𝑁𝑣

∫︁
(𝑑𝜈)𝑁𝑣 exp

[︃
2𝜋𝑖

∑︁
k∈ℬ𝑐

𝜈k(𝜌k − 𝜌k)

]︃
. (2.3)

Herewith,

(𝑑𝜌)𝑁𝑣 =
∏︁
k∈ℬ𝑐

𝑑𝜌k; (𝑑𝜈)𝑁𝑣 =
∏︁
k∈ℬ𝑐

𝑑𝜈k.

The operator 𝜌k is the representation of the occupa-
tion number 𝜌l(𝜂) in the reciprocal space

𝜌k =
1√
𝑁𝑣

∑︁
l∈Λ

𝜌l(𝜂)𝑒
𝑖kl.

The vector k takes values from the set ℬ𝑐 correspond-
ing to one cell

ℬ𝑐=
{︁
k=(𝑘1, 𝑘2, 𝑘3)

⃒⃒⃒
𝑘𝑖=−𝜋

𝑐
+

2𝜋

𝑐

𝑛𝑖

𝑁1
,

𝑛𝑖=1, 2, ..., 𝑁𝑎; 𝑖 = 1, 2, 3; 𝑁𝑣 = 𝑁3
𝑎

}︁
.

The Fourier transform of the Morse potential (2.2)
�̃�(𝑘) = −𝑈(𝑘) + Ψ(𝑘) (𝑘 = |k|) is as follows:

𝑈(𝑘) = 𝑈(0)
(︀
1+𝛼2

𝑅𝑘
2
)︀−2

, Ψ(𝑘) = Ψ(0)

(︂
1+

𝛼2
𝑅𝑘

2

4

)︂−2

.

𝑈(0) = 16𝐷𝜋
𝛼3
𝑅

𝜐
𝑒𝑅0/𝛼, Ψ(0) = 𝐷𝜋

𝛼3
𝑅

𝜐
𝑒2𝑅0/𝛼.

Hence, 𝜒 is a real positive parameter (𝜒 > 0), which
is fixed for each particular substance. 𝜐 = 𝑣/𝑅3

0,
𝛽𝑐 = 1/𝑘B𝑇𝑐, 𝑘B is the Boltzman constant, 𝑇𝑐 is some
fixed temperature, which will be defined later. Let us
transfer a part of the repulsive interaction 𝜒Ψ(0) > 0
from the initial interaction potential �̃�(𝑘) > 0 to
the Jacobian of the transition from individual coor-
dinates to collective variables in order to write its ac-
curate representation. The similar idea was used by
us in [10]. Now instead of �̃�(𝑘), we introduce the ef-
fective potential of interaction

𝑊 (𝑘) = 𝑈(𝑘)−Ψ(𝑘) + 𝜒Ψ(0). (2.4)

It is easy to see that a sum of 𝜒Ψ(0) and −𝑊 (𝑘) is
equal to the initial potential of interaction (2.2).

The difference between (2.4) and an analogous ex-
pression in [8, 10] is that the present explicit ex-
pression of the effective potential of interaction is
temperature-free. The GPF of the model in the rep-
resentation of collective variables 𝜌k has the following
form:

Ξ =

∫︁
(𝑑𝜌)𝑁𝑣exp

[︃
𝛽𝜇𝜌0 +

𝛽

2

∑︁
k∈ℬ𝑐

𝑊 (𝑘)𝜌k𝜌−k

]︃
×

×
𝑁𝑣∏︁
𝑙=1

[︃ ∞∑︁
𝑚=0

𝑣𝑚

𝑚!
𝑒−𝑝(𝑇 )𝑚2

𝛿(𝜌l −𝑚)

]︃
. (2.5)
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Note that 𝜌l is the representation of 𝜌k in the direct
space, 𝑙 = |l|, and the parameter 𝑝 is a function of
the temperature:

𝑝(𝑇 ) = 𝜒𝛽Ψ(0)/2, (2.6)

which is different from an analogous temperature-free
parameter in [8, 10]. This complicates the calculation
of GPF (2.5).

The second modification of the previously de-
veloped method [7, 8] is the application of the
Stratonovich–Hubbard transformation to the term,
which contains the effective potential of interaction

exp

[︃
𝛽

2

∑︁
k∈ℬ𝑐

𝑊 (𝑘)𝜌k𝜌−k

]︃
=

= 𝑔𝑊

∫︁
(𝑑𝑡)𝑁𝑣exp

[︃
− 1

2𝛽

∑︁
k∈ℬ𝑐

𝑡k𝑡−k

𝑊 (𝑘)
+
∑︁
k∈ℬ𝑐

𝑡k𝜌k

]︃
. (2.7)

Note that 𝑊 (𝑘) > 0 for all 𝜒 > 0. We have

𝑔𝑊 =
∏︁
k∈ℬ𝑐

(2𝜋𝛽𝑊 (𝑘))
−1/2

.

The variables 𝑡k are complex values 𝑡k = 𝑡
(𝑐)
k − 𝑖𝑡

(𝑠)
k ,

for which 𝑡
(𝑐)
k and 𝑡

(𝑠)
k are real and imaginary parts,

respectively.

3. Application of the Cumulant
Representation

When using the method of collective variables, it is
convenient to represent the Jacobian of the transition
𝐽(𝜌l) as a cumulant expansion [8, 16]

𝐽𝑙(𝑡l) = exp

[︃
−

∞∑︁
𝑛=0

𝑎𝑛(𝑇 )

𝑛!
𝜌𝑛l

]︃
. (3.1)

We calculated the functional form of cumulants
𝑎𝑛(𝑇 ):

𝑎0(𝑇 ) = − ln𝑇0(𝑣, 𝑝(𝑇 )); 𝑎1(𝑇 ) = −𝑇1(𝑣, 𝑝(𝑇 ))

𝑇0(𝑣, 𝑝(𝑇 ))
;

𝑎2(𝑇 ) = −𝑇2(𝑣, 𝑝(𝑇 ))

𝑇0(𝑣, 𝑝(𝑇 ))
+ 𝑎21;

𝑎3(𝑇 ) = −𝑇3(𝑣, 𝑝(𝑇 ))

𝑇0(𝑣, 𝑝(𝑇 ))
− 𝑎31(𝑇 ) + 3𝑎1(𝑇 )𝑎2(𝑇 );

𝑎4(𝑇 ) = −𝑇4(𝑣, 𝑝(𝑇 ))

𝑇0(𝑣, 𝑝(𝑇 ))
+ 𝑎41(𝑇 )− 6𝑎21(𝑇 )𝑎2(𝑇 )+

+4𝑎1(𝑇 )𝑎3(𝑇 ) + 3𝑎22(𝑇 );

(3.2)

However, in contradiction to [10], all the cumu-
lants 𝑎𝑛(𝑇 ) are now functions of the temperature,
since they contain a temperature-dependent param-
eter 𝑝(𝑇 ) (2.6). This should be borne in mind, but,
for convenience, we will denote these coefficients as
𝑎𝑛(𝑇 ) ≡ 𝑎𝑛. Due to the condition 𝑝(𝑇 ) > 0, the spe-
cial functions 𝑇𝑛(𝑣, 𝑝) are rapidly convergent series

𝑇𝑛(𝑣, 𝑝(𝑇 )) =

∞∑︁
𝑚=0

𝑣𝑚

𝑚!
𝑚𝑛𝑒−𝑝(𝑇 )𝑚2

. (3.3)

Taking (2.7) and (2.6) into account, we now find a
precise representation of the GPF of the model:

Ξ=𝑔𝑊 𝑒
−
(︁
𝑎0+

𝛽𝜇2

2𝑊 (0)

)︁
𝑁𝑣

∫︁
(𝑑𝑡)𝑁𝑣×

× exp

[︃√︀
𝑁𝑣

(︂
𝜇

𝑊 (0)
− 𝑎1

)︂
𝑡0 −

1

2

∑︁
k∈ℬ𝑐

𝐷(𝑘)𝑡k𝑡−k −

−
∞∑︁

𝑛=3

𝑎𝑛
𝑛!

𝑁
2−𝑛
2

𝑣

∑︁
k1,...,k𝑛
k𝑖∈ℬ𝑐

𝑡k1
...𝑡k𝑛

𝛿k1+...+k𝑛

]︃
, (3.4)

where we denoted

𝐷(𝑘) = 𝑎2 +
1

𝑊 (𝑘)𝛽
.

4. An Approximate Calculation
of the Grand Partition Function

Expression (3.4) is comparable to the one obtained
in [8,10], but there is a crucial difference in the present
case. This expression is true for any

𝑅0/𝛼 > 4 ln 2, (4.1)

as well as for arbitrary values of the parameter 𝜒 > 0.
Inequality (4.1) is peculiar for the description of alkali
metals (particularly, Cs, Rb, K, Na, and so on) by the
Morse potential [1, 4, 12].

It is impossible to calculate (3.4) in the general
form, since there is an infinite power series in the vari-
able 𝑡k in the exponent. In connection with this, we
use an approximation of the 𝜌4-model, which consists
in the cutting-off of the terms proportional to the fifth
power of the variable 𝑡k and more (𝑛0 ≥ 5). In this
case, (3.4) looks like the functional representation of
the 3D Ising model in an external field and, respec-
tively, belongs to the same universality class [9]. In
our case, the chemical potential 𝜇 corresponds to an
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external field. In order to calculate GPF (3.4), we
make the variable substitution defined by

𝑡k = 𝜌k + 𝑎34
√︀

𝑁𝑣𝛿k, 𝑎34 = −𝑎3
𝑎4

,

which is aimed to destroy the cubic terms of 𝑡k. As a
result, we obtain the expression

Ξ = 𝑔𝑊 𝑒𝑁𝑣(𝐸𝜇−𝑎0)

∫︁
(𝑑𝜌)𝑁𝑣 ×

× exp

[︃√︀
𝑁𝑣𝑀𝜌0 −

1

2

∑︁
k∈ℬ𝑐

𝑑(𝑘)𝜌k𝜌−k −

− 𝑎4
24

1

𝑁𝑣

∑︁
k1,...,k4
k𝑖∈ℬ𝑐

𝜌k1 ... 𝜌k4𝛿k1+...+k4

]︃
, (4.2)

with the notations

𝐸𝜇 = −𝛽𝑊 (0)
2 (𝑀 + �̃�1)

2 +𝑀 𝑎34 +
𝑑(0)
2 𝑎234 − 𝑎4

24 𝑎
4
34,

𝑀 = 𝜇
𝑊 (0) − �̃�1,

�̃�1 = 𝑎1 + 𝑑(0) 𝑎34 +
𝑎4

6 𝑎334.

(4.3)

The coefficient 𝑑(𝑘) has the form

𝑑(𝑘) =
1

𝛽𝑊 (𝑘)
− �̃�2, �̃�2 =

𝑎4
2
𝑎234 − 𝑎2. (4.4)

On this stage, we use a type of the mean-field ap-
proximation considering only the variables 𝜌k with
k = 0 (see [10]). Applying this approximation, one
would describe a behavior of the model in a wide
range of temperatures (excluding a narrow vicinity
of the critical point, where the contribution of the
variables 𝜌k with k ̸= 0 is important).

In this approximation, the GPF has the form

Ξ ≃ 𝑔′𝑊 𝑒𝑁𝑣𝐸𝜇

∞∫︁
−∞

𝑑𝜌0 exp [𝑁𝑣𝐸(𝜌0)]. (4.5)

We obtained 𝐸(𝜌0), by using the change of the vari-
ables 𝜌′0 =

√
𝑁𝑣𝜌0

𝐸(𝜌0) = 𝑀𝜌0 −
1

2
𝑑(0)𝜌20 −

𝑎4
24

𝜌40. (4.6)

In the mean-field approximation [5], the transition
temperature can be determined from the following
condition:

𝑑(0) =
1

𝛽𝑐𝑊 (0)
− �̃�2𝑐 = 0, (4.7)

where the index 𝑐 means that the value is taken
at a fixed temperature 𝑇𝑐: 𝑎𝑛𝑐 = 𝑎𝑛(𝑇𝑐), 𝑊 (0) =
= 𝑊 (𝑘)

⃒⃒
k=0

. Expression (4.7) gives the definition of
the critical temperature

𝑘B𝑇𝑐 = �̃�2𝑐𝑊 (0). (4.8)

Taking (2.4) into account, we get

𝑑(0) = �̃�2𝑐(𝜏 + 1)− �̃�2, 𝜏 =
(𝑇 − 𝑇𝑐)

𝑇𝑐
. (4.9)

Using the Laplace method [3], we obtain the
asymptotic form of the GPF as follows:

Ξ ≃ 𝑔′𝑊 exp [𝑁𝑣𝐸𝜇 +𝑁𝑣𝐸(𝜌0)], (4.10)

where the value of 𝜌0 = 𝜌0 corresponds to the maxi-
mum of 𝐸(𝜌0). Having an explicit expression of GPF
(4.10), we can find an equation for the average density
of the system, by using the well-known formula

�̄� =
1

𝑁𝑣

𝜕 ln Ξ

𝜕𝛽𝜇
=

𝜕𝐸𝜇

𝜕𝛽𝜇
+

𝜕𝐸0(𝜌0)

𝜕𝛽𝜇
. (4.11)

In view of (4.11), we have

�̄� = 𝑛𝑐 −𝑀 − 𝜌0
𝛽𝑊 (0)

, (4.12)

where
𝑛𝑐 = −𝑎1 − 𝑎2𝑎34 +

𝑎4
3
𝑎334, (4.13)

Taking (4.8) into account, the following equality is
self-evident:
𝛽𝑊 (0) =

1

�̃�2𝑐(𝜏 + 1)
.

Since 𝜌0 = 𝜌0(𝜏,𝑀), the equality (4.12) is the key
expression in the framework of the grand canonical
ensemble. The condition of maximum for 𝐸(𝜌0),

𝑀 = 𝑑(0)𝜌0 +
𝑎4
6
𝜌30, (4.14)

provides an equation connecting the chemical poten-
tial 𝑀 and the density of the system �̄�:

𝑚3 +𝑚𝑝𝑏 + 𝑞𝑏 = 0, (4.15)

where

𝑚 = 𝑀 + (�̄�− 𝑛𝑐),

𝑝𝑏 =
6

𝑎4
[�̃�2𝑐(𝜏 + 1)]2 �̃�2,
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𝑞𝑏 = − 6

𝑎4
[�̃�2𝑐(𝜏 + 1)]3(�̄�− 𝑛𝑐).

Solutions of this equation are plotted in Fig. 1. Ob-
viously, curve 1 is the one that shows a physical de-
pendence (namely, the growth of 𝑚𝑛 with the den-
sity). A solution corresponding to curve 1 exists on
the density interval

𝑛min 6 �̄� 6 𝑛max, (4.16)

which is compatible with a particular range of values
of 𝑚1. The chemical potential as a function of the
density has the form

𝑀(�̄�) = 𝑚1(�̄�)− (�̄�− 𝑛𝑐), (4.17)

𝑚1(�̄�) = 2
√︁

2�̃�3
2

𝑎4
sin 𝛼𝑏(�̄�)

3 ,

𝛼𝑏(�̄�) = arcsin
[︁√︁

9𝑎4

8�̃�3
2
(�̄�− 𝑛𝑐)

]︁
.

(4.18)

Based on the data of computer experiments [15]
for sodium and potassium, we consider 𝑛min = 0.1.
Consequently, there is the equation

𝑛𝑐 =
2

3

[︂
2�̃�32
𝑎4

]︂1/2
− 0.1, (4.19)

by means of which we find the parameter 𝜐 as a func-
tion of the temperature. The change of the density
from 0.1 to the limit value 𝑛max is equivalent to the in-
crease of the chemical potential from 𝑀min to 𝑀max.

Note that the solution 𝑚1 (4.18) (Fig. 1) is equi-
table for some (bounded) range of chemical potential
values 𝑀 = 𝑓(�̄�, 𝜏) (see Fig. 2)

5. Description of the First-Order Phase
Transitions

According to the well-known formula 𝑃𝑉 = 𝑘B𝑇 ln Ξ,
the equation of state of the cell fluid model can be
written in the form

𝑃𝑣

𝑘B𝑇
=

ln 𝑔′𝑊
𝑁𝑣

+ 𝐸𝜇 +𝑀(�̄�)𝜌0𝑖 −
1

2
𝑑(0)𝜌20𝑖 −

𝑎4
24

𝜌40𝑖,

(5.1)

where 𝐸𝜇 is defined in (4.3), and the quantities 𝜌0𝑖
𝑖 = 1, 2, 3 are solutions of the equation

𝜌30𝑖 + 𝑝𝑄𝜌0𝑖 + 𝑞𝑄 = 0,

𝑝𝑄 =
6𝑑(0)

𝑎4
𝑞𝑄 = −6𝑀(�̄�)

𝑎4
.

(5.2)
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Fig. 1. Plot of the solutions 𝑚𝑛 as functions of the number
density �̄�
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Fig. 2. Plot of the chemical potential 𝑀(�̄�) as a function of
the number density �̄� (curve 1 is for potassium, curve 2 is for
sodium)

At 𝑇 > 𝑇𝑐, the discriminant of Eq. (5.2)

𝑄 =

(︂
2𝑑(0)

𝑎4

)︂3
+

(︂
−3𝑀

𝑎4

)︂2
. (5.3)

is positive, since 𝑝𝑄 > 0. So, we have a single real
solution of (5.2). This solution can be found directly
from Eq. (5.2) as

𝜌0𝑏 =

(︂
3𝑀(�̄�)

𝑎4
+
√︀

𝑄

)︂1/3
+

(︂
3𝑀(�̄�)

𝑎4
−
√︀
𝑄

)︂1/3
. (5.4)
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Fig. 3. Plots of the pressure 𝑃 (�̄�) as a function of the number
density �̄� at different temperatures: curve 1 is for 𝜏 = 0.1,
curve 2 is for 𝜏 = 0, curve 3 is for 𝜏 = −0.05, curve 4 is for
𝜏 = −0.1, curve 5 is for 𝜏 = −0.15, curve 6 is for 𝜏 = −0.2,
and curve 7 is for 𝜏 = −0.3. Data for potassium a, data for
sodium b

For 𝑇 > 𝑇𝑐, the equation of state or pressure as a
function of the temperature and the density takes the
form

𝑃

𝑘B𝑇𝑐
=

𝜏 + 1

𝜐(𝑇 )

(︃
𝑓+

𝑀(�̄�)

2�̃�2𝑐(𝜏 + 1)
[𝑀(�̄�) + 2�̄�]−

− 𝑑(0)𝑚2
1(�̄�)

2[�̃�2𝑐(𝜏 + 1)]2
− 𝑎4

24

𝑚4
1(�̄�)

[�̃�2𝑐(𝜏 + 1)]4

)︃
. (5.5)

𝑓 =
1

𝑁𝑣
ln 𝑔′𝑊 − 𝑎0 +

𝑑(0)

2
𝑎234 −

�̃�21
2�̃�2𝑐(𝜏 + 1)

− 𝑎4
24

𝑎434.

The explicit expression of the pressure as a func-
tion of the density at the critical temperature deduced
from (5.5) by substituting 𝑇𝑐 for 𝑇 is as follows:

𝑃𝜐|𝑇=𝑇𝑐

𝑘B𝑇𝑐
= 𝑓𝑐 +

𝑀0(�̄�)

2�̃�2𝑐
[𝑀0(�̄�) + 2�̄�|𝑇=𝑇𝑐 ] −

− 𝑎4𝑐
24

[︃
𝑚1(�̄�)

⃒⃒
𝑇=𝑇𝑐

�̃�2𝑐

]︃4
, (5.6)

𝑓𝑐 =
1

𝑁𝑣
ln 𝑔′𝑊 − 𝑎0𝑐 +

𝑎4𝑐
24

𝑎434𝑐 −
�̃�21𝑐
2�̃�2𝑐

.

The total chemical potential 𝑀0 as a function of
the density is the following:

𝑀0 = 𝑚1(�̄�)
⃒⃒
𝑇=𝑇𝑐

− (�̄�|𝑇=𝑇𝑐
− 𝑛𝑔𝑐).

Indices 0 and 𝑐 denote that 𝑀0 and 𝑎𝑛𝑐 correspond
to the case of 𝑇 = 𝑇𝑐. The plots of the pressure
𝑃 = 𝑃 (�̄�) vs the average density expressed by (5.5)
(curve 1) and 𝑃 |𝑇=𝑇𝑐

= 𝑃 |𝑇=𝑇𝑐
(�̄�) expressed by (5.6)

(curve 2) are shown in Fig. 3 for sodium (a) and
potassium (b).

At 𝑇 < 𝑇𝑐, we have three real solutions of (5.2):

𝜌01 = 2𝜌0𝑟 cos
𝛼𝑚

3
,

𝜌02 = −2𝜌0𝑟 cos

(︂
𝛼𝑚 + 𝜋

3

)︂
,

𝜌03 = −2𝜌0𝑟 cos

(︂
𝛼𝑚 − 𝜋

3

)︂
,

(5.7)

where

𝜌0𝑟 = (−2𝑑(0)/𝑎4)
1/2

, (5.8)

and the angle 𝛼𝑚

𝛼𝑚 = arccos
𝑀

𝑀𝑞
, 𝑀𝑞 =

√︃
−8[𝑑(0)]3

9𝑎4
. (5.9)

The solution 𝜌01 fits the stability condition in the
interval 𝑀 ∈ [0,𝑀max], as well as 𝜌03 – in 𝑀 ∈
∈ [𝑀min, 0] (see Fig. 4).

As a result, we can present the equation of state as

𝑃

𝑘B𝑇𝑐
= −𝜏 + 1

𝜐(𝑇 )

(︁ 1

𝑁𝑣
𝑙𝑛𝑔′𝑊 + 𝐸𝜇(�̄�) + 𝐸1(𝜌03)×
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×Θ(�̄�12 − �̄�) + 𝐸2(𝜌03)Θ(�̄�− �̄�12)Θ(−�̄�+ �̄�20)+

+𝐸3(𝜌01)Θ(�̄�− �̄�03)Θ(�̄�34− �̄�)+𝐸4(𝜌01)Θ(�̄�− �̄�34)
)︁
.

(5.10)

The quantity 𝐸𝜇 is defined by formula (4.3). The
functions 𝐸𝑛(𝜌0) have the form

𝐸𝑛(𝜌0𝑛) = 𝑀(�̄�)𝜌0𝑛 − 𝑑(0)

2
𝜌20𝑛 − 𝑎4

24
𝜌40𝑛, (5.11)

where the notation 𝜌0𝑛 is either 𝜌01 from (5.7) for
𝐸3(𝜌01) and 𝐸4(𝜌01), or 𝜌03 from (5.7) for 𝐸1(𝜌03)
and 𝐸2(𝜌03). Equation (5.10) also includes the values
of densities: �̄�12 is (𝑀 = −𝑀𝑞)

�̄�12 = 𝑛𝑐 − 2�̃�2𝜌0𝑟 + 4
𝑎4
3
𝜌30𝑟, (5.12)

�̄�34 is (𝑀 = 𝑀𝑞)

�̄�34 = 𝑛𝑐 + 2�̃�2𝜌0𝑟 − 4
𝑎4
3
𝜌30𝑟, (5.13)

�̄�20 and �̄�03 are the densities of a liquid-vapor tran-
sition

�̄�20 = 𝑛𝑐 −
√
3�̃�2𝑐(𝜏 + 1)𝜌0𝑟, (5.14)

�̄�03 = 𝑛𝑐 +
√
3�̃�2𝑐(𝜏 + 1)𝜌0𝑟. (5.15)

6. Analytic Results

As we mentioned before, the liquid-vapor coexistence
curves for Na and K have already been calculated
in [15] by the Monte Carlo simulation in the grand
canonical ensemble. Therefore, we can compare them
with our theoretical results. To do it, we calculated
the binodals in the same temperature interval, as
in [15]. The results of this comparison are presented in
Fig. 5 (using the reduced units 𝑇/𝑇𝑐 and �̄�/�̄�𝑐). Both
the gas branches of our binodals and those from the
simulation data follow the same trend. The agree-
ment is unsatisfactory for the liquid branches. The
critical point coordinates for sodium and potassium
obtained in [15] are

𝜌*𝑐(Na) = 1.430, 𝑇 *
𝑐 (Na) = 5.874,

𝜌*𝑐(K) = 1.125, 𝑇 *
𝑐 (K) = 5.05,

(in reduced units 𝑇 * = 𝑘B𝑇/𝐷 and 𝜌* = 𝜌/𝑅3
0). Our

results give the following values:

�̄�𝑐(Na) = 0.997, 𝑇𝑐(Na) = 5.760,

�̄�𝑐(K) = 0.935, 𝑇𝑐(K) = 5.037,
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Fig. 4. Plots of the solutions 𝜌0𝑛 as functions of the effective
chemical potential 𝑀
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Fig. 5. Coexistence curves: analytic results for K – doted
curve, Na – dashed curve; simulation data [15]: K – rings,
Na – boxes,

using the corresponding values of parameters of the
model

𝜒 = 1.124, 𝜐 |𝑇𝑐
= 2.419 for Na,

𝜒 = 1.198, 𝜐 |𝑇𝑐
= 2.940 for K,

according to (2.6) 𝑝(Na) = 1.81 and 𝑝(K) = 2.01.
As one can see, the estimated Na and K critical

temperatures are close to the simulations values. This
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is, however, not true for the critical densities of both
substances, where the analytically obtained critical
density is lower than the value from computer exper-
iments. Nevertheless, the critical density of sodium is
higher in both cases than the value for potassium.

7. Discussion and Conclusions

A theoretical description of the first-order phase tran-
sition in alkali metals is proposed. The interaction of
this type of metals is known to be well described by
the Morse potential. The critical density and critical
temperature of potassium and sodium are calculated,
by using numerical results for such a potential [12]
both with particular values of microscopic parame-
ters. We have obtained a quite good agreement with
computer simulation data, despite applying a type of
the mean-field approximation. The equation of state
is calculated. At the region above the critical temper-
ature, the isotherms of pressure behave themselves
as smooth increasing functions. There is a gas-liquid
phase transition below the critical temperature. It
is important that, in the proposed approach, there
is no need to use the Maxwell construction. In con-
tradistinction to other approaches connected to the
mean-field approximation (e.g., the van der Waals
theory), a plateau of the pressure, which depicts a
transition from gas to a liquid state, naturally arises
as a result of calculations. This is achieved by ap-
plying the Laplace method to the calculation of the
grand partition function in the 𝜌4-model approxima-
tion. Although the method is approximate, we have
obtained a good agreement with simulation data for
the coexistence curves of sodium and potassium in
the region of low densities, without using any phe-
nomenological parameters.

The introduction of the parameter 𝜒 lies at the
heart of the method. This parameter is necessary in
order to take a particular part of the interaction po-
tential 𝜒Ψ(0), which is used to calculate the Jacobian
of the transition from variables in the direct space to
the collective variables. A value of the critical tem-
perature of the model depends on 𝜒. For this reason,
we choose a value of this parameter so that we obtain
values of 𝑇𝑐 (for particular substances), which corre-
spond to the data of computer experiment. Note that,
according to formula (2.6), 𝜒 determines the param-
eter 𝑝. The last parameter 𝜐 appears as a result of
choosing a cell fluid model. Recall that 𝜐 is the vol-

ume of a cell in 𝑅0-units. Due to the self-consistent
calculation, one gets values of this parameter from
the condition (4.19).

The plot of binodals in Fig. 5 shows that, unfor-
tunately, our approach does not give quantitatively
satisfactory results in the fluid region. As an option,
a somewhat better description can be achieved by in-
troducing phenomenological parameters. Something
similar was done in [2], where the authors got good
results for fluids with different interaction poten-
tials. On the other hand, using approximations of a
higher power in 𝜌 might be helpful. Taking the par-
ticular results [11, 13] into account, we conclude that
the appliance of 𝜌𝑚-models with 𝑚 > 4 stipulates
an asymmetry of the coexistence curve in the density
region for liquids.
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ВИКОРИСТАННЯ МОДЕЛI КОМIРКОВОЇ
РIДИНИ ДЛЯ ОПИСУ ФАЗОВОГО ПЕРЕХОДУ
В ПРОСТИХ РIДКИХ ЛУЖНИХ МЕТАЛАХ

Р е з ю м е

Ця стаття охоплює теоретичний опис фазового переходу
першого роду в рiдких металах з використанням моделi ко-
мiркового плину. Результати отримано шляхом розрахунку
великої статистичної суми без використання феноменоло-
гiчних параметрiв. Потенцiал Морзе використовується для
обчислення рiвняння стану та кривої спiвiснування. Отри-
мано конкретнi результати для натрiю та калiю. Представ-
лено порiвняння результатiв аналiтичних виразiв з даними
комп’ютерного моделювання.
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