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The spatial structure of 14N nucleus is studied within a five-particle model (three 𝛼-particles
plus two nucleons). Using the variational approach with Gaussian bases, the ground-state en-
ergy and wave function are calculated for this five-particle system. Two spatial configurations
in the ground-state wave function are revealed. The density distributions, pair correlation func-
tions, and the momentum distributions of particles are analyzed and compared with those of
the mirror nuclei 14C and 14O.
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1. Introduction
In the present paper, we study the structure char-
acteristics of 14N nucleus as a system of three 𝛼-
particles and two extra nucleons (a neutron and a
proton). A steady interest in the structure of this nu-
cleus can be explained, in particular, by its important
role in the nuclear fusion reactions in stars.

Our five-particle approach may have a rather good
accuracy, as it was shown by calculations of the struc-
ture functions of three- and four-cluster nuclei [1–5]
consisting of 𝛼-particles and two extra nucleons. The
similar five-particle model [6] was considered to pre-
dict the charge radius of 14O nucleus using the clo-
seness of the structures of mirror nuclei 14C and 14O.

The 𝛼-particle clusters are known to be too tightly
bound systems of four nucleons (with 28.3 MeV
binding energy of 4He nucleus) and to have a too
small polarizability, so that they can be considered
as structureless particles, as long as one can ignore
their excitation at the impact energy greater than
∼20 MeV. Although the initial Hamiltonian contains
“pointlike” 𝛼-particles, we will consider, after the
first-stage calculations, their size and their own den-
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sity distributions in the Helm approximation (see be-
low). In principle, the nucleon structure of 𝛼-particles
could be taken into account more accurately [1], if one
multiplies the wave function of the nucleus obtained
within the 𝛼-particle model by the wave functions
of the 4He nuclei obtained independently in terms
of their nucleon degrees of freedom, and then anti-
symmetrizes the total wave function with respect to
identical nucleons. For the ground state of a nucleus
and some low-lying energy levels (for which the ex-
citation of an 𝛼-particle can be neglected), our five-
particle model can be competitive in accuracy with
the approaches like [7], where one has to deal with all
the nucleon degrees of freedom and thus to resolve a
more complicated problem.

For the five-particle problem, we exploit the varia-
tional method with Gaussian bases [8, 9] widely used
to study the bound states of few-particle systems.

In the next section, the interaction potentials be-
tween particles are given. In Section 3, we discuss
the r.m.s. radii and density distributions of particles
in 14N nucleus. Relative distances between particles
and pair correlation functions are presented in Section
4. Section 5 dwells upon two spatial configurations in
the ground state of 14N. In Section 6, the momen-
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tum distributions are given. Almost in all the cases,
we compare the corresponding structure functions of
14N nucleus with those of 14C and 14O within the
same five-particle model.

2. Statement of the Problem

Within our model, the five-particle Hamiltonian for
14N
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contains, in addition to the kinetic energy, pairwise
potentials due to nuclear and Coulomb interactions
between particles. In expression (1), the indices 𝑝, 𝑛,
and 𝛼 denote a proton, neutron, and 𝛼-particle, re-
spectively. In the Coulomb term, 𝑍𝑖 are the charges
of particles in units of elementary charge 𝑒: 𝑍1 = 1
for an extra proton, 𝑍2 = 0 for an extra neutron,
and 𝑍3 = 𝑍4 = 𝑍5 = 2 for 𝛼-particles. The nu-
clear potential 𝑈𝑝𝑛(𝑟12) between the extra nucleons
in the triplet state is used in the form of a local po-
tential proposed in [10] with two Gaussian terms de-
scribing the attraction (with intensity −146.046 MeV
and radius 1.271 fm) and the repulsion (with intensity
840.545 MeV and radius 0.44 fm). This simple poten-
tial gives correct experimental values for the deuteron
binding energy 𝜀d = 2.224576 MeV and charge radius
𝑅d = 2.140 fm, as well as experimental triplet 𝑛𝑝-
scattering length 𝑎𝑛𝑝,𝑡 = 5.424 fm, and a good de-
scription of the 𝑛𝑝 phase shift in the triplet state (up
to ∼300 MeV). This potential was successfully used
[10–12] for studying the 6Li nucleus structure func-
tions and their asymptotics.

The potentials 𝑈𝑛𝛼 and 𝑈𝑝𝛼, as well as the inter-
action potential between 𝛼-particles 𝑈𝛼𝛼, are of a
generalized type with local and nonlocal (separable)
terms. This type of potentials was first proposed in
[13, 14] to simulate the exchange effects between par-
ticles in interacting clusters and was successfully used,
in particular, in calculations [1, 3, 5, 6] of multiclus-
ter nuclei. Parameters of the potentials �̂�𝑝𝛼 and �̂�𝑛𝛼,
having local attraction and separable repulsion, are

given in [6], where these potentials were used to study
the structure of mirror nuclei 14C and 14O. As for
the potential �̂�𝛼𝛼 between 𝛼-particles, its parameters
slightly differ from those used in [6]. This little change
was necessary to reproduce accurately the experimen-
tal energy and charge radius of 14N nucleus. In the lo-
cal part of the interaction potential consisting of two
Gaussian terms, we use the same intensity of a local
attraction −43.5 MeV and that of a local repulsion
240.0 MeV, but with a little bit enlarged radii: 2.746
fm and 1.530 fm, respectively. The separable repul-
sion of the �̂�𝛼𝛼 potential [6] is not changed.

The ground-state energy and the wave function are
calculated with the use of the variational method
in the Gaussian representation [8, 9], which proved
its high accuracy in calculations of few-particle sys-
tems. For the ground state of the five-particle system
(consisting of three 𝛼-particles plus two additional
nucleons), the wave function can be expressed in the
form

Φ = 𝑆
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where 𝑆 is the symmetrization operator with respect
to the coordinates of identical 𝛼-particles, and the
linear coefficients 𝐶𝑘 and nonlinear parameters 𝑎𝑘,𝑖𝑗
are variational parameters. The greater the dimen-
sion 𝐾 of the basis, the more accurate the result is
obtained. Note that, at any 𝐾, the trial wave func-
tion is exactly invariant with respect to translations in
space, and, thus, the calculated center of mass kinetic
energy is known to be exactly zero. The linear coef-
ficients 𝐶𝑘 can be found within the Galerkin method
from the system of linear equations determining the
energy of the system:

𝐾∑︁
𝑚=1

𝐶𝑚

⟨
𝑆𝜙𝑘

⃒⃒⃒
�̂� − 𝐸

⃒⃒⃒
𝑆𝜙𝑚
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= 0, 𝑘 = 0, 1, ...,𝐾.

(3)

The matrix elements in (3) are known to have explicit
form for potentials like the Coulomb potential or the
ones admitting a Gaussian expansion. Our potentials
between particles just have the form of a few Gaussian
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functions, including the Gaussian form factor in the
separable repulsive term. Thus, system (3) becomes a
system of algebraic equations. We achieved the nec-
essary high accuracy by using up to 𝐾 = 600 func-
tions of the Gaussian basis. To fix the nonlinear vari-
ational parameters 𝑎𝑘,𝑖𝑗 , we used both the stochastic
approach [8, 9] and regular variational methods. This
enables us to obtain the best accuracy at reasonable
values of the dimension 𝐾. Note that we solved, in
fact, the five-particle problem a number of times, by
fitting the parameters of the potentials in order to ob-
tain the experimental binding energy of 14N nucleus
(19.772 MeV subtracting the own binding energy of
𝛼-particles) and its charge radius (2.558 fm [15]).

As a result of calculations, we have the ground-
state wave function of 14N nucleus within the five-
particle model. This enables us to analyze the struc-
ture functions of this nucleus. In the next section, the
density distributions of particles and the charge den-
sity distribution in 14N are discussed.

3. Density Distributions
and R.M.S. Radii of 14N Nucleus

The probability density distribution 𝑛𝑖 (𝑟) of the 𝑖-th
particle in a system of particles with the wave func-
tion |Φ⟩ is known to be

𝑛𝑖 (𝑟) = ⟨Φ| 𝛿 (r− (r𝑖 −Rc.m.)) |Φ⟩, (4)

where Rc.m. gives the location of the center of mass
of the system. The probability density distributions
are normalized as

∫︀
𝑛𝑖 (𝑟) 𝑑r = 1.

In Fig. 1, we depict the values 𝑟2𝑛𝑝 (𝑟), 𝑟2𝑛𝑛 (𝑟),
and 𝑟2𝑛𝛼 (𝑟), respectively, for the density distribu-
tions (multiplied by 𝑟2) of an extra proton, extra neu-
tron, and 𝛼-particles in 14N nucleus. Note that sim-
ilar profiles were obtained for 14C and 14O nuclei in
[6], and this means that 14N nucleus may have almost
the same structure. It is clearly seen that the extra
nucleons in such a five-particle nuclei move mainly
inside 12C cluster formed by 𝛼-particles. The small
secondary maximum of curve 1 at 𝑟 ≈ 3.4 fm shows
that an extra proton (as well as an extra neutron) in
14N nucleus can be found off 12C cluster, but with a
rather small probability. We note that an extra pro-
ton appears out of 12C cluster a little bit more often
than an extra neutron does mainly due to its Coulomb
repulsion from the 𝛼-particles. It is demonstrated be-
low that two maxima of curve 1 (and of the dashed

Fig. 1. Probability density distributions multiplied by 𝑟2 ob-
tained for an extra proton (solid curve 1 ) and 𝛼-particles (solid
curve 2 ) in 14N nucleus. Dashed line 3 depicts the same for
an extra neutron

line 3 ) are a consequence of two spatial configurations
distinctly present in 14N nucleus.

To find the charge r.m.s. radius of 14N nucleus, we
use the known Helm approximation [16, 17], which
enables one, in a simple way, to take into account
that particles are not “pointlike” ones. Within this
approach, the charge density distribution for 14N nu-
cleus,
𝑛ch (𝑟) =

6

7

∫︁
𝑛𝛼 (|r− r′|)𝑛ch,4He (𝑟

′) 𝑑r′+

+
1

7

∫︁
𝑛𝑝 (|r− r′|)𝑛ch,𝑝 (𝑟′) 𝑑r′, (5)

is a sum of convolution products, first being the
product of the density distribution 𝑛𝛼 for the prob-
ability to find an 𝛼-particle inside the 14N nucleus
with the charge density distribution 𝑛ch,4He of an
𝛼-particle itself, while the second is the product of
similar distributions for an extra proton. Coefficients
before the integrals are proportional to the total
charge of three 𝛼-clusters (6/7) and of an extra pro-
ton (1/7). The values of 𝑛𝛼 and 𝑛𝑝 are calculated
within our five-particle model according to (4), while
𝑛ch,4He and 𝑛ch,𝑝 follow from the experimental form
factors [18] and [19], respectively. In relation (5), we
neglect the small contribution of extra neutron. The
normalization of the charge density distribution is∫︀
𝑛ch (𝑟) 𝑑r = 1, i.e. one has to multiply it by 𝑍𝑒

to obtain the necessary dimensional units.
In Fig. 2, the charge density distribution (5) of 14N

nucleus is shown (solid line 1 ). In spite of the fact
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Fig. 2. Charge density distribution in 14N nucleus (normal-
ized as

∫︀
𝑛ch (𝑟) 𝑑r = 1) – curve 1. Dashed line 2 depicts the

probability density distribution of “pointlike” 𝛼-particles in 14N
nucleus. Dashed line 3 is the density distribution 𝑛𝑝 (𝑟) (mul-
tiplied by ×10−1) of a “pointlike” extra proton

that the density distribution of “pointlike” 𝛼-particles
has a “dip” at short distances (see the dashed curve
2 ), its integration with 𝑛ch,4He in (5) smoothes out
this effect completely. The density distribution of an
extra proton (dashed line 3 depicts 0.1𝑛𝑝) makes a
little influence on the total result due to a multi-
plier 1/7, but the proton also contributes at short
distances and smoothes the tolal charge density dis-
tribution of the nucleus. A similar smooth behavior of
the charge density distribution in the Helm approx-
imation is obtained for 14C nucleus with two extra
neutrons, and, of course, for 14O with two extra pro-
tons [6]. It is worth to note that the Helm approxima-
tion [16, 17] used in our model does not involve the
exchange effects between identical nucleons present
in the nuclei under consideration, and this approx-
imation is a rather good one only if the clusters do
not overlap. To improve the approximation and to ob-
tain the almost accurate wave function of the nucleus
(as noted in [1]), one has to multiply the obtained
five-cluster wave function by the wave functions of 𝛼-
particles (expressed in terms of the nucleon degrees of

Calculated r.m.s. relative
distances and r.m.s. radii (fm) for 14N nucleus

𝑟𝑝𝑛 𝑟𝑝𝛼 𝑟𝑛𝛼 𝑟𝛼𝛼 𝑅𝑝 𝑅𝑛 𝑅𝛼 𝑅𝑚 𝑅ch

2.237 2.692 2.683 3.559 1.598 1.585 2.064 2.556 2.558

freedom) and then to carry out the antisymmetriza-
tion of the obtained fourteen-nucleon wave function
over identical nucleons. This is beyond our study, and
thus we omit a comparison of the results obtained in
the Helm approximation for charge density distribu-
tions (and corresponding form factors) with experi-
mental data.

The r.m.s. radius 𝑅𝑖 of a probability density distri-
bution 𝑛𝑖 (𝑟) is known to be 𝑅𝑖 =

(︀∫︀
𝑟2𝑛𝑖 (𝑟) 𝑑r

)︀1/2.
Having the wave function in the explicit form of a
sum of Gaussian functions, we obtain the r.m.s. radii
for 14N nucleus within the five-particle model. In Ta-
ble, the r.m.s. radii obtained for a “pointlike” extra
proton 𝑅𝑝, extra neutron 𝑅𝑛, and 𝛼-particles 𝑅𝛼 in
14N nucleus are shown. We also give the calculated
r.m.s. matter 𝑅𝑚 and charge 𝑅ch radii. For conve-
nience, we give here also r.m.s. relative distances 𝑟𝑖𝑗
between particles (see the next section, where the def-
inition of 𝑟𝑖𝑗 is given, and their relation to r.m.s. radii
𝑅𝑖 is presented).

4. Pair Correlation
Functions and Relative Distances

More information about the structure of a nucleus can
be obtained from the analysis of the pair correlation
functions. The pair correlation function 𝑔𝑖𝑗 (𝑟) for a
pair of particles 𝑖 and 𝑗 can be defined as

𝑔𝑖𝑗 (𝑟) = ⟨Φ| 𝛿 (r− (r𝑖 − r𝑗)) |Φ⟩, (6)

and it is known to be the density of the probabil-
ity to find the particles 𝑖 and 𝑗 at a definite distance
𝑟. These functions are normalized as

∫︀
𝑔𝑖𝑗 (𝑟) 𝑑r = 1.

The r.m.s. relative distances squared
⟨︀
𝑟2𝑖𝑗
⟩︀

are di-
rectly expressed through the pair correlation func-
tions 𝑔𝑖𝑗 :⟨︀
𝑟2𝑖𝑗
⟩︀
=

∫︁
𝑟2𝑔𝑖𝑗 (𝑟) 𝑑r. (7)

The calculated r.m.s. relative distances 𝑟𝑖𝑗 ≡
⟨︀
𝑟2𝑖𝑗
⟩︀1/2

between particles in 14N nucleus are given in Ta-
ble. We note that the r.m.s. radii 𝑅𝑖 are connected
with the r.m.s. relative distances 𝑟𝑗𝑘:

𝑅2
𝑖 =

1

𝑀2

(︃
(𝑀 −𝑚𝑖)

∑︁
𝑗 ̸=𝑖

𝑚𝑗𝑟
2
𝑖𝑗−

∑︁
𝑗 < 𝑘

(𝑗 ̸= 𝑖, 𝑘 ̸= 𝑖)

𝑚𝑗𝑚𝑘𝑟
2
𝑗𝑘

)︃
,

(8)
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where 𝑀 is the total mass of the system of parti-
cles. Thus, the r.m.s. radii 𝑅𝑖 could be calculated not
only directly through the density distributions, but
also (equivalently) with the use of the pair correla-
tion functions and relations (7) and (8). Note that
the relative distances between particles are about (or
even a little bit greater) than the sum of their own
sizes. This fact substantiates, in part, the validity of
our cluster model.

Since the average of a pairwise local potential
𝑉𝑖𝑗 (𝑟) is expressible directly through the pair cor-
relation function 𝑔𝑖𝑗 (𝑟),

⟨Φ|𝑉𝑖𝑗 |Φ⟩ =
∫︁
𝑉𝑖𝑗 (𝑟) 𝑔𝑖𝑗 (𝑟) 𝑑r, (9)

the variational principle makes the profile of 𝑔𝑖𝑗 (𝑟)
such that it has a maximum, where the potential is
attractive, and a minimum in the area of repulsion
(if the role of the kinetic energy is not crucial). The
𝛼-particles have about four times greater mass than
extra nucleons, and, thus, their kinetic energy is es-
sentially smaller than that of nucleons (see below). As
a result, the pair correlation function 𝑔𝛼𝛼 (𝑟) pro-
file is determined mainly by the potential �̂�𝛼𝛼 and
has a pronounced maximum (curve 1 in Fig. 3) near
the minimum of the attraction potential. On the
other hand, due to the presence of a local repulsion
in the same potential near the origin, the profile of
𝑔𝛼𝛼 (𝑟) has a dip at short distances. Thus, the profile
of 𝑔𝛼𝛼 (𝑟) shows that 𝛼-particles are mainly settled
at a definite distance 𝑟𝛼𝛼 one from another (see Ta-
ble) being about the doubled radius of an 𝛼-particle,
and they form a triangle of 12C cluster. The same
cluster is present in 14C and 14O nuclei, as seen from
Fig. 4, where the pair correlation functions for 14C nu-
cleus are shown (we omit almost identical similar pro-
files for 14O). But since the 𝛼𝛼-potential used in the
present work has somewhat greater radius than that
accepted in [6], it is natural to obtain 𝑟𝛼𝛼 ∼= 3.6 fm
for 14N nucleus instead of 𝑟𝛼𝛼 ∼= 3.2 fm for 14C and
14O nuclei [6].

The deuteron cluster in 14N formed by two ex-
tra nucleons has (on the average, from the qualita-
tive point of view) almost the same form as a free
deuteron, as seen from Fig. 3, where the 𝑔𝑝𝑛 (𝑟) func-
tion is shown for 14N (solid curve 4 ) to be compared
with 𝑔𝑝𝑛 (𝑟) ≡ |𝜓d (𝑟)|2 for a free deuteron (dashed
curve 5 ). But, in 14N, the deuteron cluster is more
tightly bound than in a free state. That is why the

Fig. 3. Pair correlation functions for 14N nucleus. Solid line
1 presents 𝑔𝛼𝛼 (𝑟), solid curve 2 depicts 𝑔𝑝𝛼 (𝑟), and dashed
line 3 corresponds to 𝑔𝑛𝛼 (𝑟). Curve 4 is the pair correlation
function (multiplied by 0.1) for extra nucleons, 0.1𝑔𝑝𝑛 (𝑟), and
dashed line 5 is the wave function squared of the deuteron
(multiplied by 0.1)

Fig. 4. Pair correlation functions for 14C nucleus: 𝑔𝛼𝛼(𝑟) –
curve 1, 𝑔𝑛𝑛(𝑟) – curve 2, and 𝑔𝑛𝛼(𝑟) – curve 3

asymptotics of the free deutron function 𝑔𝑝𝑛 (𝑟) goes
above that of 𝑔𝑝𝑛 (𝑟) for 14N nucleus, while below
it at short distances (due to the normalization con-
dition). The extra nucleon pair correlation function
(𝑔𝑛𝑛 (𝑟) for 14C, as well as 𝑔𝑝𝑝 (𝑟) for 14O), also has
a dip at short distances (see Fig. 4, curve 2 ) due to
the presence of a short-range repulsion in our singlet
nucleon-nucleon potential [3, 5, 6].

The functions 𝑔𝑝𝛼 (𝑟) and 𝑔𝑛𝛼 (𝑟) for 14N nucleus
have a small dip at short distances (see Fig. 3),

ISSN 2071-0194. Ukr. J. Phys. 2017. Vol. 62, No. 10 839



B.E. Grinyuk, D.V. Piatnytskyi

while the corresponding functions 𝑔𝑛𝛼 (𝑟) for 14C and
𝑔𝑝𝛼 (𝑟) for 14O have no pronounced dips at all (see
Fig. 4 for 14C). Almost the same profile is revealed by
𝑔𝑝𝛼 (𝑟) for 14O, which is not shown. The fact that the
above-mentioned correlation functions do not van-
ish at short distances can be explained by the ab-
sence of a short-range local repulsion in our model
of generalized potential between a nucleon and an
𝛼-particle. This potential contains the local pure at-
traction plus the nonlocal (separable) repulsion with
greater radius [6].

5. Two Configurations
in 14N, 14C, and 14O Nuclei

To make the structure of the ground state of 14N nu-
cleus (as well as of 14C and 14O nuclei) more clear,
let us consider the quantity 𝑃 (𝑟, 𝜌, 𝜃) proportional to
the density of the probability to find extra nucleons
at a definite relative distance 𝑟 and to find their cen-
ter of mass at a distance 𝜌 from the center of mass of
12C cluster:

𝑃 (𝑟, 𝜌, 𝜃) =

= 𝑟2𝜌2 ⟨Φ| 𝛿 (r− r𝑁𝑁 ) 𝛿
(︀
𝜌− 𝜌(𝑁𝑁),(3𝛼)

)︀
|Φ⟩, (10)

where 𝜃 is the angle between the vectors r and 𝜌. It is
assumed that 𝜃 = 0∘ corresponds to a spatial config-
uration, where the extra proton, extra neutron, and
center of mass of 12C cluster are at the same line, the
proton being further from 12C than the neutron. The
angle 𝜃 = 180∘ corresponds to almost the same con-
figuration, but with an extra neutron located further
from the center of mass of 12C cluster. If one consid-
ers 14C and 14O nuclei, the configurations with 𝜃 = 0∘

and 𝜃 = 180∘ are identical due to identical extra nu-
cleons. Although these two angles are not identical
for 14N nucleus, the configurations with a definite 𝜃
and 180∘ − 𝜃 are very similar (approximately identi-
cal), since the role of the Coulomb interaction is not
decisive. That is why we do not demonstrate the pro-
files of 𝑃 (𝑟, 𝜌, 𝜃) for 𝜃 > 90∘ in the figures.

The quantity 𝑃 (𝑟, 𝜌, 𝜃) for 14N nucleus is depicted
in Fig. 5 for 𝜃 = 0∘, 𝜃 = 30∘, 𝜃 = 45∘, and 𝜃 = 90∘ as
a function of 𝑟 and 𝜌. Two peaks on the 𝑃 (𝑟, 𝜌, 𝜃) sur-
face are observed at 𝜃 = 0∘ (as well as for 𝜃 = 180∘,
which is not shown), and only one peak at 𝜃 = 90∘.
The rest angles give intermediate results (see Fig. 5
for 𝜃 = 30∘ and 𝜃 = 45∘). If it were not the multi-
plier 𝑟2𝜌2 in (10), the main peak present at all the

angles 𝜃 would be settled just at 𝜌 = 0, i.e. the cen-
ter of mass of 12C cluster and that of the deuteron
one would coincide. The comparatively smaller (than
a free deuteron, see Fig. 3) deuteron cluster moves
mainly inside 12C cluster. The second peak reveals
itself mainly at 𝜃 = 0∘ and corresponds to a con-
figuration, where an extra neutron is located inside
12C cluster, while an extra proton is comparatively
far from the center of the nucleus (it is out of 12C
cluster). At 𝜃 = 180∘, almost the same configura-
tion is observed (not shown in the figure). But, in
this case, an extra proton is inside 12C cluster. Just
these configurations make a contribution to the sec-
ond maximum of the extra nucleon probability den-
sity distribution (see Fig. 1). In this configuration,
the center of mass of the subsystem of extra nucleons
does not coincide with the center of mass of 12C clus-
ter. The almost same (from the qualitative point of
view) two configurations are observed in the ground
state of 14C nucleus (see Fig. 6) or 14O one (not shown
for brevity, since the corresponding pictures almost
coincide with those depicted in Fig. 6). Note that a
configuration with one nucleon out of 12C cluster is
more pronounced in the case of mirror nuclei 14C and
14O as compared to 14N nucleus, because the interac-
tion potential in the singlet state between extra nu-
cleons is less strong than the interaction potential in
the triplet state, which compels a proton and a neu-
tron to be coupled inside a five-particle system with
greater probability. We also note that a small differ-
ence in 𝛼𝛼-interactions used in calculations of the 14N
and 14C nuclei ground states makes almost no influ-
ence on the effect of two configurations. We carried
out a number of test calculations with 𝛼𝛼-potentials,
which result in different values of the binding en-
ergy of 12C nucleus. The results for the ground states
of 14N and 14C nuclei are similar to those shown in
Figs. 5 and 6.

A similar situation with two configurations in the
ground state is found for 6He, 6Li [1–3, 12] or 10Be,
10C [4,5] nuclei, where the center of mass of the dinu-
cleon subsystem coincides (one configuration) or does
not coincide (another configuration) with the center
of mass of the subsystem of 𝛼-particles.

6. Momentum Distributions

To complete the study of the structure functions of
14N nucleus, we present the momentum distributions
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Fig. 5. Two configurations in the ground state of 14N nucleus manifesting themselves in the 𝑃 (𝑟, 𝜌, 𝜃) function at
different angles 𝜃

of 𝛼-particles and extra nucleons in this system within
the five-particle model. The momentum distribution
𝑛𝑖 (𝑘) of the 𝑖-th particle is known to be the density
of the probability to find this particle with a definite
momentum 𝑘,

𝑛𝑖 (𝑘) =
⟨
Φ̃
⃒⃒⃒
𝛿 (k− (k𝑖 −K𝑐.𝑚.))

⃒⃒⃒
Φ̃
⟩
, (11)

where Φ̃ is the wave function of the system in the
momentum representation. The normalization of the
momentum distribution is

∫︀
𝑛𝑖 (𝑘) 𝑑k = 1. The mo-

mentum distribution 𝑛𝑖 (𝑘) enables one, in particu-
lar, to calculate the average kinetic energy of the 𝑖-th
particle:

⟨𝐸𝑖,kin⟩ =
∫︁

𝑘2

2𝑚𝑖
𝑛𝑖 (𝑘) 𝑑k. (12)

Mainly due to the mass ratio between a nucleon and
an 𝛼-particle, the extra nucleons move much more
rapidly than the 𝛼-particles do. In particular, the av-
erage kinetic energy of an extra proton in 14N nu-
cleus is about 33.52 MeV, that of an extra neutron
equals about 33.53 MeV, while each of the more slowly
moving 𝛼-particles has the kinetic energy of about
5.79 MeV. Similar values are typical of 14C and 14O
nuclei. In particular, the calculated kinetic energy of
each of the extra neutrons in 14C nucleus is about
32.66 MeV, while the same value for an 𝛼-particle
amounts about 6.83 MeV. For 14O nucleus, we have
31.77 MeV for an extra proton and 6.62 MeV for
an 𝛼-particle. The corresponding ratio of velocities
is about 4.8 for 14N nucleus and about 4.4 for 14C
and 14O nuclei. This means that the extra nucleons of
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Fig. 6. Two configurations in the ground state of 14C nucleus

Fig. 7. Momentum distributions of an 𝛼-particle (curve 1 )
and an extra proton (curve 2 ) in 14N nucleus

Fig. 8. Momentum distributions of an 𝛼-particle (curve 1 )
and an extra neutron (curve 2 ) in 14C nucleus
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the nuclei under consideration move essentially faster
than the heavier 𝛼-particles do.

The momentum distributions of 𝛼-particles, as well
as those of extra nucleons, are very similar for all the
considered nuclei. Especially, they are close for 14C
and 14O nuclei. That is why we present the profiles
of the momentum distributions only for 14N (Fig. 7)
and 14C (Fig. 8). In Fig. 7, curve 1 corresponds to
the momentum distribution 𝑛𝛼 (𝑘) of an 𝛼-particle,
and curve 2 depicts 𝑛𝑝 (𝑘) of an extra proton. The
momentum distribution of an extra neutron 𝑛𝑛 (𝑘) is
not shown, because the corresponding curve almost
coincides with curve 2. Very similar (from the qual-
itative point of view) profiles of the momentum dis-
tributions are obtained for 14C and 14O nuclei (see
Fig. 8 for 14C; almost the same profiles could be de-
picted for 14O nucleus).

The momentum distribution of 𝛼-particles 𝑛𝛼 (𝑘) is
seen to be a monotonically decreasing function, while
𝑛𝑝 (𝑘) and 𝑛𝑛 (𝑘) have two maxima: at the zero mo-
mentum and at 𝑘2 ≃ 1 fm−2. These two maxima cor-
respond to two above-mentioned configurations in the
ground state of the nucleus. In a configuration, where
an extra nucleon is comparatively far from the cen-
ter of the nucleus, it moves comparatively slowly and
makes a contribution to the peak at very small 𝑘2. If
it is inside 12C cluster (and this may occur in both
spatial configurations), its momentum is somewhat
greater, and such momenta make their contribution
to the second maximum at 𝑘2 ≃ 1 fm−2. At the same
time, the heavier 𝛼-particles inside 12C cluster almost
do not feel peculiarities of the motion of extra nucle-
ons. Thus, the influence of two different spatial con-
figurations of extra nucleons on the momentum dis-
tribution of 𝛼-particles is small due to both the mass
ratio and the comparatively large binding energy of
12C cluster.

7. Conclusions

To sum up, we note that the spatial structure of
14N nucleus studied within the five-particle model
is very similar to the structure of the mirror nuclei
14C and 14O. Two configurations in the ground-state
wave functions of these nuclei are revealed, where 12C
cluster and the dinucleon subsystem have the same
centers of mass (first configuration, with a dinucleon
inside 12C cluster) or the shifted centers of mass (sec-
ond configuration, with one nucleon outside of 12C
cluster). These configurations manifest themselves, in

particular, in the density and momentum distribu-
tions. A similar situation with two configurations in
the ground state of the system is inherent in some
other light nuclei [1–5] with two extra nucleons.
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СТРУКТУРА ЯДРА 14N
У П’ЯТИКЛАСТЕРНIЙ МОДЕЛI

Р е з ю м е

Дослiджено просторову структуру ядра 14N в рамках
п’ятичастинкової моделi (три 𝛼-частинки i два нуклони).
Розраховано енергiю i хвильову функцiю основного ста-
ну цiєї п’ятичастинкової системи на основi варiацiйного
пiдходу з використанням гаусоїдних базисiв. Виявлено двi
просторовi конфiгурацiї хвильової функцiї основного ста-
ну. Проаналiзовано розподiли густини, парнi кореляцiйнi
функцiї i iмпульснi розподiли частинок в ядрi 14N та по-
рiвняно iз вiдповiдними розподiлами для дзеркальних ядер
14C i 14O.
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