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The potential well depth for an electron in a nanoheterosystem with quantum dots has been
calculated in the framework of the self-consistent electron-deformation model. It is shown that
the strained InAs/GaAs nanoheterosystem with InAs spherical quantum dots is characterized
by deformation fields, which appear at the quantum dot-matriz interface and result in the en-
hancement of polaron effects in comparison with the unstrained material. The electron polaron
energy s calculated, by considering the electrostatic energy and the energy associated with
the mechanical and electron-deformation strain components in the quantum-dot and matrix

materials.
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1. Introduction

Nowadays, a large attention is focused on the re-
searches dealing with quantum-size structures, in par-
ticular, quantum dots (QDs), which find the wide ap-
plication in nanoelectronics as field-effect transistors,
photo cells, light-emitting diodes, and lasers [1,2]. In
low-dimensional systems, the electron-phonon inter-
action can significantly affect the physical properties
of electrons, such as the electron scattering, polaron
effects, and so forth [3,4]. A deformation that arises
at the QD-matrix interface owing to the mismatch
of lattice parameters results in the emergence of the
deformation and piezoelectric fields, which affect the
optical properties of those objects. In particular, the
compressive deformation of a QD material in the ma-
trix (e.g., InAs in GaAs and CdTe in ZnTe) enhances
the localization of charged quasiparticles and exci-
tons in those QDs and considerably strengthens the
interaction of quasiparticles both with one another
and with longitudinal optical phonons. Furthermore,
the materials of those QDs are characterized by a
high deformation potential, which results in the en-
hancement of polaron effects in comparison with bulk
materials.

Various approaches are used to study polaron ef-
fects in nanostructured materials: Feynman’s method
of path integration, the method of canonical trans-
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formations [5, 6], and the Buimistrov—Pekar method
[7]. In particular, in work [8], the binding energy of
electron and hole polarons in spherical QDs with
an infinitely deep potential well created on the ba-
sis of materials with a high ionicity was calculated,
by neglecting a lattice deformation in the QD ma-
terial. The influence of a deformation emerging only
due to a mismatch between the QD and matrix lattice
parameters on polaron effects was studied in work [9].

In this work, the binding energy of an electron
polaron is calculated with regard for the electron-
deformation and electrostatic potentials in an
InAs/GaAs nanoheterosystem with strained spheri-
cal InAs quantum dots.

2. Geometric Model of a Strained
Nanoheterosystem with Quantum Dots

Let us consider an InAs/GaAs nanoheterosystem
with strained InAs quantum dots. The latter do
not have a pronounced crystallographic faceting. In
particular, the QD shape is approximately spheri-
cal. For example, QDs of this geometry are formed
in the InAs/GaAs(001) nanoheterosystem, when the
thickness of the growing InAs layer is about 2 mono-
layers [10]. Therefore, in what follows, the contribu-
tion of island edges to the elastic relaxation energy is
neglected.

An ordered arrangement of strained QDs in a crys-
talline matrix takes place owing to the elastic in-
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teraction between the islands. This interaction arises
as a result of the parameter mismatch between the
InAs/GaAs lattices. In order to reduce the problem
with a large number of QDs to a problem with a sin-
gle QD, the following approximation was made. The
energy of the elastic interaction between two QDs
was substituted by the interaction energy of both
those QDs with the averaged field of elastic defor-
mations created by all other QDs, oe(N — 1). In
InAs/GaAs quantum dots grown in the Stranski-Kra-
stanov mode, the strong deformation fields appear at
the QD-matrix interface because of the InAs/GaAs
lattice parameter misnatch, f = (a(*) — a(®)/a® =~
~ 7% [11].

As was shown in works [8, 9], the polaron effects
grow with a reduction of the QD size. The enhance-
ment parameter p is equal to the ratio between the
radii of the polaron state, ag, and a quantum dot, Ry,
ie. p = ap/Rp > 1. In the case where the QD ma-
terial is subjected to a compressive deformation, the
enhancement parameter p grows, because the QD size
Ry decreases: firstly, owing to the mechanical com-
pressive deformation in the QD material that arises
as a result of the parameter mismatch between the
contacting (QD and matrix) lattices and, secondly,
owing to the electron-deformation component

SpE - Sp Emcch( ) + Sp ég%zdcf(r)) < 0’
where Spégrln)cch) is the sum of the diagonal com-
ponents in the mechanical strain tensor for the
QD material, and Spé ael def( r) is the sum of the
diagonal components in the tensor of electron-
deformation strain component [12]. Self-consistent
electron-deformation effects, which arise due to the
coupling between the lattice deformation and the
electron subsystem, additionally enhance polaron ef-
fects in comparison with those governing by the me-
chanical deformation only:

agp

Ro (1~ [Sp])" o

p:

The strain tensor components are determined from
the balance equation. In the case of spherical symme-
try, this equation looks like
d2ug)

dr?
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r dr
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where u(r) is the atomic displacement in the QD ma-
terial, which should satisfy the following boundary
conditions [13-15]:

An B ()] —ulV] ) = AV,
2c
1 _ 2 _
07(”T)|T=RU _0'7(”7‘) r=Ro _PLu PL - Ri()v (3)
aﬁa)L:Rl = —0ef (N — 1),

Ry is the radius of a nondeformed QD, R; the matrix
radius, P, the Laplace pressure,

2] PP (e

ROUT

(5(i))2(r)7'2dr
'(Ro)

is the interphase free energy between the QD and
matrix materials [16], ¢() the longitudinal acoustic
velocity in the i-th medium (¢ = 1 for InAs and 2 for
GaAs), p¥ the density of the i-th medium, and

AV = fATR3,

(14 v®)(1 —20)

(1) —
DY = opEO I = vy

The mechanical strains in the QD, 0'7(‘}), and matrix,

07(3) , materials equal

M) _ i [a-
21/1‘)

o T Uy (1=
+v ( @) +E(l))} (4)

where v; and E; are Poisson’s ratio and the Young
modulus, respectively, for the i-th material.

The general solution of the inhomogeneous equa-
tion (2) is the sum of the mechanical and electron-
deformation displacement components,

ul (r) = U£2e0h<r) + uile)lfdef(T%

where

vi) el +

()

(@)

@) T+Ci25
r

urmech(r> =
) DDe [ 1y iy iy
U] qot(T) = 2 r 2o\ (r )dr .

The displacement must be finite at » = 0. There-
fore, we must put

cy? (6)

(7)

ciV =0 (8)
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in solution (6). The displacement field determines the
strain tensor components for the QD material,

W . (1)

rrmech — “¢@pmech = €9gmech

=Y, 9)

and the material of the surrounding matrix,

)
) 2) _ 2C,
€ rrmech Cl - 3
" @) (10)
(2) _ (2 _ 2 2
€Lp<pmech_600mech_cl + r3 :

The mechanical component of a uniform strain
equals

gfrzl)ech = 67(~z7')rnech + gg(azz,)amech + gégmech = 30&) (11)
Therefore, Sp é&)ech) = 3C1(1).

The field of electron-deformation displacements
is described by the following components of the

electron-deformation tensor:
7 i 2 ’ f ’ / i ’
Dt = D (5 [2606 0 - 696), (12
'3 7 i 1 ’ i ’ ’
hercas =289 = DV (5 [ 2600 0ar)). (19

The electron-deformation component of a uniform
strain equals
(%) (@) (@) (2) ) j
Eoldef =Errel—det T Eqpel —def TEBEI_dot = DWep (r).
(14)
Therefore,

Spel) ger(r) = DD (r). (15)
The potential ¢ (r) is determined from the Pois-
son equation

(&

6&”50

Ap(r) = An®(r), (16)

where 5((;) is the relative dielectric permittivity of
the ¢-th material in the nanoheterosystem, and
An® (r) = n()(r)—ny is a change of the electron con-
centration in a vicinity of the hetero-interface “QD-
matrix”. The electron concentration itself is deter-
mined in terms of the superposition of wave-function

products,

(1) (%)
n@(r) = M, (17)
n exp (%) +1
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In turn, the wave functions are found from the
Schrédinger equation

2 i i
A+ AV [0 () = Ep® @) (18)
Qm*(l) n u
with the boundary conditions
(1) _ p(2) .
Rnl (T)"r:Ro - R”l (T) |7"=R0’
Ldry0)| 1 dre))(09)
m*(l) d’r r=Rg m*(2) d’f‘ 7”:Ro7

where m*(? is the effective electron mass in the i-th
material, F, the energy of an electron on the n-th
level in the quantum well,

AVe(r) = (AEc(O) + af) (gr(flch(r) + 52121def(7")) -
=0V (50 (1) + e () — € (62(r) = 6V (1)

is the potential energy of an electron in the QD,
AE,(0) the potential well depth for an electron in the
unstrained QD, a((f) the constant of the hydrostatic
deformation potential of the conduction band, ng the
average concentration of conduction electrons, n(* (r)
the concentration of charge carriers in the i-th mate-
rial of the strained nanoheterostructure with the QD,
and g the chemical potential of the nanoheterostruc-
ture. The latter quantity is determined by the equa-
tion

1
Q—O/n(r)dr = no,

where €)g is the unit cell volume.

The required solution of the Schrédinger equation
(18) written in the spherical coordinate system is
sought in the form

z/}Sl)m(rv 0, p= RSZ) (T) YZE;) (6‘7 90)7

where Yh(q?(@, ) are the spherical functions. With re-

gard for the relation Ay (r,0,¢) = Ay (r) [22], the

Poisson equation (16) in the spherical symmetry case

looks like

d?p) N gdgo(i) R
dr2 r o dr 6&’3) £

(20)

n@ (1) = ng,

(21)

where ¢ (r) is the solution averaged over a sphere
with the radius r. The concentration of charge car-
riers in the strained nanoheterostructure with a QD
was found to equal [12]

i |? No V2
w'le)rn a; [erf (A_EE1>
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2 S
+erf (\f (u o /\(()) - agl)sg.’})) +

CENONG
i 2B
T AE P AE?

x oD (r),

(22)

where Nqp is the surface concentration of QDs, AE
the Gaussian half-width, and F; the energy of an elec-
tron on the first localized level in the quantum well.

The solutions of the Poisson equation (21) in the
QD and the matrix, in which expression (22) for the
electron concentration was taken into account, were
sought for the averaged probability density |1/_J(i) |2. As
a result, we obtained

sinh ( L

M () = "’1> -
oW (r) = A, albl, 0<r< Ry, (23)

r

exp (— %r) exp (1 / ér)
=5 r + B r B

(Vi)

Ry <r <Ry, (24)

e (r)
o () (V2]
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The coeflicients A1, By, and By in expressions (23)
and (24) are determined from the continuity condi-
tions across the strained heterointerface for the po-
tentials ¢ (r) and ¢?(r), and the normal compo-
nents of the electric displacement vectors, as well as
the electroneutrality condition:

S0(1)(7/.)|’I Ro QD(Q)( )|7':R0’
V0] @e®0)

dr |._g, dr
RU Rl
/rQAn(l)(r)dr + /TQAn(Q) (r)dr = 0.
0 Ro

9

r=Rg (25)

3. Electron Polaron Renormalized
by the Self-Consistent Electron-Deformation
Interaction in a Quantum Dot

The binding energy of an electron-deformation po-
laron in the deformed QD of the InAs/GaAs het-
erosystem is determined from the Schréodinger equa-
tion that includes the electron-deformation potential
of the conduction band, the energy of the electron-
phonon interaction, and the own energy of phonons:

21h

[H‘e + AV, +qua;aq Ty —m X
7 Vey'eo
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X 3 Y 0y e ) |G (1) = Bt (1),
q
(26)

where a4 and a;r are the operators of phonon annihi-
lation and creation, respectively.

Since the enhancement parameter p > 1, let us use
the adiabatic approximation, when finding the po-
laron energy. In this approximation, the electron mo-
tion in the QD is fast, whereas the polaron motion is
slow. Let us average Eq. (26), by using the wave func-
tions of the zeroth-order approximation, @[J% (r). The
latter are found from the Schrédinger equation

ADS (r) = Baovl () 27)

with the Hamiltonian

- (i R_ 1

o= -2 v—v+Av.. 2
Oe 5 VmeV + AV, (28)

The solution of Eq. (27) in the spherical coordinate
system is sought in the form

W (r,0,0) = RS (1) Vi, (8, 9). (29)

. (i) r
The radial functions R% (r) = X0 e expressed

in terms of the spherical Bessel functions as follows
[17]:

X (r) = Aji(krer) + Bry(kier), 0 <7 < Ry,  (30)
XD (r) = C BV (ikoer) + DR (ikoer), Ro <7 < Ry,
(31)

where

2m
KL(r) = S (-0l (et ) + e ger (1) +
+ e¢(1)(r) - EnO)a

2
Ko(r) = S5 (AE(0) 4+ 0 (e, (r) + £ e () -

- €¢(2) (T) - nO)'

Using the continuity conditions for the wave func-
tion and the probability density flow across the QD-
matrix interface,

Rlnl (T) ’r:Ro = Rin (T) |T:R0’
1 dRyn (1) 1 dRy, ()
mi dr =Ry T my dr ’

r=Rop
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the regularity conditions for the functions RSI) (r) as
r — 0 and r — Ry, and taking the normalization con-
dition into account, we determine the ground-state
energy F,o of an electron in a spherical QD from the
transcendental equation

(e)
m
% [1 — k1eRo ctg (ki1eRo)] =
m

1 + koo Ro + e2k2e(Ro—R1) (erRO — 1)

1 — e2k2e(Ro—R1)

(32)

Hence, Eq. (26) averaged over the wave functions
(29) reads

AW =F 4+ Z hwqat aq +

27h o .
reyfpi 2 VI (pula)ey + @), (33
where
pm(g) = / Y2 (1), (34)

is the Fourier component of the electron density of
states at the In-level. By applying the unitary trans-
formation

27k
U, = exp [Ze u

m(pln(q)a; - Pikn(Q)aq)]
q €q €

(35)
to Eq. (33), we obtain

Z |P1n

q

o™ =g, —

—|—Zﬁwa aq.

(36)

VSS

The second term on the right-hand side of
Eq. (36) is the binding energy AE(™) of the electron-
deformation polaron at the In-level in the strained
nanoheterosystem with the QD. Therefore, by substi-
tuting the quantity pi,(¢q) from Eq. (34) into Eq. (36)
and changing from summation to integration over ¢,

we obtain ) )
(1)
AE(ln) _ 6? / (’lr/)nO (I‘)) (77[}710 ( )) d3rd37~/7
26;1)50 Ir — 1|

(37)

where 1/128 (r) is the wave functions of an electron in
the strained nanoheterosystem with the deformed QD

[see Eq. (29)].
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4. Results of Calculations and Their Analysis

The calculations were carried out for the InAs/GaAs
nanoheterosystem with the following parame-
ters:  Ro =100 A, Ry =500 A, o) = —5.08 eV,
aP= 7176V, aM =6.08 A, a® =5.65 A, mD) =
= 0.057mg, m® = 0.065mg, o = 0.657 H/m, ny =
=10 em™3, AE.(0) = 0.83 eV [18-20]. The energy
in the potential well was reckoned from the top of
the electron-deformation potential well bottom.

Figure 1 exhibits the results of numerical calcu-
lations illustrating the dependence of the potential
well depth for an electron in the strained QD on the
QD size, AV,(Ry). The calculations were carried out
with regard for the contributions from the electro-
static energy and the energy associated with the de-
formation of the QD and matrix materials. As one
can see, the depth of the quantizing potential for the
electron monotonically increases with the growth of
the QD size Ry, irrespective of whether only the me-
chanical component of the electron-deformation po-
tential is taken into account or together with the elec-
trostatic potential. In particular, at the concentration
of conduction electrons in the nanoheterosystem ma-
trix ng = 10'® cm™3 and the surface concentration
of quantum dots Ngp = 5.5 x 10'° cm™2, the poten-
tial well depth amounts to 0.64 eV at Ry = 45 A
and 0.682 eV at Ry = 100 A if the both compo-
nents are considered. If the electrostatic potential is
neglected, the corresponding depth values are 0.671
and 0.689 eV. The decrease in the quantizing poten-
tial depth (dashed curve 2 in Fig. 1) is stimulated
by the electrostatic energy and the action of an addi-
tional compression of the QD material, which arises
due to the self-consistent electron-deformation com-
ponent 68)7 qet (1) depending on the QD size Ry, the
filling degree ng of the conduction band in the matrix,
and the surface concentration of quantum dots Ngp.

The compressive deformation occurring in the ma-
terial of the InAs quantum dot due to the combined
action of the mechanical and electron-deformation
components results in a higher localization of charged
quasiparticles in this QD and in a significant growth
of the interaction between quasiparticles themselves
and between quasiparticles and longitudinal optical
phonons. In both cases, the polaron effects become
stronger.

In Fig. 2, the dependences of the binding energy
for an electron polaron in the ground state on the QD
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Fig. 1. Dependences of the electron potential well depth in a

strained spherical QD on the QD radius Rp: only the mechan-

ical component of the electron-deformation potential is taken

into account (1), both the electron-deformation and electro-

static potentials are made allowance for (2)

100

50 60 70 80 90 100
a, A

Fig. 2. Binding energy of an electron polaron in the strained
InAs/GaAs nanoheterosystem: in the unstrained QD (1), in
the strained QD if only the mechanical component of the
electron-deformation potential is taken into account (2), in the
strained QD if both the electron-deformation and electrostatic
potentials are made allowance for (8)

radius for the unstrained QD (curve 1), the mechan-

ically deformed QD (curve 2), and the QD deformed
(%)

mech

by both the mechanical, ¢

deformation, eéi)_ dof (), components (curve 3) are de-

picted. From this figure, one can see that the binding
energy of an electron polaron increases with a reduc-
tion of the QD radius in all three cases (with and
without QD deformation in the strained InAs/GaAs
nanoheterosystem). In particular, at Ry = 45 A, the
binding energy of an electron polaron amounts to
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—199 meV in the unstrained QD, to —174 meV in
the strained QD if only the mechanical component of
deformation potential is made allowance for, and to
—160.8 meV in the strained QD if both the electron-
deformation and electrostatic potentials are taken
into consideration.

Hence, the deformation of the QD and matrix ma-
terials gives rise to higher binding energies of an elec-
tron polaron. With a reduction of the QD radius,
the influence of both the mechanical and electron-de-
formation components becomes stronger. As the QD
size Ry increases, the binding energy of an elect-
ron-deformation polaron asymptotically approaches
the binding energy of an electron polaron in the un-
strained QD, because the deformation in the material
decreases.

5. Conclusions

1. The theory of electron polaron states in a strained
QD is developed. It involves both the mechanical
and electron-deformation components of the electron-
deformation potential.

2. Both the mechanical and electron-deformation
components of the electron-deformation potential are
found to enhance the binding energy of an electron
polaron. For smaller QDs, the influence of a defor-
mation in the QD material becomes stronger.

3. It is shown that the electron component of the
electron-deformation potential and the component of
the electrostatic energy, which arise due to deforma-
tions of the QD and matrix materials and the redistri-
bution of charge carriers in a vicinity of the strained
QD-matrix interface, increase the binding energy of
an electron polaron. In particular, in a 45-A quantum
dot (InAs/GaAs), the electron-deformation compo-
nent of the QD deformation potential increases the
binding energy of the electron polaron in comparison
with the binding energy of the electron polaron in
a deformed QD by 12.4 meV if only the mechanical
component of the deformation potential is taken into
account, and by 37 meV in comparison with that in
the undeformed QD.
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B.I. I'pywxa, P.M. [Teaewax

IMOJISPOHHUI CTAH B CAMOY3T'O/I2>KEHOMY
EJIEKTPOH-IE®OPMAILINMHOMY II10JII KBAHTOBA
TOYKA-MATPUIIA

PezwowMme

Y MexKax CaMOY3TO/I2KEHOI eJIEKTPOH-eOpPMAIliiHOT MOo/IesTi
pO3paxoBaHO TVIMOHHY IIOTEHIAJbHOI SMH [JIsI €JIEKTPOHA B
HaHOI'eTePOCUCTEeMI 3 KBaHTOBMMU Todkamu. [lokasaHo, mo B
Hamnpy»keniit Hanorerepocucremi InAs/GaAs i3 cdepuanumu
KBAHTOBUMU TOYKaMu InAs icayrors gedopmariiiui moss, axi
BHHUKAIOTh HA MeXKi PO3IO/IiJIy KBAHTOBA TOYKAa—MaTPHILH, IO
NPUBOAATH O IiJCUICHHS IOJISIPOHHUX €(EeKTIiB IIOPIBHSIHO 3
HesedopMOBaHUMH MaTrepiasamu. Po3zpaxoBaHO eHepriio eJie-
KTPOHHOTI'O IOJIIPOHA 13 BpaxyBaHHSIM BHECKIB €JIEKTPOCTaTH-
9HOI eHeprili Ta eHepril, 3yMOBJIEHOI fK MEXaHIiYHOIO, TakK i
eJIeKTPOH-1edOpMaIifiHOI CKIagoBUMU medopMariii mMarepi-
aniB KT Ta marpui.
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