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SPATIAL DISTRIBUTION OF ATOMS
IN THE FIELD OF INTERSECTING STANDING
BICHROMATIC LIGHT WAVES

We have shown that, by properly detuning the carrier frequencies in each of two perpendicularly
intersecting bichromatic waves from the atomic transition frequency, it is possible to create a
two-dimensional trap for atoms, if the wave intensities are sufficiently high. At the zero and
near-zero values of the initial wave phases, as well as at the phase shift between the intersecting
waves equal to 𝜋 or close to 𝜋 values, the dynamic spatial patterns of atoms consisting of square
cells with the side length equal to 𝜆/

√
2 are formed. Numerical simulations were carried out

for sodium atoms.
K e yw o r d s: optical atomic trap, standing waves, Monte Carlo wave function approach.

1. Introduction

Various aspects of the interaction between atoms
with standing bichromatic waves – this is a pair
of monochromatic standing waves with different fre-
quencies, which can also be considered as counter-
propagating bichromatic waves or counter-propaga-
ting amplitude-modulated waves – have been studied
for three decades. The physical fundamentals of this
interaction and numerous experimental works were
analyzed, in particular, in books [1, 2] and in the re-
cent review [3].

The force of light pressure on an atom in the field of
a standing bichromatic wave can significantly exceed
that of a running monochromatic wave [4–9], and this
fact is essential for the efficient manipulation with
atomic beams [9–11]. The field of bichromatic waves
was found to be applicable to cool down atoms and
molecules making no use of spontaneous emission [12,
13]. This is a new phenomenon, which was predicted
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in work [14]. Seemingly, it can strongly extend our
abilities to control the molecular motion with the help
of laser radiation.

Another direction of researches includes the for-
mation of atomic traps making use of only laser
radiation without additional fields (e.g., the mag-
netic field in the case of magneto-optical trap [1]). At
first, such traps were proposed to be based on the
interaction of atoms with counter-propagating light
pulses [15–18]. Later, it was found that required traps
can also be formed by counter-propagating bichro-
matic [19], stochastic [20], and frequency modulated
[21] waves. Furthermore, the laser radiation field that
holds atoms in the trap can cool them down as well.

In this work, we consider the interaction of two-
level atoms with two orthogonal plane-polarized
standing bichromatic waves. We analyze the condi-
tions, under which those waves can form a two-di-
mensional atomic trap (the one-dimensional trap has
been studied by us in work [19]), and determine the
parameters of the patterns formed by atoms at their
interaction with the light wave field. The motion of
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Fig. 1. Schematic diagram of the interaction between the
atom (denoted by the circle) and the field. At point 𝑂, the
phase difference between the counter-propagating waves equals
zero

atoms in the field is described by Newton’s laws, and
the evolution of atomic states by the Monte Carlo
wave-function method [22]. The numerical simulation
is carried out for parameters corresponding to the in-
teraction of sodium atoms with the light field.

The structure of the present paper is as follows. In
the next section, a scheme of the interaction between
an atom and the field is described. The basic equa-
tions are written down in Section 3. A brief de-
scription of the Monte Carlo wave-function method
is made in Section 4. Section 5 is devoted to the pro-
cedure of numerical calculations, whereas the results
obtained are presented and their discussion is made
in Section 6. Short conclusions are formulated in the
final section of the paper.

2. Interaction of an Atom with the Field

Let an atom be in the field of two perpendicu-
larly intersecting bichromatic standing waves (see
Fig. 1). Each of the latter is formed by a pair of
standing collinear waves. In turn, each of the stand-
ing waves can be regarded as two counter-propagating
monochromatic waves.

We consider the interaction of atoms with the bi-
chromatic field of standing waves near point 𝑂, where
each standing wave has an antinode, i.e. the phase
difference of the corresponding counter-propagating

waves equals zero. In the field of one bichromatic
wave, if an atom becomes slightly shifted from this
point, it undergoes an action of a light pressure force
that is proportional to the phase difference between
the standing waves that form this bichromatic wave
[4, 23]. Since the phase difference linearly depends
on the atomic coordinates, a bichromatic standing
light wave can form a one-dimensional trap for atoms
[6, 19]. Hence, a field of two intersecting bichroma-
tic waves could expectedly form a two-dimensional
atomic trap.

Note that the interaction of an atom with two per-
pendicularly intersecting standing bichromatic waves
is qualitatively different from the interaction with
one wave. Besides the absorption from either of the
running bichromatic waves and the subsequent emis-
sion into the counter-propagating running bichroma-
tic wave, there can occur the absorption from either
of the running bichromatic wave and the subsequent
emission into the orthogonally propagating running
bichromatic wave. Therefore, the interaction between
the atom and the field created by two standing bi-
chromatic waves cannot be regarded as the sum of
interactions of this atom with each of the standing
bichromatic waves.

3. Basic Equations

The interaction of an atom with the field of intersect-
ing bichromatic waves can also be considered as its
interaction with the field of eight running monochro-
matic waves, as is shown in Fig. 1. The space-time
dependences of the field intensities created by the run-
ning waves look like

E𝑛=1,2,3,4 = e𝐸0𝑛 cos (𝜔𝑛𝑡∓ 𝑘𝑛𝑥+ 𝜙𝑛), (1)

E𝑛=5,6,7,8 = e𝐸0𝑛 cos (𝜔𝑛𝑡∓ 𝑘𝑛𝑦 + 𝜙𝑛). (2)

Here, the sign “−” corresponds to odd and the sign
“+” to even 𝑛-values, e is the unit polarization vector,
and 𝜔𝑛 is the monochromatic wave frequency. It is
worth to note that the polarization vector directions
were chosen to be identical for all waves. For eight
indicated monochromatic waves to form four standing
waves, the following condition has to be obeyed:

𝜔2𝑛 = 𝜔2𝑛−1, (𝑛 = 1÷4). (3)

In the considered case of formation of standing waves
with identical amplitudes,

𝐸0𝑛 = 𝐸0, (𝑛 = 1÷8). (4)
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The detunings 𝛿𝑛 of the wave frequencies 𝜔𝑛 (𝑛 =
= 1÷8) from the resonance with the atomic transition
frequency 𝜔0 are defined as the differences

𝛿𝑛 = 𝜔0 − 𝜔𝑛, (5)

for which

𝛿2𝑛−1 = 𝛿2𝑛, (𝑛 = 1÷4), (6)

because the frequencies of the counter-propagating
monochromatic waves that form each of four stand-
ing waves are identical [see Eq. (3)]. Let the mod-
ulation frequencies of bichromatic waves, which are
equal to the frequency difference between the running
monochromatic waves, be also identical,

𝜔1 − 𝜔3 = 𝜔5 − 𝜔7 = Ω > 0. (7)

Here, we consider a symmetric case where the carrier
frequencies of intersecting waves are also identical, i.e.

𝜔3 + 𝜔1

2
=
𝜔7 + 𝜔5

2
= 𝜔. (8)

From the above equations, it is easy to express the
frequencies of all monochromatic waves in terms of
the bichromatic wave carrier frequency 𝜔 and the fre-
quency of their modulation Ω:

𝜔1 = 𝜔5 = 𝜔 +
Ω

2
, 𝜔3 = 𝜔7 = 𝜔 − Ω

2
. (9)

Let us introduce the detuning

𝛿 = 𝜔0 − 𝜔 (10)

of the bichromatic wave carrier frequency from the
atomic transition frequency. Then, in view of Eq. (9),
Eq. (5) implies that

𝛿1 = 𝛿5 = 𝛿 − Ω

2
, 𝛿3 = 𝛿7 = 𝛿 +

Ω

2
. (11)

The field created by eight running monochromatic
waves can be written as a field of four standing
waves. The field strengths of the latter look like

E12 = E1 +E2 = 2𝐸0e cos

[︂
𝜔1𝑡+

1

2
(𝜙1 + 𝜙2)

]︂
×

× cos

[︂
𝑘1𝑥+

1

2
(𝜙2 − 𝜙1)

]︂
, (12)

E34 = E3 +E4 = 2𝐸0e cos

[︂
𝜔3𝑡+

1

2
(𝜙3 + 𝜙4)

]︂
×

× cos

[︂
𝑘3𝑥+

1

2
(𝜙4 − 𝜙3)

]︂
, (13)

E56 = E5 +E6 = 2𝐸0e cos

[︂
𝜔1𝑡+

1

2
(𝜙5 + 𝜙6)

]︂
×

× cos

[︂
𝑘1𝑦 +

1

2
(𝜙6 − 𝜙5)

]︂
, (14)

E78 = E3 +E4 = 2𝐸0e cos

[︂
𝜔3𝑡+

1

2
(𝜙7 + 𝜙8)

]︂
×

× cos

[︂
𝑘3𝑦 +

1

2
(𝜙8 − 𝜙7)

]︂
, (15)

and the total field acting on the atom equals

E = E12 +E34 +E56 +E78. (16)

Starting from the early studies of the mechanical
action of bichromatic wave fields on atoms [4,6], those
fields are also presented as a superposition of coun-
ter-propagating amplitude-modulated waves, which
allows an analogy between the bichromatic wave field
and the field created by a sequence of counter-propa-
gating pulses to be made. This analogy forms a ba-
sis for the explanation of the induced light pressure
force. The latter can substantially exceed the force of
light pressure on the atom by a single running wave
[24]. In the case of two intersecting standing waves,
the counter-propagating waves look like

E13 = E1+E3 = 2𝐸0e cos

[︂
𝜔𝑡− 𝑘𝑥+

1

2
(𝜙1 + 𝜙3)

]︂
×

× cos

[︂
1

2
Ω𝑡− 1

2
Δ𝑘𝑥+

1

2
(𝜙3 − 𝜙1)

]︂
, (17)

E24 = E2+E4 = 2𝐸0e cos

[︂
𝜔𝑡+ 𝑘𝑥+

1

2
(𝜙2 + 𝜙4)

]︂
×

× cos

[︂
1

2
Ω𝑡+

1

2
Δ𝑘𝑥+

1

2
(𝜙4 − 𝜙2)

]︂
, (18)

E57 = E1+E3 = 2𝐸0e cos

[︂
𝜔𝑡− 𝑘𝑦 +

1

2
(𝜙5 + 𝜙7)

]︂
×

× cos

[︂
1

2
Ω𝑡− 1

2
Δ𝑘𝑦 +

1

2
(𝜙7 − 𝜙5)

]︂
, (19)

E68 = E2+E4 = 2𝐸0e cos

[︂
𝜔𝑡+ 𝑘𝑦 +

1

2
(𝜙6 + 𝜙8)

]︂
×

× cos

[︂
1

2
Ω𝑡+

1

2
Δ𝑘𝑦 +

1

2
(𝜙8 − 𝜙6)

]︂
, (20)
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where

𝑘 =
1

2
(𝑘1 + 𝑘3) =

1

2
(𝑘2 + 𝑘4), (21)

Δ𝑘 = 𝑘3 − 𝑘1 = 𝑘4 − 𝑘2 = Ω/𝑐. (22)

The shift of the time 𝑡 and the coordinates (𝑥, 𝑦) of
the reference starting point is obviously equivalent
to the change of initial phases 𝜙𝑛 (𝑛 = 1÷8). Since
Ω ≪ 𝜔 and Δ𝑘 ≪ 𝑘, two initial phases can be nulli-
fied by changing the time zero point, and four more
phases (or their linear combinations) by shifting the
coordinate origin.

The projections of the light pressure force F acting
on the atom along the axes 𝑂𝑥 and 𝑂𝑦 equal [1, 25]

𝐹𝑥 = (𝜚12d21 + 𝜚21d12)
𝜕E

𝜕𝑥
, (23)

𝐹𝑦 = (𝜚12d21 + 𝜚21d12)
𝜕E

𝜕𝑦
, (24)

where d𝑖𝑗 (𝑖, 𝑗 = 1, 2) are the matrix elements of the
dipole moment, and 𝜚𝑖𝑗 the elements of the density
matrix 𝜚. The motion of the atom under the action
of this force is described by the second Newton law

r̈ = F/𝑚, (25)

where 𝑚 is the atomic mass, and r = (𝑥, 𝑦) the radius
vector of the atom. The density matrix is determined,
by using the probability amplitudes 𝑐1 and 𝑐2 for the
atom to be in the ground, |1⟩, and excited, |2⟩, states,
respectively:

𝜚12 = 𝑐1𝑐
*
2𝑒

𝑖𝜔0𝑡, 𝜚21 = 𝑐2𝑐
*
1𝑒

−𝑖𝜔0𝑡. (26)

The state vector of the atom

|𝜓⟩ = 𝑐1 |1⟩+ 𝑐2𝑒
−𝑖𝜔0𝑡 |2⟩ (27)

is found from the Schrödinger equation

𝑖~
𝑑

𝑑𝑡
|𝜓⟩ = 𝐻 |𝜓⟩ (28)

with the use of the Monte Carlo modeling method, in
which a possibility of spontaneous light emission by
the atom is taken into account [22]. Unlike computa-
tions on the basis of the density matrix, the Monte
Carlo method of calculations makes it possible to
trace the trajectory of motion for a separate atom.

4. Modeling the Atomic State
Vector within the Monte Carlo Method

The Monte Carlo method for modeling the vector of
state [22] is a procedure of numerical solution of the
Schrödinger equation (28), which makes allowance for
the possibility of a spontaneous light emission by the
atom. The latter phenomenon is described by the re-
laxation term

𝐻rel = − 𝑖~
2
𝛾|2⟩⟨2|, (29)

where 𝛾 is the rate of atomic transition into the state
|1⟩, in the Hamiltonian

𝐻 = 𝐻0 +𝐻int +𝐻rel. (30)

The other terms in the Hamiltonian are:

𝐻0 = ~𝜔0|2⟩⟨2|, (31)

which describes the atom in the absence of the field
and relaxation, and

𝐻int = −d12|1⟩⟨2|E(𝑡)− d21|2⟩⟨1|E(𝑡), (32)

which is responsible for the interaction between the
atom and the field.

Hamiltonian (30) is non-Hermitian. Therefore,
when simulating the state vector using the Monte
Carlo method [22] and integrating the Schrödinger
equation (28), the state vector (27) has to be renor-
malized after each small time step. The deviation of
the state vector length from unity is used in this case
to simulate the process of spontaneous photon emis-
sion: with the growth of this deviation, the proba-
bility of the spontaneous emission increases and gives
rise to a quantum jump of the atom from the ex-
cited state |2⟩ into the ground state |1⟩. Here, we use
the Monte Carlo method of the first accuracy order,
which was described in work [22]. The methods of the
second and fourth accuracy orders are described in
work [26].

Let the atom be described by the state vector |𝜓(𝑡)⟩
at the time moment 𝑡. The state vector |𝜓(𝑡+Δ𝑡)⟩ at
the time moment 𝑡+Δ𝑡 is determined in two stages.

(i) By integrating the Schrödinger equation (28),
we obtain that, after a rather short time interval Δ𝑡,
the state vector equals

|𝜓(1)(𝑡+Δ𝑡)⟩ =
(︂
1− 𝑖Δ𝑡

~
𝐻

)︂
|𝜓(𝑡)⟩, (33)
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and its norm is

⟨𝜓(1)(𝑡+Δ𝑡)|𝜓(1)(𝑡+Δ𝑡)⟩ = 1−Δ𝑃, (34)

where

Δ𝑃 =
𝑖Δ𝑡

~
⟨𝜓(𝑡)|𝐻 −𝐻+|𝜓(𝑡)⟩ = 𝛾|Δ𝑡|𝑐2|2. (35)

(ii) At the second stage, we examine if there was a
quantum jump, which accompanied the spontaneous
emission event, within the integration time interval
Δ𝑡. For this purpose, we compare Δ𝑃 with the value
𝜖 of a random variable that is uniformly distributed
within the interval [0, 1]. If 𝜖 < Δ𝑃 , the quantum
jump is assumed to occur. Hence, the atom transits
into the state |1⟩, i.e. its state vector becomes equal
to |1⟩:

|𝜓(𝑡+Δ𝑡)⟩ = |1⟩ (𝜖 < Δ𝑃 ). (36)

Nevertheless, in most cases, 𝜖 > Δ𝑃 , because Δ𝑃 ≪
≪ 1, and the jump does not occur. In this case, the
state vector (33) obtained at the first stage should be
renormalized:

|𝜓(𝑡+Δ𝑡)⟩ → |𝜓(1)(𝑡+Δ𝑡)⟩√
1−Δ𝑃

(𝜖 > Δ𝑃 ). (37)

The photon propagation direction at a spontaneous
emission is also simulated, by using the Monte Carlo
method. In this case, the propagation directions along
the positive and negative directions of the axes 𝑂𝑥
and 𝑂𝑦 are regarded as equally probable (see details
in Section 5).

Equation (33) gives a formal solution of the
Schrödinger equation. At the same time, when cal-
culating the state vector, it is more convenient to use
the equations for the probability amplitudes 𝑐1 and 𝑐2
of the population of states |1⟩ and |2⟩. Having deter-
mined them, we obtain the state vector by formula
(27). The equations for the amplitudes follow from
the Schrödinger equation (28) and are equivalent to
it. Let us derive those equations.

The substitution of Eqs. (27) and (30) into Eq. (28)
results in

𝑖~
𝑑

𝑑𝑡
𝑐1 = −d12E𝑐2𝑒

−𝑖𝜔0𝑡, (38)

𝑖~
𝑑

𝑑𝑡
𝑐2 = −d21E𝑐1𝑒

𝑖𝜔0𝑡 − 1

2
𝛾𝑐2. (39)

Then, in the rotating-wave approximation (by ne-
glecting the rapidly oscillating terms proportional to

𝑒±2𝑖𝜔0𝑡) [27] and taking into account that

E =

8∑︁
𝑛=1

E𝑛, (40)

we obtain
𝑑

𝑑𝑡
𝑐1 = − 𝑖

2
Ω0

4∑︁
𝑛=1

𝑒(−1)𝑛𝑖𝑘𝑛𝑥−𝑖𝛿𝑛𝑡+𝑖𝜙𝑛𝑐2 −

− 𝑖

2
Ω0

8∑︁
𝑛=5

𝑒(−1)𝑛𝑖𝑘𝑛𝑦−𝑖𝛿𝑛𝑡+𝑖𝜙𝑛𝑐2, (41)

𝑑

𝑑𝑡
𝑐2 = − 𝑖

2
Ω*

0

4∑︁
𝑛=1

𝑒(−1)𝑛+1𝑖𝑘𝑛𝑥+𝑖𝛿𝑛𝑡−𝑖𝜙𝑛𝑐1 −

− 𝑖

2
Ω*

0

8∑︁
𝑛=5

𝑒(−1)𝑛+1𝑖𝑘𝑛𝑦+𝑖𝛿𝑛𝑡−𝑖𝜙𝑛𝑐1 −
1

2
𝛾𝑐2, (42)

where the Rabi frequency of monochromatic waves
Ω0 = −d12e𝐸0/~ (43)

is introduced. Without loss of generality, this quan-
tity can be regarded as real-valued [27].

Knowing the probability amplitudes 𝑐1 and 𝑐2 and
using Eqs. (23), (24), and (26), we can calculate the
light pressure force acting on the atom. Let us aver-
age the force expressions (23) and (24) over the time
within an interval that significantly exceeds the pe-
riod of rapid oscillations ≈ 2𝜋/𝜔0 and, simultane-
ously, is rather short for the average force of light
pressure to be practically independent of the averag-
ing time interval. Then we find

𝐹𝑥 = ~
4∑︁

𝑛=1

(−1)𝑛+1𝑘𝑛 Im
[︀
𝑐1𝑐

*
2Ω

*
𝑛𝑒

𝑖𝛿𝑛𝑡−𝑖𝜙𝑛 ×

× 𝑒𝑖(−1)𝑛+1𝑘𝑛𝑥
]︀ (︀

|𝑐1|2 + |𝑐2|2
)︀−1

. (44)

𝐹𝑦 = ~
8∑︁

𝑛=5

(−1)𝑛+1𝑘𝑛 Im
[︀
𝑐1𝑐

*
2Ω

*
𝑛𝑒

𝑖𝛿𝑛𝑡−𝑖𝜙𝑛 ×

× 𝑒𝑖(−1)𝑛+1𝑘𝑛𝑦
]︀ (︀

|𝑐1|2 + |𝑐2|2
)︀−1

. (45)

Now, we can describe the motion of the atom, by
simultaneously integrating Eqs. (25), (41), and (42)
with regard for expressions (44) and (45) for the pro-
jections 𝐹𝑥 and 𝐹𝑦 of the light pressure force on the
abscissa and ordinate axes, respectively.

The normalization in Eqs. (44) and (45) is required,
when combining the integration of the Schrödinger
equation and the equations of motion with the use
of the fourth-order accuracy method with the Monte
Carlo wave-function method of the first order. It is
so because intermediate time points are used at the
integration.
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5. Numerical Calculation Procedure

The motion of the atom was simulated by simultane-
ously solving Newton’s equation (25) with the force
described by components (44) and (45) and Eqs. (41)
and (42) for the probability amplitudes of atomic
states. In addition, we simulated fluctuations of the
atomic momentum owing to such phenomena as the
spontaneous light emission, light absorption, and in-
duced light emission by the atom. In our calculations,
for simplicity, we assumed that the spontaneous emis-
sion of a photon by the atom led to the change in the
atomic momentum by ~𝑘 with the identical proba-
bilities in the positive and negative directions of the
axes 𝑂𝑥 and 𝑂𝑦.

The stochastic character of the spontaneous light
emission by the atom leads to its diffusion in the mo-
mentum space, this is the so-called “momentum diffu-
sion”. In the low-intensity laser radiation field, when
the population of the excited state is insignificant,
the light pressure force and the momentum diffu-
sion coefficient are equal to the sum of corresponding
quantities for each of the counter-propagating waves
[28]. We used this approximation earlier to simulate
a fluctuative change of the atomic momentum in the
field of counter-propagating low-intensity light pulses
[18] and to estimate a variation of the atomic mo-
mentum in the field of counter-propagating bichroma-
tic [19], stochastic [20, 29], and frequency-modulated
light waves [21].

The change of the atomic momentum at the pho-
ton emission owing to the recoil effect was taken into
account, by selecting the photon emission direction as
follows. The interval [0,1] was divided into four iden-
tical subintervals. Each of the latter corresponded to
the photon emission along the positive or negative di-
rection of the 𝑂𝑥 or 𝑂𝑦 axis. At the same time, the
determination of the fluctuating change of the atomic
momentum due to the light absorption and induced
emission required an additional attention.

As an example, let us consider how the atomic mo-
mentum fluctuates in the field of a running monochro-
matic wave. Let 𝜃 denote the angle between the pho-
ton spontaneous emission direction and the axis 𝑂𝑥,
along which the light wave propagates, and let ⟨𝑁𝑠⟩
be the average number of spontaneously emitted pho-
tons. Then, assuming the photon scattering to be a
completely random process, we obtain the following
formula for the square of the momentum change av-

eraged over an atomic ensemble [25]:
⟨Δ𝑝2𝑥⟩ = ⟨Δ𝑝20𝑥⟩+ ~2𝑘2⟨𝑁𝑠⟩+ ~2𝑘2⟨cos2 𝜃⟩⟨𝑁𝑠⟩. (46)

The first term on the right-hand side is associated
with the initial momentum distribution of atoms in
the ensemble, the second one with the induced ab-
sorption and radiation processes, and the third one
with fluctuations of the momentum at the sponta-
neous photon emission. Equation (46) is basic for the
computer simulation of the momentum diffusion in
the field of a running wave. According to this equa-
tion, one random change of the atomic momentum
owing to the spontaneous light emission occurs per
one change of the atomic momentum by ±~𝑘 owing
to induced processes. This algorithm of taking the
momentum diffusion of atoms into account is valid
in the case of weak fields, Ω0 . 𝛾. If the intensity
of counter-propagating waves is high, the momentum
diffusion in the induced processes can be taken into
account in the same way, but the final results will pos-
sess an estimation character. Since we consider the
motion of atoms in the field of perpendicularly inter-
secting waves with the same intensity, the averaged
(over several modulation periods) fluctuating (owing
to the induced processes) changes of the squares of
the 𝑥 and 𝑦 components of the atomic momentum
should expectedly be the same.

After every integration step Δ𝑡 in Eqs. (25), (41),
and (42), we should determine whether a quantum
jump occurred or not. If did not, the state vector is
renormalized. If did, atom’s velocity changes by

Δ𝑣𝑥 = ~𝑘 sgn(𝜖1 − 0.5)
1 + sgn(𝜖2 − 0.5)

2𝑚
+

+ ~𝑘 sgn(𝜖3 − 0.5)
1 + sgn(𝜖4 − 0.5)

2𝑚
(47)

along the 𝑂𝑥 axis and by

Δ𝑣𝑦 = ~𝑘 sgn(𝜖1 − 0.5)
1− sgn(𝜖2 − 0.5)

2𝑚
+

+ ~𝑘 sgn(𝜖3 − 0.5)
1− sgn(𝜖4 − 0.5)

2𝑚
(48)

along the 𝑂𝑦 axis, where 𝜖1,2,3,4 are random numbers
uniformly distributed within the interval [0,1].

One of the terms in each of Eqs. (47) and (48) sim-
ulates the momentum fluctuation at the spontaneous
photon emission along the positive and negative direc-
tions of each axis, and the other the momentum fluc-
tuation in the same directions because of fluctuations
of the induced absorption and radiation processes.
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6. Results of Numerical Simulation
The time evolution of the atomic ensemble in a bi-
chromatic field is determined by parameters of the
atomic interaction with the field and by the initial
conditions. We will not complicate the analysis, by
considering the distribution function of atoms over
their coordinates and velocity components. Instead,
we will assume that the atoms start to move from
the same point, namely, the coordinate frame origin
(𝑥0 = 0, 𝑦0 = 0), and possess the same initial ve-
locity. The specific calculations were made for 23Na
atom, which can cyclically interact with the field
[1]. The wavelength for the transition 32𝑆1/2−32𝑃3/2

equals 𝜆 = 589.16 nm, the spontaneous emission rate
𝛾 = 2𝜋 × 10 MHz, and the Doppler cooling limit for
sodium atoms amounts to 𝑇D = 240 𝜇K [1].

Earlier, a similar research was made in the case
of one standing bichromatic wave [19]. In this work,
while studying the case of atomic motion in the field
of counter-propagating bichromatic waves, we took
parameters analogous to those used in the numeri-
cal simulation in work [19], by focusing attention on
the parameters that are responsible for the formation
of atomic traps and periodic patterns. In our case,
a two-dimensional trap and two-dimensional spatial
patterns should expectedly be formed.

The possibility of the formation of a two-dimen-
sional trap by the field of perpendicularly intersect-
ing bichromatic waves was evaluated by calculating
the time dependences of the center-of-mass location
(the mean values 𝑥𝑎𝑣 and 𝑦𝑎𝑣 of the atomic abscis-
sas and ordinates, respectively) for the ensemble of
atoms and the root-mean-square deviations Δ𝑥 and
Δ𝑦 from the corresponding mean values. Examples of
those dependences are shown in Fig. 2. The time de-
pendences for the ordinates are not depicted, because
their form is close to the corresponding dependences
for the abscissas. As one can see, if the atoms start
to move from the coordinate origin at the velocity
𝑣0𝑥 = 𝑣0𝑦 = 5 m/s, they are subjected to the action
of a force directed toward the point (𝑥 = 0, 𝑦 = 0).

In time, fluctuations of the averaged atomic coordi-
nates (𝑥𝑎𝑣, 𝑦𝑎𝑣) around the point (𝑥 = 0, 𝑦 = 0) with
Δ𝑥 ≈ 66 𝜇m and Δ𝑦 ≈ 66 𝜇m were established. In
order to make sure that those fluctuations are close to
stationary ones, similar calculations were carried out
for the zero initial velocity of atoms. The obtained
result turned out the same (see the dashed curves
in Fig. 2). The deviation turned out a bit larger than
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Fig. 2. Time dependences of the average coordinate 𝑥𝑎𝑣 (𝑎)
and the root-mean-square deviation Δ𝑥 (𝑏) for the abscissas of
100 23Na atoms at their interaction with intersecting stationary
bichromatic waves. The components of the initial velocity of
atoms 𝑣0𝑥 = 𝑣0𝑦 = 5 m/s (solid curves) and 0 m/s (dashed
curves). Ω = 2𝜋×200 MHz, 𝛿 = 2𝜋×20 MHz (𝛿1 = 𝛿2 = 𝛿5 =

= 𝛿6 = 2𝜋×110 MHz, 𝛿3 = 𝛿4 = 𝛿7 = 𝛿8 = −2𝜋×90 MHz),
the Rabi frequencies of the waves are identical and equal to
Ω0 = 2𝜋×100 MHz, the initial phases of the waves equal zero.
All atoms are in the ground state, before they start to interact
with the field

the same quantity in the case of one-dimensional trap
Δ𝑥 ≈ 50 𝜇m (see Fig. 8 in work [19]). We would like
to emphasize that, for the coordinate-dependent light
pressure force directed to the coordinate origin to ap-
pear, the intensities of light waves have to be rather
high [19].

Now, let us consider the formation of spatial atomic
patterns in the field of intersecting standing bichro-
matic waves. We recall that the field of a standing bi-
chromatic wave can form a one-dimensional pattern
of atoms by their grouping in planes located at the
distances 1

4𝜆+
1
2𝑛𝜆 from the coordinate origin, where

𝑛 is an arbitrary integer [19]. Figure 3 exhibits a frag-
ment of the spatial distribution of 23Na atoms after
their interaction with intersecting stationary bichro-
matic waves for 100 𝜇s. This is a time interval suffi-
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Fig. 3. Fragment of the spatial distribution of 50000 23Na
atoms after their interaction with intersecting standing bichro-
matic waves for 100 𝜇s. The initial velocities of atoms equal
zero, Ω = 2𝜋×40 MHz, 𝛿 = 2𝜋×20 MHz (𝛿1 = 𝛿2 = 𝛿5 =

= 𝛿6 = 2𝜋×120 MHz, 𝛿3 = 𝛿4 = 𝛿7 = 𝛿8 = −2𝜋×80 MHz),
the Rabi frequencies of the waves are identical and equal to
Ω0 = 2𝜋× 100 MHz, the initial phases of the waves equal zero

за часом густини енергiї електричного поля,
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Fig. 4. Trajectory of the motion of an atom for the parameters
corresponding to Fig. 3. The time of motion is 500 𝜇s. The
circle denotes a point corresponding to a time moment of 500 𝜇s

cient for the stationary values of the components of
the root-mean-square deviation of the atomic velocity
from the mean values, Δ𝑣𝑥 = Δ𝑣𝑦 = 0.248 m/s, to be
established. At the same time, at 𝑡 = 100 𝜇s, the root-
mean-square deviations of atomic coordinates from
the mean values amount to Δ𝑥 ≈ Δ𝑦 ≈ 4.5 𝜇m and
continue to grow.

The spatial distribution of atoms depicted in Fig. 3
is associated with the spatial distribution of the time-

averaged energy density of the electric field, which is
described by the expression

𝑤 = 8𝜀0𝐸
2
0

[︀
sin2(𝜋𝑥/𝜆) + sin2(𝜋𝑦/𝜆)− 1

]︀2
. (49)

This formula takes into account that, for the corre-
sponding examined distances from the coordinate ori-
gin, 𝑥Δ𝑘 ≪ 1 and 𝑦Δ𝑘 ≪ 1. From expression (49), it
is clear that the energy density equals zero along the
family of straight lines described by the equations

𝑦 = 𝑥+
𝜆

2
+ 𝑛1𝜆, (50)

𝑦 = −𝑥+
𝜆

2
+ 𝑛2𝜆, (51)

where 𝑛1 and 𝑛2 are integers.
As one can see from Fig. 3, most of the atoms re-

side near the straight lines described by Eqs. (50) and
(51), i.e. in the areas, where the energy density of
the electric field is low. The explanation of this phe-
nomenon is very simple. If an atom moves in the weak
field almost along the straight lines (50) and (51), the
direction of its velocity either changes with a very low
probability or changes after the atom has achieved a
region with a strong field. But, for atoms crossing the
strong-field region, the probability that the direction
of their velocity will change is much higher. Thus, the
distribution of atoms over their velocities has a maxi-
mum near the directions corresponding to the atomic
motion along lines (50) and (51), which explains the
formation of spatial pattern exhibited in Fig. 3.

Figure 4 demonstrates a trajectory of one of the
atoms. It is evident that a large part of the trajec-
tory consists of segments directed at angles of ± 1

4𝜋
with respect to the abscissa and ordinate axes, in ac-
cordance with Eqs. (50) and (51). Thus, the two-di-
mensional atomic pattern in Fig. 3 has a dynamic
character: most of the time, the atoms move closely
to the straight lines (50) and (51), and occasionally
transit from one line to another.

Figure 5 illustrates the distribution of the electric
field energy density in the cases 𝜙 = 0 (panel 𝑎)
and 𝜋 (panel 𝑏). Hence, the energy is mainly concen-
trated (𝑎) around the points (𝑥 = 𝑛𝑥𝜆, 𝑦 = 𝑛𝑦𝜆) and
(𝑏) around the points

(︀
𝑥 = 𝑛𝑥𝜆+ 1

2𝜆, 𝑦 = 𝑛𝑦𝜆+ 1
2𝜆

)︀
,

where 𝑛𝑥 and 𝑛𝑦 are arbitrary integers. The pattern
formed by the atoms at 𝜙 = 0 (Fig. 3) corresponds
to the regions in Fig. 5, 𝑎 where the field is weak. If
𝜙 = 𝜋, the regions with the strong field are shifted by
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Fig. 5. Distribution of the energy density for the electric
field of intersecting standing bichromatic waves in the cases
(𝑎) 𝜙 = 0 (the phases of all waves are identical) and (b) 𝜙 = 𝜋

(the phases of the waves propagating along the ordinate axis
differ by 𝜋 from the phases of waves propagating along the
abscissa axis). The angle of dash inclination with respect to
the abscissa axis is proportional to the field energy density

𝜆/2 along the abscissa and ordinate axes, and we see
again that most of the atoms reside in the regions,
where the field is weak (see Fig. 6). Unlike Fig. 3,
Fig. 6 demonstrates a conspicuous difference between
the atomic densities at the figure center and on the
figure periphery. This is a result of the slower expan-
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Fig. 6. Fragment of the spatial distribution of 50000 23Na
atoms after their interaction with intersecting standing bichro-
matic waves for 100 𝜇s. The initial velocities of atoms equal
zero, Ω = 2𝜋×40 MHz, 𝛿 = 2𝜋×20 MHz (𝛿1 = 𝛿2 = 𝛿5 = 𝛿6 =

= 2𝜋×120 MHz, 𝛿3 = 𝛿4 = 𝛿7 = 𝛿8 = −2𝜋×80 MHz), the
Rabi frequencies of the waves are identical and equal to Ω0 =

= 2𝜋 × 100 MHz, 𝜙1 = 𝜙2 = 𝜙3 = 𝜙4 = 0, and 𝜙5 = 𝜙6 =

= 𝜙7 = 𝜙8 = 𝜋

sion of the atomic cloud, because the field is very
low near the initial coordinates (𝑥0 = 0, 𝑦0 = 0) at
𝜙 = 𝜋. Therefore, we obtain a smaller characteris-
tic size of the atomic cloud: Δ𝑥 = Δ𝑦 = 2.5 𝜇m
(cf. Δ𝑥 = Δ𝑦 = 4.5 𝜇m at 𝜙 = 0).

Note that, in the general case of arbitrary phase
shift 𝜙 between the intersecting waves, there are no
lines in the space, along which the time-averaged en-
ergy density of the electric field

𝑤 = 4𝜀0𝐸
2
0 [2(sin

2(𝜋𝑥/𝜆) + sin2(𝜋𝑦/𝜆))2+

+4(cos𝜙− 1) sin2(𝜋𝑥/𝜆) sin2(𝜋𝑦/𝜆)+

+(1− 2 sin2(𝜋𝑥/𝜆)− 2 sin2(𝜋𝑦/𝜆))(1 + cos𝜙)] (52)

would be equal to zero. For example, if 𝜙 = 𝜋/2,
Eq. (52) reads

𝑤 = 4𝜀0𝐸
2
0 [sin

2(𝜋𝑥/𝜆) + sin2(𝜋𝑦/𝜆)− 1]2 +

+ sin4(𝜋𝑥/𝜆) + sin4(𝜋𝑦/𝜆), (53)

and does not equal zero at any point. At the same
time, there may exist straigh intervals with a rather
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low energy density, which makes the formation of spa-
tial patterns probable. In particular, results close to
those depicted in Figs. 3 and 6 are observed at small
changes in the phase shift between the intersecting
waves, namely, at 𝜙 = 0.05𝜋 and 0.95𝜋, respectively.

Spatial patterns in the atomic clouds arise in the
fields of intersecting standing bichromatic waves ow-
ing to a cumulative action of the waves on the atoms
and cannot be interpreted by generalizing the re-
sults of the study of spatial patterns arising in the
field of one standing bichromatic wave [19] to the
two-dimensional case. Really, in the case of a single
standing bichromatic wave, the atoms are grouped
in planes at 𝑥 = 1

4𝜆 + 1
2𝑛𝜆, where 𝑛 is an inte-

ger, for waves propagating along the abscissa axis,
and 𝑦 = 1

4𝜆 + 1
2𝑛𝜆 for waves propagating along

the ordinate axis. By extrapolating those results onto
the two-dimensional case, one should expect the
grouping of atoms near the points with the coordi-
nates

(︀
𝑥 = 1

4𝜆+ 1
2𝑛𝑥𝜆, 𝑦 = 1

4𝜆+ 1
2𝑛𝑦𝜆

)︀
, which does

not correspond to the results obtained above: a spa-
tial pattern with a period of

√
2
2 𝜆 and oriented at an

angle of 𝜋/4 with respect to the abscissa and ordi-
nate axes.

7. Conclusions

The spatial distribution of atoms in the field of per-
pendicularly intersecting bichromatic standing waves
has been studied. It is found that, the results of our
previous study of the spatial distribution of atoms in
the field of a stationary bichromatic wave [19] allow
the parameters and the character of atomic distribu-
tion in the field of intersecting standing bichroma-
tic waves to be estimated only partially. In particu-
lar, the parameters of the atomic distribution in a
light trap created by such fields are in good agree-
ment with the results predicted on the basis of work
[19]. At the same time, the appearance of a spa-
tial pattern cannot be predicted even roughly by ex-
trapolating the results of work [19] obtained for the
one-dimensional geometry onto the two-dimensional
case: instead of the expected grouping of atoms near
the points

(︀
𝑥 = 1

4𝜆+ 1
2𝑛𝑥𝜆, 𝑦 = 1

4𝜆+ 1
2𝑛𝑦𝜆

)︀
, where

𝑛𝑥 and 𝑛𝑦 are arbitrary integers, we have their ac-
cumulation in vicinities of the straight lines corre-
sponding to the energy minimum. For example, in the
case of identical initial phases of intersecting waves,
those straight lines are described by the equations

𝑦 = 𝑥+ 𝜆
2 +𝑛1𝜆 and 𝑦 = −𝑥+ 𝜆

2 +𝑛2𝜆, where 𝑛1 and
𝑛2 are arbitrary integers. As a result, the atoms form
a square pattern with a side of

√
2
2 𝜆. This pattern has

a dynamic character: an atom enters it, spends some
relatively short time by moving along a pattern line,
and then exits from it. After some time, the atom en-
ter the pattern at another place, and the procedure
repeats.
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Teor. Fiz. 66, 1599 (1974).

25. V.G. Minogin, V.S. Letokhov. Laser Light Pressure on
Atoms (Gordon and Breach, 1987).

26. J. Steinbach, B.M. Garraway, P.L. Knight. High-order un-
raveling of master equations for dissipative evolution. Phys.
Rev. A 51, 3302 (1995).

27. B.W. Shore. The Theory of Coherent Atomic Excitation,
Vol. 1 (Wiley, 1990).

28. K. Mølmer. Limits of Doppler cooling in pulsed laser fields.
Phys. Rev. Lett. 66, 2301 (1991).

29. V.I. Romanenko, O.G. Udovytska, V.M. Khodakovsky,
L.P. Yatsenko. Atomic momentum diffusion in the field of
counter-propagating stochastic light waves. Ukr. J. Phys.
63, 616 (2018). Received 19.11.18.

Translated from Ukrainian by O.I. Voitenko

В.I. Романенко, Н.В.Корнiловська,
О.Г.Удовицька, Л.П.Яценко

ПРОСТОРОВИЙ РОЗПОДIЛ
АТОМIВ У ПОЛI ПЕРЕХРЕСНИХ СТОЯЧИХ
БIХРОМАТИЧНИХ СВIТЛОВИХ ХВИЛЬ

Р е з ю м е

Показано, що, вибираючи належним чином вiдстроювання
несучої частоти кожної з перехресних бiхроматичних хвиль
вiд частоти переходу в атомi, можна сформувати двови-
мiрну пастку для атомiв, якщо iнтенсивнiсть хвиль досить
велика. При нульових та близьких до нуля початкових фа-
зах хвиль, а також при 𝜋 та близькому до 𝜋 зсувi фаз мiж
перехресними хвилями формується динамiчна просторова
структура з квадратних комiрок зi стороною 𝜆/

√
2. Чисель-

не моделювання проведено для атомiв натрiю.
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