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ELECTRIC FIELD AND ELECTRIC
FORCES IN A SPONTANEOUSLY POLARIZED
NONPOLAR ISOTROPIC DIELECTRIC

Based on the microscopic Maxwell equations, we develop a method of description of the electric
field in a spontaneously polarized isotropic nonpolar dielectric. We find the solution for the
electric field E(r) for several typical examples. Moreover, we generalize Helmholtz’s formula
for the electric force acting on a volume element of a dielectric with regard for the contribution
of the spontaneous polarization.
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1. Introduction

As known, the polarization of dielectrics can be of two
types: the polarization induced by an external elec-
tric field and the spontaneous one [1–7]. The sponta-
neous polarization is characteristic of ferroelectrics,
pyroelectrics, and some of piezoelectrics. It can also
arise in “customary” dielectrics. In particular, electric
signals were observed in He II under torsion oscilla-
tions [8] and in standing half-waves of the second [9–
11] and first [12] sounds. In those experiments, the
electric field can be associated only with the sponta-
neous polarization, since 4He atom possesses no in-
trinsic charge, dipole moment, or multipole moment.

Depending on the type of a dielectric, its atoms
can be charged or neutral (the latter can be polar or
nonpolar). For the ionic crystals, which can be piezo-
electics, pyroelectrics, or ferroelectrics under certain
conditions, the theory of spontaneous polarization is
well developed [4, 6, 7, 13–15]. However, no such the-
ory is available for nonpolar dielectrics (to our know-
ledge), though the properties of nonpolar dielectrics
are more simple. In what follows, we try to remove
this gap. We will consider only isotropic dielectrics.
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For the nonpolar dielectrics, one needs to repre-
sent the total polarization P(r) as P𝑖(r)+P𝑠(r) and
to consider P𝑠 and P𝑖 self-consistently (here, P𝑠 is
the “bare” spontaneous polarization, and P𝑖 is the in-
duced polarization). This is seen from the following.
In a nonpolar isotropic dielectric, the spontaneous po-
larization can arise due to sound, gravity, accelera-
tion, and elastic deformation, since a directed con-
centration gradient appears in the medium in these
cases. A nonpolar atom has no intrinsic dipole mo-
ment. However, two nonpolar atoms polarize each
other. As a result, each atom acquires the dipole mo-
ment [16–18]

d = −𝐷7|𝑒|
𝑎8𝐵
𝑟7

ir, (1)

where 𝑟 is the distance between atoms, ir = r/𝑟 is the
unit vector directed to another atom, 𝑎𝐵 = ~2

𝑚𝑒2 is the
Bohr radius, and 𝐷7 is an atomic constant. In view
of this, the gradient of the particle number density
𝑛(r) causes the bulk polarization of the medium

P𝑠(r) = 𝜉∇𝑛(r). (2)

The rough estimate on the basis of formula (1)
gives 𝜉 = (7/3)𝑑0𝑟0(𝑛(r)/𝑛0)

𝑎, where 𝑎 = 2, 𝑑0 =
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= −𝐷7|𝑒|𝑎
8
𝐵

𝑟70
, and 𝑟0 = 𝑛

−1/3
0 is the mean inter-

atomic distance in the unperturbed system. The more
accurate analysis with the averaging of d over dif-
ferent configurations of atoms leads to 𝜉 ≈ 7.5×
× (7/3)𝑑0𝑟0(𝑛(r)/𝑛0)

𝑎, where 𝑎 = 1 [19] (the number
7.5 is true only for He II, the sign of 𝜉 was obtained
in [19] improperly). The collection of dipoles creating
the polarization P𝑠(r) induces the field E(r). This
field additionally polarizes the atoms and causes the
induced polarization P𝑖(r). The latter was not taken
into account in P𝑠(r) and also affects E(r). Thus, the
electron shell of each atom is deformed by two differ-
ent forces: first, due to the quantum mutual polariza-
tion of atoms and the density gradient, and, second,
due to the field E in the medium. It is clear that, at
small deformations, those two deformations should be
independent of each other. At large deformations, we
need to solve a quantum-mechanical problem of two
nonpolar atoms in the external field E. Such problem
has not been solved yet, as far as we know. In what
follows, we consider the deformations to be small. In
this case, the polarizations P𝑠 and P𝑖 should be con-
sidered separately. We believe that this is true for all
mechanisms of spontaneous polarization of nonpolar
(isotropic or anisotropic) dielectrics.

Based on the microscopic Maxwell equations, we
will develop a method of determination of the polar-
ization P(r) = P𝑠(r) + P𝑖(r) and the field E(r) for
isotropic nonpolar dielectrics with the self-consistent
account for P𝑠 and P𝑖. We will also show that the
consideration of P𝑠 changes the force acting on an
element of the volume of a dielectric.

2. Electric Field

In the electrodynamics of continua (see [4], Chapters
II, IV, IX), the electromagnetic field of isotropic di-
electrics is described by the local (i.e., valid at each
point of a medium) relations

D = E + 4𝜋P = 𝜀E, (3)

B = H + 4𝜋M = 𝜇H (4)

and by the Maxwell equations in a medium:

divD = 4𝜋𝜌𝑓 , (5)

rotE = −1

𝑐

𝜕B
𝜕𝑡

, (6)

divB = 0, (7)

rotH =
1

𝑐

𝜕D
𝜕𝑡

+
4𝜋j𝑓
𝑐

. (8)

Here, 𝜌𝑓 is the density of foreign charges, and j𝑓 is
the foreign current.

The spontaneous polarization of a dielectric arises
due to the internal “nonelectric” mechanism causing
the appearance of a set of dipoles in the medium;
we will call them “spontaneous” dipoles. We will see
below that, in order to describe a spontaneously po-
larized nonpolar isotropic dielectric, one needs to
make some changes in Eqs. (3)–(8). Let us deduce the
necessary equations from the microscopic Maxwell
equations.

First, we find the formula for the polarization P(r),
since the formulae available in the literature are not
quite accurate sometimes. The density of polarization
charges 𝜌(r), averaged over a physically infinitesimal
volume, satisfies the relation∫︁
𝑉+

𝜌(r) 𝑑𝑉 = 0. (9)

Therefore, 𝜌(r) can be presented in the form 𝜌(r) =
= −divP(r), where P = 0 outside the dielectric.
Here, 𝑉+ is the volume confined inside the surface
that covers the whole dielectric and oversteps its li-
mits by an infinitesimal distance. In [4] (Chapt. 2,
S 6), P(r) is determined with the use of the follow-
ing formulae:∫︁
𝑉+

r𝜌(r)𝑑𝑉 = −
∫︁
𝑉+

r(∇P(r))𝑑𝑉 =

= −
∮︁
𝑆

r(P(r)𝑑S) +
∫︁
𝑉+

P(r)𝑑𝑉 =

∫︁
𝑉+

P(r)𝑑𝑉. (10)

However, these formulae do not allow us to find P(r),
since relation (10) does not yield P(r) = r𝜌(r). In-
deed, let the polarization be uniform: P(r) = P.
Then 𝜌(r) = −divP = 0 inside the body. On the sur-
face, P(r) decreases by jump to zero, and 𝜌(r) is sin-
gular. For such dielectric, the equality P(r) = r𝜌(r)
is violated at all points of the body. In this case, the
integral

∫︀
𝑉+

r𝜌(r)𝑑𝑉 is defined by the surface part
of 𝜌(r). These properties are natural, since a uni-
formly polarized body can be considered as two bo-
dies that possess uniformly distributed (+) and (−)
charges and are shifted relative to each other by an
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infinitesimal distance. The jump of 𝜌(r) on the sur-
face is usually large for the nonuniform polarization
as well. In this case, the equality P(r) = r𝜌(r) should
also be significantly violated. We note that the de-
finition P(r) = r𝜌(r) [4] was criticized previously in
work [13].

In order to obtain the formula for P(r), we note
that, for a polarized dielectric without foreign char-
ges, 𝜌(r) reads

𝜌(r) =
𝑁∑︁
𝑗=1

[𝑞(𝑗)𝛿(r − r𝑗)− 𝑞(𝑗)𝛿(r − r𝑗 − r(𝑗)0 )], (11)

where 𝑁 is the number of atoms in the dielectric. We
set 𝑞(𝑗) < 0 for all 𝑗. Then

∫︁
𝑉+

r𝜌(r)𝑑𝑉 = −
𝑁∑︁
𝑗=1

r(𝑗)0 𝑞(𝑗) =

𝑁∑︁
𝑗=1

d𝑗 =

∫︁
𝑉+

𝑛(r)d(r)𝑑𝑉,

(12)

where 𝑛(r) is the microscopic density of dipoles,
and d(r) is the dipole moment of a volume,
which contains one atom and has the coordinate
r. Since

∫︀
𝑉+

𝜌(r)𝑑𝑉 = 0, we may write 𝜌(r) =

= −divPmic(r), where Pmic is a microscopic quan-
tity. Similarly to (10), we obtain∫︁
𝑉+

r𝜌(r)𝑑𝑉 =

∫︁
𝑉+

Pmic(r)𝑑𝑉. (13)

The relations 𝜌(r) = −divP(r) and 𝜌(r) =
= −divPmic(r) = −div P̄mic(r) yield P(r) = P̄mic(r).
Since equalities (12) and (13) hold for a dielectric of
any shape, they yield finally

Pmic(r) = 𝑛(r)d(r), P(r) = 𝑛(r)d(r). (14)

The possible jump of 𝜌(r) on the surface does not
violate equalities (14), since this jump on the right-
hand side of (12) is smeared over the whole vol-
ume. Therefore, the function 𝑛(r)d(r) is smooth. The
formula 𝜌(r) = −divP(r) sets P(r) to within rotg(r),
where g(r) is any function. Therefore, we can de-
fine P(r) in the infinite number of ways, but the
chosen way must be consistent with the equation
𝜌(r) = −divP(r). For formulae (14), this holds. Ac-
cording to (14), P(r) is the dipole moment of a unit
volume of the dielectric.

Relation (13) yields also P(r) = r𝜌(r), though
Pmic(r) ̸= r𝜌(r) (since 𝜌(r) is a sum of 𝛿-functions,
but Pmic(r) = 𝑛(r)d(r) is smoothly varied in space).

We now pass to the description of the spontaneous
polarization. Consider an isotropic dielectric charac-
terized in an external electric field by the dielectric
permittivity 𝜀. Let it contain a macroscopic number
of spontaneous dipoles d(𝑗)

𝑠 , and let it be surrounded
by a dielectric with dielectric permittivity 𝜀2 (with-
out the intrinsic electromagnetic field). We will write
the equations only for the first dielectric and take the
second one into account in boundary conditions. The
spontaneous dipoles are associated with some average
charge density 𝜌𝑠(r) and the polarization P𝑠. These
dipoles create the electric field, which polarizes the
surrounding atoms (including the atoms, being the
carriers of spontaneous dipoles). This leads to the ap-
pearance of induced charges with the average density
𝜌𝑖(r) and the induced polarization P𝑖(r). It is clear
that, for the densities 𝜌𝑠(r) and 𝜌𝑖(r), the total charge
is zero:∫︁
𝑉+

𝜌𝑠(r)𝑑𝑉 = 0,

∫︁
𝑉+

𝜌𝑖(r)𝑑𝑉 = 0. (15)

Similarly to the above analysis, (15) yield the formu-
lae

𝜌𝑠(r) = −divP𝑠(r), 𝜌𝑖(r) = −divP𝑖(r), (16)

P𝑠(r) = 𝑛𝑠(r)d𝑠(r), P𝑖(r) = 𝑛𝑖(r)d𝑖(r), (17)

where 𝑛𝑠(r) and 𝑛𝑖(r) are the microscopic densities
of spontaneous and induced dipoles.

Next. The averaging of the microscopic Maxwell
equation divEmic(r) = 4𝜋𝜌(r) over a physically in-
finitesimal volume gives the equation

divE(r) = 4𝜋𝜌(r) = 4𝜋[𝜌𝑠(r) + 𝜌𝑖(r)]. (18)

In view of (16), (17), we can write (18) in the form

divD(r) = 0, (19)

where

D = E + 4𝜋(P𝑖 + P𝑠). (20)

As was mentioned above, the polarization P𝑖(r) is a
local response of the medium to the field E(r). The-
refore, the relation

4𝜋P𝑖(r) = (𝜀(r)− 1)E(r) (21)
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should be satisfied analogously to the polarization of
a dielectric by an external field E0. Here, 𝜀 is the
usual dielectric permittivity. Indeed, the response is
independent of which force has created the field E0

at the given point of the dielectric: E0 can be created
by free charges outside the system or by spontaneous
charges inside the system. In both cases, the value
of P𝑖 must be the same. The resulting field is E =
= E0 + E𝑖, where E𝑖 is the field created by induced
dipoles. Since P𝑖 is identical in both cases, E should
be also the same.

It is convenient to introduce the quantity

D𝑖 = E + 4𝜋P𝑖 = 𝜀E. (22)

Then Eq. (18) takes the form

divD𝑖(r) = 4𝜋𝜌𝑠(r). (23)

Thus, one should solve Eqs. (22), (23) with regard for
the boundary conditions

𝐷𝑛 = 𝐷2𝑛, E𝑡 = E2𝑡 (24)

and the relation

E = −∇𝜙− 1

𝑐

𝜕A
𝜕𝑡

, (25)

which follows from (6). In a stationary problem, the
magnetic field is absent: A = 0,B = rotA = 0. If
the spontaneous charges are moving, then a current
j𝑠 and a magnetic field arise. The charge moving with
a velocity v creates the potential 𝜙 and the vector po-
tential A = 𝜙v/𝑐 [20] (in the immovable reference
system). The last relation indicates that the mag-
netic field is weak for the processes, which are slow
as compared with the electromagnetic wave. There-
fore, for the stationary and slow processes, we may
set 𝜕A/𝜕𝑡 = 0 in (25), and Eq. (23) takes the form
of the Poisson equation

△𝜙 = −4𝜋𝜌𝑠/𝜀. (26)

We neglect the nonuniformity of 𝜀, which is justified
for uniform and weakly nonuniform fields.

Let the spontaneous dipoles d(𝑗)
𝑠 = |𝑞(𝑗)0 |r(𝑗)0 (𝑞(𝑗)0 <

< 0) be distributed in the dielectric. The average den-
sity of effective spontaneous charges reads

𝜌𝑠 =

⟨
𝑁𝑠∑︁
𝑗=1

[𝑞
(𝑗)
0 𝛿(r − r𝑗)− 𝑞

(𝑗)
0 𝛿(r − r𝑗 − r(𝑗)0 )]

⟩
, (27)

where 𝑁𝑠 is the number of spontaneous dipoles, r𝑗
and r𝑗 + r(𝑗)0 are the coordinates of the effective
charges 𝑞

(𝑗)
0 , −𝑞

(𝑗)
0 of the 𝑗-th dipole, and ⟨𝑓⟩ ≡ 𝑓 .

The solution of Eqs. (26), (27) is known:

𝜙(r) =

⟨
𝑁𝑠∑︁
𝑗=1

[︃
𝑞
(𝑗)
0

𝜀|r − r𝑗 |
− 𝑞

(𝑗)
0

𝜀|r − r𝑗 − r(𝑗)0 |

]︃⟩
. (28)

For the points r far from the spontaneous dipoles
(|r − r𝑗 | ≫ 𝑟

(𝑗)
0 ), we can make expansion in r(𝑗)0 . As

a result, we have

𝜙(r) =

⟨
𝑁𝑠∑︁
𝑗=1

d(𝑗)
𝑠 (r − r𝑗)
𝜀|r − r𝑗 |3

⟩
=

=

⟨∫︁
𝑉

𝑑ŕ
𝑛𝑠(ŕ)d𝑠(ŕ) (r − ŕ)

𝜀|r − ŕ|3

⟩
=

=

∫︁
𝑉

𝑑ŕ
𝑛𝑠(ŕ)d𝑠(ŕ)(r − ŕ)

𝜀|r − ŕ|3
=

∫︁
𝑉

𝑑ŕ
P𝑠(ŕ) (r − ŕ)
𝜀|r − ŕ|3

, (29)

where 𝑉 is the volume of the dielectric.
Formula (29) without 𝜀 in the denominator is well

known [5]. The quantity 𝜀 in (29) takes the polar-
ization P𝑖 into account. Thus, taking P𝑖 into con-
sideration leads to the replacements d𝑠 → d𝑠/𝜀,
P𝑠 → P𝑠/𝜀 in (29). This change has a simple physi-
cal meaning: it shows that the medium weakens the
field of a dipole by 𝜀 times. In view of this reasoning,
formula (29) was intuitively guessed in [19, 21].

For the uniform spontaneous polarization, we have
P𝑠 = (𝑁𝑠/𝑉 )d𝑠 = �̄�𝑠d𝑠 and

𝜙(r) =
∫︁
𝑉

𝑑ŕ
P𝑠 (r − ŕ)
𝜀|r − ŕ|3

= −P𝑠∇r

∫︁
𝑉

𝑑ŕ
𝜀|r − ŕ|

. (30)

With regard for the formula [22]

∇(FG) = (F∇)G + (G∇)F + F × (∇× G)+

+G × (∇× F), (31)

we find

E(r) = −∇r𝜙(r) = (P𝑠∇r)∇r𝑓(r), (32)

𝑓(r) =
∫︁
𝑉

𝑑ŕ
𝜀|r − ŕ|
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from (30). Formulae (29) and (32) give the solution
for the field E(r) created by a spontaneously polar-
ized isotropic dielectric of volume 𝑉 surrounded by
vacuum. It is seen from (32) that E(r) = constP𝑠

only in particular cases, for example, if 𝑓(r) = 𝑏0 +
+b1r + 𝑏2r2 or if P𝑠 = 𝑃𝑠i𝑧, 𝑓(r) = 𝑏0 + 𝑏1𝑧 + 𝑏2𝑧

2.
The symmetry-based reasoning implies that, for a fi-
nite 𝑉, the first case with b1 = 0 is possible only
for the dielectrics with shape of a ball (the case with
b1 ̸= 0 corresponds probably to an ellipsoid), but the
second case is impossible for a three-dimensional sys-
tem. In other words, E(r) is not codirected with P𝑠

in the general case. Moreover, E can be nonuniform,
when P𝑠 is uniform. We have verified these proper-
ties for a cylindrical dielectric with P𝑠 = 𝑃𝑠i𝑧 (see
also Sec. 6.1). These properties suggest that, for an
isotropic spontaneously polarized dielectric, the rela-
tionship between the electric induction

D = D𝑖 + 4𝜋P𝑠 = 𝜀E + 4𝜋P𝑠 (33)

and the strength E takes generally the tensor form:

𝐷𝑗 =
∑︁
𝑙

𝜀𝑗𝑙𝐸𝑙, 𝜀𝑗𝑙 = 𝛿𝑗𝑙𝜀+ 𝜁𝑗𝑙. (34)

According to Eqs. (29) and (32), the field E(r) is con-
nected with P𝑠(r) by the relation E(r) = 𝜍(r)P𝑠(ŕ),
where 𝜍(r) is a linear integro-differential operator. In
this case, we can write 𝐸𝑗(r) =

∑︀
𝑙 𝜍𝑗𝑙(r)𝑃𝑠,𝑙(r) and

𝜁𝑗𝑙(r) = 4𝜋𝜍−1
𝑗𝑙 (r), where 𝜍𝑗𝑙(r) is the matrix of eigen-

values of the operator 𝜍(r). We note that the tensor
𝜁𝑗𝑙 characterizes the spontaneous polarization and is
physically different from the tensor of dielectric per-
mittivity 𝜀𝑗𝑙. We also note that 𝜀𝑗𝑙 is not the tensor
of dielectric permittivity as well, though it contains 𝜀.
Indeed, the quantity 𝜀𝑗𝑙 characterizes the response P𝑖

of the system to an external field E. On the contrary,
the quantity 𝜁𝑗𝑙 allows one to determine the field E(r)
created by the polarization P𝑠(r). Moreover, 𝜀𝑗𝑙 is
a local quantity. However, 𝜁𝑗𝑙 is a nonlocal quantity,
since its value is determined by the distribution of
the spontaneous polarization in the whole volume of
the dielectric and by the boundary conditions. For an
anisotropic dielectric polarized by an external electric
field, the principal values of the tensor 𝜀𝑗𝑙 must be
≥1 [4]. However, for 𝜁𝑗𝑙 and 𝜀𝑗𝑙, such restriction is
absent. The tensor character of 𝜁𝑗𝑙 is a consequence
of the fact that the field E(r) (32) created by spon-
taneous dipoles is not codirected with P𝑠(r) in the

general case. If E(r) and P𝑠(r) are codirected, then
𝜁(r) is a scalar: 𝜁𝑗𝑙(r) = 𝛿𝑗𝑙𝜁(r), 4𝜋P𝑠 = 𝜁(r)E(r).

We remark that the nonlocal connection between
the intrinsic field E(r) and P(r) was derived previous-
ly for ferroelectrics [15, 23–25]. In this case, the solu-
tions [15,23,25] have the local form E(r) = constP(r)
(the nonlocality is hidden due to the one-dimensional
geometry and/or the uniformity of P). Ferroelectrics
were considered [15, 23–25] without the separation of
the total polarization P into P𝑠 and P𝑖.

In ferroelectrics, the distribution of the polariza-
tion is regulated by the minimum of the thermo-
dynamic potential Φ [4, 7, 14, 15, 26]. Therefore, it
should consider namely the total polarization P(r)
to be known. In such case, the above formulae are
applicable, if we change 𝜌𝑠 → 𝜌, P𝑠(r) → P(r),
and 𝜌𝑖,P𝑖(r) → 0. This is equivalent to one change:
𝜀 → 1. For the piezoelectrics, one can represent P(r)
in the form of the deformational and induced parts
[similarly to Eq. (40) below, but in the tensor form]
[4,6]. In this case, the second term affects the first one
by means of the equations of elastic equilibrium. For
the nonpolar dielectrics, the influence of P𝑖 on P𝑠 is
negligible (see the following section). Such difference
is apparently due to the fact that the force acting on
the volume element is 𝐹 ∼ 𝐸 for a piezoelectric and
𝐹 ∼ 𝐸2 for a nonpolar dielectric (in this case, the field
𝐸 is weak; here, we talk about the electric part of F).

Thus, in order to find the field E(r) in a spon-
taneously polarized nonpolar isotropic dielectric, we
need to solve Eqs. (22), (23) with the boundary con-
ditions (24), in which D is given by formula (33). If
the dielectric is surrounded by vacuum, then Eq. (29)
gives the exact solution. In this case, the boundary
conditions (24) are satisfied automatically.

Let us turn to the Maxwell equations (5)–(8). We
noted above that in the presence of the spontaneous
polarization one should solve Eq. (23) (with the re-
placement 𝜌𝑠(r) → 𝜌𝑠(r) + 𝜌𝑓 (r), if foreign charges
are present) instead of Eq. (5). In this case, Eq. (23)
is simply another form of Eq. (5). Equations (6) and
(7) remain the same. Equation (8) can be verified sim-
ilarly to the analysis in [4] (Chapt. IX, S75). We con-
clude that Eq. (8) is valid. In this case, D is given
by formula (33). However, while solving Eq. (8), we
should separate P𝑠 from D by means of the replace-
ments D → D𝑖 and j𝑓 → j𝑓 + j̄𝑠, where j̄𝑠 = 𝜌𝑠v𝑠

is the current related to spontaneous dipoles. Thus,
the Maxwell equations (5)–(8) conserve formally their

ISSN 2071-0194. Ukr. J. Phys. 2019. Vol. 64, No. 6 513



M.D. Tomchenko

validity. However, while solving them, it is necessary
to separate P𝑠 from D, since the spontaneous dipoles
are the source of the field. In addition, D is given by
formulae (33), (34) instead of (3).

In experiments, the potential 𝜙(r) is measured dur-
ing a macroscopic time. For such time interval, a con-
figuration of spontaneous dipoles change a huge num-
ber of times. Therefore, we need to average 𝜙(r) over
the time. According to Gibbs [27], the average over
the time can be replaced by the average over the
ensemble. Quantum statistics gives the following for-
mula for the average over the ensemble [28]:

⟨𝜙⟩ens =
∫︁

𝑑Ω𝑍−1
∑︁
𝑛

𝑒−𝐸𝑛/𝑘B𝑇Ψ*
𝑛𝜙Ψ𝑛, (35)

where 𝑍 =
∑︀

𝑛 𝑒
−𝐸𝑛/𝑘B𝑇 , 𝜙 is given by (29), 𝐸𝑛

is the energy of the system in the 𝑛-th state, and
{Ψ𝑛} is the complete collection of wave functions of
the system. The operator 𝜙 and the functions Ψ𝑛

should be written in terms of the coordinates of the
nucleus and electrons of each atom. Thus, the po-
larization P𝑠(ŕ) in (29) should be additionally av-
eraged statistically. Then P𝑠(ŕ) = ⟨𝑛𝑠(ŕ)d𝑠(ŕ)⟩ens =
= ⟨𝑛𝑠(ŕ)d𝑠(ŕ)⟩ens.

3. Mechanical Response
of a Dielectric to an External Electric Field

In Section 2, we assumed that the quantity P𝑠 is
fixed and can be obtained with regard for the mech-
anism of spontaneous polarization. The fixity of P𝑠

means that the field E(r) created by dipoles of the
medium has no effect on P𝑠(r). We now find the in-
fluence of the field E on the value of P𝑠, which al-
lows us to write the complete system of equations
for P(r) and E(r). The polarization P𝑠(r) arises at
∇𝑛 ̸= 0. Therefore, we should determine the influ-
ence of the field E on the density 𝑛(r). The motion
of the ideal fluid is described by the Euler equation

𝜌𝐷v/𝐷𝑡 ≡ 𝜌𝜕v/𝜕𝑡+ 𝜌(v∇)v = F (36)

and by the equation of continuity

𝜕𝜌/𝜕𝑡+ div (𝜌v) = 0, (37)

where

F = −∇𝑝+ F𝑛𝑚, (38)

F𝑛𝑚 is a nonmechanical (usually external) force per
unit volume, 𝜌 = 𝑚𝑛, and 𝑚 is the mass of an atom
of the dielectric. In the presence of the electric field,
F𝑛𝑚 is approximately the force, with which the field
E acts on the dipole moment of a unit volume. Since
the force acting on the charge 𝑞 is 𝑞E + [v × H]𝑞/𝑐,
we find, by neglecting the magnetic field,

F𝑛𝑚 ≈ (P∇)E, E(r) = Eown(r) + Eext(r). (39)

Here, Eown is the field induced by the dipoles of the
dielectric, and Eext is the external field. According to
the above analysis, we get

P = P𝑠 + P𝑖 = 𝜉∇𝑛(r) +
𝜀− 1

4𝜋
E. (40)

Therefore,
F𝑛𝑚 ≈ 𝜉(∇𝑛∇)E +

𝜀− 1

8𝜋
∇𝐸2. (41)

Without an external field (Eext = 0), we have
|𝐹𝑛𝑚| ≪ |∇𝑝|. Indeed, under the spontaneous po-
larization, the relation 𝐸 ∼ 𝑃 ∼ 𝑃𝑠 usually holds
(see Appendix). Setting 𝐸 = 𝑃𝑠 in (41) and using
formula (2) with 𝜉 = (7/3)𝑑0𝑟0(𝑛(r)/𝑛0)

2, we get
|𝐹𝑛𝑚|/|∇𝑝| ∼ 10−16𝑟20|(△𝑛)/𝑛+2((∇𝑛)/𝑛)2| for He-
II (for other dielectrics, |𝐹𝑛𝑚|/|∇𝑝| can be different
by several orders of magnitude). This is a negligible
value, since 𝑟20|(△𝑛)/𝑛 + 2((∇𝑛)/𝑛)2| <∼ 1 for real
systems. From the physical point of view, the small-
ness of |𝐹𝑛𝑚|/|∇𝑝| is related to the small value of the
mutual polarization of two nonpolar atoms (e.g., the
electron shell of a He II atom is elongated due to the
interaction with adjacent atoms by ∼10−5Å) and to
that 𝐹𝑛𝑚 ∼ 𝐸2. Therefore, we may neglect the term
F𝑛𝑚 in Eqs. (36) and (38). Hence, for Eext = 0, the
influence of the field E on the velocity of an element
of the fluid and on the density can be neglected. The-
refore, we can consider the polarization P𝑠 in Eq. (29)
to be a fixed quantity depending on ∇𝑛 and indepen-
dent of E (as was assumed in Section 2).

The more accurate derivation of the expression for
a force is complicated and gives Helmholtz’s formula
(see [4], Chap. II):

F𝑛𝑚 =
1

8𝜋
∇
[︂
𝐸2𝜌

(︂
𝜕𝜀

𝜕𝜌

)︂
𝑇

]︂
− 𝐸2

8𝜋
∇𝜀. (42)

This formula is obtained for the polarization by the
external field (D = 𝜀E) and does not involve the
spontaneous polarization P𝑠.
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For a spontaneously polarized dielectric, we should
consider also the polarization P𝑠, since

D = 𝜀E + 4𝜋P𝑠 (43)

(see Eq. (33)). Let us determine the force F with re-
gard for the contribution of P𝑠. We will apply the
analysis made in [4] and will present only the changes
caused by P𝑠. As for the details, see [4], S 15, 16. We
are based on the formulae obtained for a liquid di-
electric [4]:

𝐹𝑖 =
∑︁
𝑘

𝜕𝜎𝑖𝑘

𝜕𝑥𝑘
, (44)

𝜎𝑖𝑘 =

[︃
𝐹 − 𝜌

𝜕𝐹

𝜕𝜌
|E,𝑇

]︃
𝛿𝑖𝑘 +

𝐸𝑖𝐷𝑘

4𝜋
, (45)

𝑑𝐹 = −𝑆𝑑𝑇 + 𝜁𝑑𝜌− 1

4𝜋
D𝑑E. (46)

Here, 𝜎𝑖𝑘 is the stress tensor, 𝐹 is the free energy per
unit volume, and 𝜁 is the chemical potential per unit
mass.

Since P𝑠 is independent of E, relations (43) and
(46) yield

𝐹 = 𝐹0(𝜌, 𝑇 )−
𝜀𝐸2

8𝜋
− P𝑠E. (47)

The account for P𝑠 according to (43), (47) gives the
following addition to 𝜎𝑖𝑘:

𝜎𝑠
𝑖𝑘 =

[︂
−P𝑠E +

(︂
𝜌
𝜕P𝑠

𝜕𝜌
|𝑇
)︂

E
]︂
𝛿𝑖𝑘 + 𝐸𝑖𝑃𝑠,𝑘. (48)

However, the complete tensor 𝜎𝑖𝑘 for such solution
has no symmetry 𝜎𝑖𝑘 = 𝜎𝑘𝑖, which should hold [4,
29]. In order to restore this symmetry, we take into
account that the spontaneous polarization P𝑠(r) se-
parates a local axis in the medium and leads to the
anisotropy (though the distribution of atoms is isot-
ropic). The anisotropy is also indicated by formula
(34). By means of a rotation of the coordinate system,
the tensor 𝜀𝑗𝑙 can be diagonalized, which separates
also definite axes. To account for such anisotropy, we
can use the reasoning for the crystal axes (see [4],
S 16). The result consists in the requirement to make
change

𝐸𝑖𝐷𝑘 → (𝐸𝑖𝐷𝑘 + 𝐸𝑘𝐷𝑖)/2 (49)

in (45). Then relation (45) becomes

𝜎𝑖𝑘 =

[︃
𝐹 − 𝜌

𝜕𝐹

𝜕𝜌
|E,𝑇

]︃
𝛿𝑖𝑘 +

𝐸𝑖𝐷𝑘 + 𝐸𝑘𝐷𝑖

8𝜋
, (50)

and 𝜎𝑠
𝑖𝑘 takes the form

𝜎𝑠
𝑖𝑘 =

[︂
−P𝑠E +

(︂
𝜌
𝜕P𝑠

𝜕𝜌
|𝑇
)︂

E
]︂
𝛿𝑖𝑘+

𝐸𝑖𝑃𝑠,𝑘 + 𝐸𝑘𝑃𝑠,𝑖

2
.

(51)

According to Introduction, P𝑠(r) = const𝑛𝑎∇𝑛.
Therefore, we set 𝜌𝜕P𝑠

𝜕𝜌 = 𝑎P𝑠. Then

𝜎𝑠
𝑖𝑘 = (𝑎− 1)P𝑠E𝛿𝑖𝑘 +

𝐸𝑖𝑃𝑠,𝑘 + 𝐸𝑘𝑃𝑠,𝑖

2
. (52)

By (44), this gives the additional force

F𝑠 = (𝑎− 1)∇(P𝑠E) +
1

2
EdivP𝑠 +

+
1

2
(P𝑠∇)E +

1

2
P𝑠 divE +

1

2
(E∇)P𝑠. (53)

By assuming D = 𝜀E, the formula

𝐹𝑗 =
𝜕

𝜕𝑥𝑗

[︂
−𝑝+

𝐸2

8𝜋
𝜌
𝜕𝜀

𝜕𝜌
|𝑇
]︂
− 𝐸2

8𝜋

𝜕𝜀

𝜕𝑥𝑗
+

+
1

4𝜋

[︃
−𝜀

2

𝜕𝐸2

𝜕𝑥𝑗
+

∑︁
𝑘

𝜕

𝜕𝑥𝑘
(𝜀𝐸𝑗𝐸𝑘)

]︃
(54)

was obtained in [4]. Further, the property divD =
=

∑︀
𝑘

𝜕
𝜕𝑥𝑘

(𝜀𝐸𝑘) = 0 was used in [4]. This property
yields − 𝜀

2
𝜕𝐸2

𝜕𝑥𝑗
+

∑︀
𝑘

𝜕
𝜕𝑥𝑘

(𝜀𝐸𝑗𝐸𝑘) = 0 in (54). In our
case, relation (43) leads to the formula divD =
=

∑︀
𝑘

𝜕
𝜕𝑥𝑘

(𝜀𝐸𝑘) + 4𝜋
∑︀

𝑘
𝜕

𝜕𝑥𝑘
(𝑃𝑠,𝑘) = 0. Therefore,

−𝜀

2

𝜕𝐸2

𝜕𝑥𝑗
+

∑︁
𝑘

𝜕

𝜕𝑥𝑘
(𝜀𝐸𝑗𝐸𝑘) = −4𝜋𝐸𝑗 divP𝑠. (55)

Formulae (53), (54), and (55) yield the solution:

F = ∇
[︂
−𝑝+

𝐸2

8𝜋
𝜌
𝜕𝜀

𝜕𝜌
|𝑇
]︂
− 𝐸2

8𝜋
∇𝜀+

+(𝑎− 1)∇(P𝑠E)− 1

2
EdivP𝑠 +

1

2
P𝑠 divE+

+
1

2
(P𝑠∇)E +

1

2
(E∇)P𝑠. (56)

Using relations (31), rotE = 0, rotP𝑠 = 0 (since
P𝑠(r) = const∇𝑛𝑎+1), and [22]

rot (F × G) = (G∇)F − (F∇)G + F divG−

−G divF, (57)
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we obtain finally the formula for a force F acting on
a volume element 𝑑𝑉 of a spontaneously polarized
liquid dielectric:

F = ∇
[︂
−𝑝+

𝐸2

8𝜋
𝜌
𝜕𝜀

𝜕𝜌
|𝑇
]︂
− 𝐸2

8𝜋
∇𝜀+

+(𝑎− 1)∇(P𝑠E) + (P𝑠∇)E +
1

2
rot (P𝑠 × E). (58)

Three last terms arose due to the account for the
spontaneous polarization.

Let us use the Clausius–Mossotti formula [5] 𝜀−1
𝜀+2 =

= 4𝜋
3 𝑛𝛽, which holds for nonpolar fluids and gases

(here, 𝛽 is the polarizability of a molecule). For the
gases and some fluids including He II [30], 𝜀 is close
to 1. Then 𝜀−1 ≈ 4𝜋𝑛𝛽 and 𝜌𝜕𝜀/𝜕𝜌 ≈ 𝜀−1. Instead
of (58), we obtain

F = −∇𝑝+
𝜀− 1

8𝜋
∇𝐸2 + (P𝑠∇)E+

+(𝑎− 1)∇(P𝑠E) +
1

2
rot (P𝑠 × E). (59)

This formula differs from (41) by two additional
last terms. In this case, the term (𝑎 − 1)∇(P𝑠E)
disappears at 𝑎 = 1. Interestingly, the solution
𝜉 ≈ 7.5(7/3)𝑑0𝑟0(𝑛(r)/𝑛0) [19] corresponds namely
to 𝑎 = 1. Such value of 𝑎 is a scaling property
[19]. Therefore, it should hold for any nonpolar fluid.

4. Conclusion

We have proposed a method of description of a
nonpolar isotropic spontaneously polarized dielectric
that involves the induced polarization P𝑖(r) accom-
panying the bare spontaneous polarization P𝑠(r). In
Appendix, we will give (as examples) several solu-
tions for the electric field in a spontaneously po-
larized isotropic dielectric under different boundary
conditions.

The author is grateful to A.S. Rybalko for the
detailed discussion of the experiments [9]. I also
thank A.Morozovska for the discussion of the prob-
lem. The present work was partially supported by the
National Academy of Sciences of Ukraine (project
No. 0116U003191).

APPENDIX.
Examples of Solutions

The below-presented examples can be useful for the compre-
hension of properties of the field E inside of a resonator in

experiments similar to [8–12]. In those experiments, the bound-
ary conditions (BCs) are complicated. We will consider more
simple BCs and will see how the shape of a resonator and the
presence of an external metallic shell affect the field E (in ex-
periments [9], the resonator was placed in a metallic shell for
the protection against external electric signals).

Spontaneously polarized plate in vacuum

Consider a dielectric plate, which occupies the space region
𝑥, 𝑦 ∈ [−𝐿/2, 𝐿/2], 𝑧 ∈ [−𝐻/2, 𝐻/2]. Let the plate have the
uniform total polarization P = 𝑃 i𝑧 (we suppose that P is
known). The plate is surrounded by vacuum.

The knowledge of the solution for the field E in this system
is essential for the experiments like [8–12] and for the ferro-
electrics. In many works (including well-known ones [7, 26]),
the field in such system was described by the formulae

E(int) = −4𝜋P, E(ext) = 0, (60)

where E(int) and E(ext) are the fields inside and outside of
the plate, respectively. However, the solution of this problem
is different.

The problem can be solved accurately, if we start from
Eq. (18), where 𝜌(r) = 0 in the space outside of a dielec-
tric. Equation (18) is true in the whole space. Therefore, BCs
(24) are satisfied automatically. The solution of Eq. (18) is
given by formula (30), where 𝑉 is the volume of a dielectric,
and we should set 𝜀 = 1, P𝑠 = P. In this case, we obtain

𝜙(r) = 𝑃

𝐿/2∫︁
−𝐿/2

𝑑�́�

𝐿/2∫︁
−𝐿/2

𝑑𝑦×

×
(︃

1√︀
(𝐻/2− 𝑧)2 + (𝑥− �́�)2 + (𝑦 − 𝑦)2

−

−
1√︀

(𝐻/2 + 𝑧)2 + (𝑥− �́�)2 + (𝑦 − 𝑦)2

)︃
. (61)

This solution has the properties 𝜙(𝑥, 𝑦,−𝑧) = = −𝜙(𝑥, 𝑦, 𝑧),
𝐸𝑥(𝑥, 𝑦,−𝑧) = −𝐸𝑥(𝑥, 𝑦, 𝑧), 𝐸𝑦(𝑥, 𝑦,−𝑧) = −𝐸𝑦(𝑥, 𝑦, 𝑧),
and 𝐸𝑧(𝑥, 𝑦,−𝑧) = = 𝐸𝑧(𝑥, 𝑦, 𝑧). We have found potential
(61) and the field E(r) numerically, see Figs. 1 and 2 (the field
near the plate edge is found approximately; the field 𝐸𝑦(r)
is very weak at 𝑦 = 0 and is not shown in the figures). It
is clear from the symmetry of the problem that 𝐸𝑥(r) co-
incides with 𝐸𝑦(r′), where r′ is obtained by the rotation of
r around the axis 𝑧 by ±90∘. As is seen from the plots, the
field E(r) is nonuniform and has a complicated structure. In-
side the dielectric, E ≈ −2𝜋P = −2𝜋𝑃 i𝑧 . More accurately,
𝐸𝑥, 𝐸𝑦 ̸= 0; therefore, the dependence D(E) has a tensor form
𝐷𝑗 =

∑︀
𝑙 𝜀𝑗𝑙𝐸𝑙. Outside the dielectric, the field E(r) is rather

strong near the dielectric and decreases, as the distance in-
creases. The direct checking indicates that BCs (24) hold on
all surfaces of the plate.

To verify the solution, we will find it by another method. We
start from Eq. (18) in the form

△𝜙 = −4𝜋𝜌. (62)
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The equation 𝜌(r) = −divP(r) implies that the polarization
P = 𝑃 i𝑧 (𝑃 = const) is equivalent to the charges on the lower
and upper faces of a dielectric with the surface densities 𝜎(𝑧 =

= −𝐻/2) = −𝑃 and 𝜎(𝑧 = 𝐻/2) = 𝑃, respectively. We assume
that there are 𝑁𝑞 point charges 𝑞 on the lower face and 𝑁𝑞

charges equal to −𝑞 on the upper face. In this case, 𝑁𝑞𝑞/𝐿2 =

= −𝑃 , 𝑁𝑞 → ∞. Then

𝜌 =

𝑁𝑞∑︁
𝑗=1

𝑞𝛿(𝑥− 𝑥𝑗)𝛿(𝑦 − 𝑦𝑗)

[︂
𝛿

(︂
𝑧 +

𝐻

2

)︂
− 𝛿

(︂
𝑧 −

𝐻

2

)︂]︂
, (63)

where 𝑥𝑗 , 𝑦𝑗 ∈ [−𝐿/2, 𝐿/2]. We consider the space to be a
closed cube with the volume 𝑉𝑠 = Λ3 (Λ ≫ 𝐿) and expand 𝜌

and 𝜙 in Fourier series:

𝜌(r) =
1

𝑉𝑠

∑︁
k

𝜌k𝑒
𝑖kr, 𝜙(r) =

1

𝑉𝑠

∑︁
k

𝜙k𝑒
𝑖kr. (64)

Relation (63) yields 𝜌k=0 = 0 and

𝜌k̸=0 =

∫︁
𝑉𝑠

𝜌(r)𝑒−𝑖kr𝑑r = 𝑞2𝑖 sin (𝑘𝑧𝐻/2)

𝑁𝑞∑︁
𝑗=1

𝑒−𝑖𝑘𝑥𝑥𝑗−𝑖𝑘𝑦𝑦𝑗 .

(65)

Passing to the integration and taking into account that
𝑞

△𝑥△𝑦
= −𝑃 , we get

𝜌k̸=0 = −𝑃2𝑖 sin

(︂
𝑘𝑧𝐻

2

)︂ 𝐿
2∫︁

−𝐿
2

𝑑𝑥

𝐿
2∫︁

−𝐿
2

𝑑𝑦𝑒−𝑖𝑘𝑥𝑥𝑗−𝑖𝑘𝑦𝑦𝑗 =

= −
𝑃8𝑖

𝑘𝑥𝑘𝑦
sin (𝑘𝑧𝐻/2) sin (𝑘𝑥𝐿/2) sin (𝑘𝑦𝐿/2). (66)

At 𝑘𝑥 = 0, we set sin (𝑘𝑥𝐿/2)
𝑘𝑥

= 𝐿/2 (analogously for 𝑘𝑦 = 0).
Relation (62) yields 𝜙k ̸=0 = 4𝜋𝜌k/𝑘

2. Thus, we have a solution
for the potential:

𝜙(r) = 𝜙0 −
32𝜋𝑃

Λ3

∑︁
𝑘𝑥

sin (𝑘𝑥𝐿/2)

𝑘𝑥
𝑒𝑖𝑘𝑥𝑥×

×
∑︁
𝑘𝑦

sin (𝑘𝑦𝐿/2)

𝑘𝑦
𝑒𝑖𝑘𝑦𝑦

∑︁
𝑘𝑧

𝑖 sin (𝑘𝑧𝐻/2)

𝑘2𝑥 + 𝑘2𝑦 + 𝑘2𝑧
𝑒𝑖𝑘𝑧𝑧 , (67)

where 𝑘𝑥 = 2𝜋𝑗𝑥/Λ, 𝑘𝑦 = 2𝜋𝑗𝑦/Λ, 𝑘𝑧 = 2𝜋𝑗𝑧/Λ, 𝑗𝑥, 𝑗𝑦 , 𝑗𝑧 =

= 0,±1,±2, ..., and 𝑘2𝑥 + 𝑘2𝑦 + 𝑘2𝑧 ̸= 0. At infinity (𝑧 = ±Λ/2),
we set 𝜙 = 0. Since 𝜙(𝑧 = ±Λ/2) = 𝜙0, we obtain 𝜙0 = 0. At
𝑘𝜌Λ ≫ 1, the sum over 𝑘𝑧 in (67) can be found analytically:

𝐼𝑧 |𝑘𝜌 ̸=0 =
∑︁
𝑘𝑧

𝑖 sin (𝑘𝑧𝐻/2)

𝑘2𝑥 + 𝑘2𝑦 + 𝑘2𝑧
𝑒𝑖𝑘𝑧𝑧 =

=
1

2

∑︁
𝑘𝑧

cos [𝑘𝑧(𝐻/2 + 𝑧)]− cos [𝑘𝑧(𝐻/2− 𝑧)]

𝑘2𝜌 + 𝑘2𝑧
=

=
Λ

4𝑘𝜌

(︁
𝑒−𝑘𝜌|𝑧+𝐻/2| − 𝑒−𝑘𝜌|𝑧−𝐻/2|

)︁
, (68)

where 𝑘𝜌 =
√︁

𝑘2𝑥 + 𝑘2𝑦 . Therefore, one needs to present 𝜙(r)
(67) in the form 𝜙(𝑘𝜌 =0, 𝑘𝑧 ̸= 0)+𝜙(𝑘𝜌 ̸= 0), where 𝜙(𝑘𝜌 ̸=

Fig. 1. [Color online] 𝐸𝑥(𝑥) for a dielectric plate with 𝐿 =

= 2𝐻 at 𝑦 = 0 and 𝑧 = 𝐻/4 (circles) (1), 𝑧 = 𝐻/2 (rhombs)
(2), 𝑧 = 𝐻 (triangles) (3). It is clear from the symmetry
that the same curves correspond to 𝐸𝑦(𝑦) for 𝑥 = 0 and 𝑧 =

= 𝐻/4;𝐻/2;𝐻. The lateral surface of the plate corresponds
to 𝑥/𝐿 = 0.5

Fig. 2. [Color online] 𝐸𝑧(𝑥) for a dielectric plate with 𝐿 =

= 2𝐻 at 𝑦 = 0 and 𝑧 = 𝐻/4 (circles) (1), 𝑧 = 0.499𝐻 (stars)
(2), 𝑧 = 0.501𝐻 (rhombs) (3), 𝑧 = 𝐻 (triangles) (4). The
symmetry implies that the function 𝐸𝑧(𝑦) at 𝑥 = 0 and 𝑧 =

= 𝐻/4; 0.499𝐻; 0.501𝐻; 𝐻 is described by the same curves.
The upper surface of the plate corresponds to 𝑧 = 0.5𝐻. The
stars and rhombs show the field at the very boundary (under
and above the surface, respectively). The jump of 𝐸𝑧 on the
upper surface is equal to 4𝜋𝑃 in agreement with BCs (24)

̸= 0) should be calculated with the help of (68). The numerical
analysis shows that solutions (61) and (67) coincide with a
good accuracy at Λ >∼ 100𝐿.

For an infinite plate, we set 𝐿 = Λ → ∞ in (67). Then only
the terms with 𝑘𝜌 = 0 are nonzero in (67). Let 𝑘𝜌 = 102/Λ.
Then formula (68) is the exact one, and 𝑘𝜌 → 0. We obtain

𝜙(r) = −
8𝜋𝑃

Λ
𝐼𝑧 |𝑘𝜌→0 = 2𝜋𝑃

(︂
𝑧 +

𝐻

2

⃒⃒⃒⃒
−
⃒⃒⃒⃒
𝑧 −

𝐻

2

⃒⃒⃒⃒)︂
,
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which leads to (60). We obtain the same result, by directly
calculating sum (67). This agrees with the solution in [23]. So-
lution (67) transits smoothly into (60), as 𝐿/𝐻 increases: for
𝐿/𝐻 >∼ 100, the solution is close to that in (60); for 𝐿/𝐻 = ∞,

it coincides with (60). Thus, solution (60) is valid only in the
case of infinite plate.

We note that the solution for a uniformly polarized cylin-
der of finite length was found in [24], and the solutions for
uniformly polarized nanoparticles of different shapes were pre-
sented in [25].

In the examples given below, we consider that only P𝑠 is
known and take P𝑖 into account separately.

Spontaneously polarized dielectric ball in vacuum

Let the ball of radius 𝑅 with the dielectric permittivity 𝜀 be
uniformly spontaneously polarized: P𝑠 = 𝑃𝑠i𝑧 . The sponta-
neous dipoles create the electric field, which produces the in-
duced polarization

P𝑖 =
(𝜀− 1)E(int)

4𝜋
. (69)

Consider the system as a set of spontaneous and induced
dipoles in vacuum. The field E is determined by Eq. (18). The
solution for a domain inside the ball is [5]

E(int) = −
4𝜋P
3

= −
4𝜋(P𝑖 + P𝑠)

3
(70)

[see also Eq. (82) below, which is the solution of Eq. (23)]. Re-
lations (69) and (70) yield

P𝑖 = −
𝜀− 1

𝜀+ 2
P𝑠, E(int)(r) = −

4𝜋

𝜀+ 2
P𝑠, (71)

𝜙(int)(r) =
4𝜋

𝜀+ 2
P𝑠r. (72)

Setting 4𝜋P𝑠 = 𝜁E(int), we have 𝜁 = −𝜀− 2, 𝜀 = 𝜀+ 𝜁 = −2.
The field 𝜙(ext)(r) outside the ball is created by spontaneous

and induced dipoles located inside the ball. This field can be
determined in the following way. The uniformly polarized ball
centered at the point r = 0 can be considered as two uniformly
charged balls: the ball with charge −𝑄 < 0 centered at the
point r− = (𝑥 = 𝑦 = 0, 𝑧 = −𝑧0/2) and the ball with charge
𝑄 centered at the point r+ = (𝑥 = 𝑦 = 0, 𝑧 = 𝑧0/2), where 𝑧0
is an infinitesimal value, and 𝑄𝑧0 = 𝑃𝑉 = 4𝜋𝑃𝑅3/3. The
ball with charge −𝑄 creates the potential 𝜙(r) = −𝑄

|r−r−|
around itself, and the ball with charge 𝑄 generates the poten-
tial 𝜙(r) = 𝑄

|r−r+| outside the ball. The total potential outside
the polarized ball at 𝑧0 → 0 is

𝜙(ext)(r) =
−𝑄

|r − r−|
+

𝑄

|r − r+|
=

4𝜋𝑅3

3

Pr
𝑟3

=
4𝜋𝑅3

𝜀+ 2

P𝑠r
𝑟3

,

(73)

where P = P𝑠 + P𝑖 =
3P𝑠
𝜀+2

. BCs (24) are satisfied.
We can solve the problem in a different way. If we set

𝜙(int)(r) = 𝐴P𝑠r, 𝜙(ext)(r) = 𝐵P𝑠r/𝑟3 and find the constants
𝐴 and 𝐵 from BCs (24), we obtain the same result.

Spontaneously polarized
dielectric placed in a spherical conductor

Consider a grounded metallic sphere of radius 𝑅𝑚. Let it con-
tain an isotropic dielectric with spontaneous dipoles d𝑠 =

= |𝑞0|r0 uniformly distributed over the volume and correspond-
ing to the average spontaneous polarization P𝑠 = 𝑛𝑠d𝑠 = 𝑃𝑠i𝑧
(𝑛𝑠 = const). The BC in the spherical coordinates 𝜌, 𝜃, 𝜑 reads
[3, 4]

𝜙(𝜌 = 𝑅𝑚) = 0. (74)

If the polarization P𝑠 is perfectly uniform, then, for any shape
of a resonator, the problem has the known solution

𝜙(r) = 0, E(r) = 0, (75)

since the equation 𝜀△𝜙 = 4𝜋 divP𝑠 with P𝑠 = const and BCs
(74) has the unique solution 𝜙(r) = 0. However, there is a dif-
ficulty: On the boundary, P𝑠 decreases to zero by jump. The-
refore, divP𝑠 = ∞. The solution 𝜙(r) = 0 neglects this prop-
erty. Below, we will find the solution within the method, which
allows us to avoid this difficulty.

It was assumed in some works that the relation D(r) = 0

holds for a dielectric surrounded by a metallic shell. It was
not substantiated or was substantiated by that the equality
D(r) = 0 holds in a metal. In our opinion, this reasoning is
incorrect. It is well known that a metal should be considered
as a dielectric with 𝜀 = ∞ (see [2] Chapt. IV, S6; [4] Chapt. II,
S7 and Problem 1 after S7). In this case, D(r) ̸= 0 inside
a metal. In addition, the condition D(r) = 0 for dielectrics
leads to the mathematical contradiction. Indeed, the equality
D(r) = 0 yields 𝐷𝑛 = 0 on the surface. If 𝜙 is given on a closed
surface of the dielectric, then we can find a solution of the equa-
tion −div [𝜀(r)∇𝜙(r)] = 4𝜋𝜌(r) (with 𝜌(r) to be known) inside
the dielectric uniquely [2, 3]. This was proved for 𝜀 = const

([3], Chapt. 1, S9) and for 𝜀 = 𝜀(r) ([2], Chapt. III, S11). If
we supplement Eq. (74) by the BC 𝐷𝑛 = 0, then the problem
becomes overspecified and has no solutions for 𝜙(r).

Thus, we need to solve Eq. (26) with BC (74). The solution
for the potential is given by formula (30). In order to satis-
fy (74), we need to consider “images” that are the reflections
of dipoles in the metal. This is the most complicated part in
problems of this kind. In our case, the simplest way to con-
sider the images is, apparently, the following. A real uniformly
polarized ball can be represented as two balls with radius 𝑅

shifted relative each other by the size 𝑟0 of the dipole. The first
ball is uniformly charged negatively (so that its total charge is
𝑄− = 𝑁𝑠𝑞0 = 𝑄0, where 𝑁𝑠 is the total number of sponta-
neous dipoles in helium). Let its center have the coordinates
𝑥 = 𝑦 = 0, 𝑧 = −𝑟0/2. The second ball is charged positively
and has the total charge 𝑄+ = −𝑄−. The coordinates of its
center are 𝑥 = 𝑦 = 0, 𝑧 = 𝑟0/2. The center of the segment
joining both balls is the coordinate origin: 𝑥 = 𝑦 = 𝑧 = 0. We
consider that these two balls are placed in a metallic sphere
so that the (−) and (+) balls touch the internal surface of the
sphere. In this case, 𝑅𝑚 = 𝑅 + 𝑟0/2. The sphere has contact
with the balls at two opposite points, and the remaining points
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of the sphere are separated from two balls by a thin layer (with
a thickness of <∼ 𝑟0/2) of vacuum. The potential created by a
uniformly charged dielectric ball of radius 𝑅 at a point located
at the distance 𝑅0 from the ball center is

𝜙(R0) =

∫︁
𝑉

(𝜀)−1𝑔𝑑𝑥𝑑𝑦𝑑𝑧√︀
(𝑥−𝑋0)2 + (𝑦 − 𝑌0)2 + (𝑧 − 𝑍0)2

=

=

𝑅∫︁
0

𝑟2𝑑𝑟

𝜋∫︁
0

sin 𝜃𝑑𝜃

2𝜋∫︁
0

(𝜀)−1𝑔𝑑𝜑√︁
𝑟2 +𝑅2

0 − 2𝑟𝑅0 cos 𝜃
=

=
2𝜋𝑔

𝜀𝑅0

𝑅∫︁
0

𝑟𝑑𝑟(𝑟 +𝑅0 − |𝑟 −𝑅0|). (76)

This formula yields

𝜙(R0) =

⎡⎢⎢⎣
2𝜋𝑔

𝜀

(︂
𝑅2 −

𝑅2
0

3

)︂
, 𝑅0 ≤ 𝑅,

𝑄

𝜀𝑅0
, 𝑅0 ≥ 𝑅.

(77)

Here, 𝑔 = 𝑄/𝑉 = 3𝑄/(4𝜋𝑅3) is the charge density, and 𝜀 is
the dielectric permittivity of the ball. The dielectric weakens
the field by 𝜀 times in accordance with Eq. (26). Solution (77)
is well known [5].

All points at a distance of 𝑟 ≤ 𝑅𝑚 − 𝑟0 from the coordinate
origin belong to both balls: (−)-ball and (+)-ball. Let us con-
sider this domain. According to (77), these two balls create at
the point r the potential

𝜙(r) =
2𝜋𝑔−

𝜀

(︃
𝑅2 −

𝑟2−
3

)︃
+

2𝜋𝑔+

𝜀

(︃
𝑅2 −

𝑟2+

3

)︃
. (78)

Here, 𝑔− = 𝑄0/𝑉 , 𝑔+ = −𝑔−, 𝑉 = (4𝜋/3)𝑅3, and 𝑟−, 𝑟+ are
the distances from the point of observation r to the centers of
the (−) and (+) balls, respectively:

𝑟2− = 𝑟2 + (𝑟0/2)
2 − 𝑟𝑟0 cos (𝜋 − 𝜃), (79)

𝑟2+ = 𝑟2 + (𝑟0/2)
2 − 𝑟𝑟0 cos 𝜃. (80)

In this case, the vector r is directed from the coordinate origin
to the point of observation, and 𝜃 = = (̂︂i𝑧 , r) = (̂︂r0, r). For-
mulae (78)–(80) yield the exact solution

𝜙(r) = −
𝑄0𝑟𝑟0 cos 𝜃

𝜀𝑅3
= −

𝑄0rr0
𝜀𝑅3

=
4𝜋P𝑠r
3𝜀

, (81)

which is also well known [5] (in [5], formula (81) was deduced
without 𝜀, since the response of the medium to an external
field was calculated). It is essential that relation (81) follows
directly from formula (30). It is easy to see, making use of
relations (30), (76), and (77). Relation (81) implies that, in
the domain 𝑟 ≤ 𝑅𝑚−𝑟0, the electric field strength is constant:

E(r) = −∇r𝜙(r) =
𝑄0r0
𝜀𝑅3

= −
4𝜋P𝑠

3𝜀
. (82)

According to (77), the (−) and (+) balls located inside the
metallic sphere create the potential

𝜙(r) =
𝑄−

𝜀𝑟−
+

𝑄+

𝜀𝑟+
(83)

on the internal surface of the sphere. It coincides with the po-
tential, which is obtained, if the (−)-ball and the (+)-ball are
replaced by the point charges 𝑄− and 𝑄+ located at the centers
of the (−) and (+) balls, respectively. In this case, BC (74) is
easily satisfied: potential (83) can be exactly compensated on
the whole surface of the cavity, if we introduce two additional
charges that are the images of the point charges 𝑄− and 𝑄+.

Let the point charge 𝑄− be placed inside a conducting
sphere of radius 𝑅𝑚 at a distance of 𝑟0/2 from its center. It
is known (see [4], Chapt. I) that the image of such charge is
located at a distance of 𝑙− = 2𝑅2

𝑚/𝑟0 from the sphere center,
and the charge of this image is 𝑞− = −𝑄−2𝑅𝑚/𝑟0. Moreover,
the sphere center, charge, and image are located on the same
line, and the charge is placed between the sphere center and
the image. The potential created by the charge 𝑄− and its im-
age is equal to zero on the whole surface of the sphere, which
can be directly verified.

The (−) and (+) balls induce polarization charges on the
internal surface of the metallic sphere. The field created by
these charges inside the sphere coincides with the field of im-
ages. With regard for this, the total potential at a point r inside
the sphere is the sum of potentials created at this point by the
(−)-ball, (+)-ball, and images of the point charges 𝑄− and
𝑄+. The solution for 𝑟 ≤ 𝑅𝑚 − 𝑟0 is as follows:

𝜙(r) = −
𝑄0𝑟𝑟0 cos 𝜃

𝜀𝑅3
+

𝑞−

𝜀𝑟𝑞−
+

𝑞+

𝜀𝑟𝑞+
=

= −
𝑄0𝑟𝑟0 cos 𝜃

𝜀𝑅3
−

2𝑅𝑚𝑄0

𝜀𝑟0𝑟𝑞−
+

2𝑅𝑚𝑄0

𝜀𝑟0𝑟𝑞+
. (84)

Here, 𝑟𝑞− and 𝑟𝑞+ are the distances from the point of observa-
tion r to the images of the charges 𝑄− and 𝑄+, respectively:

𝑟2𝑞− = 𝑟2 + (𝑙−)2 − 2𝑟𝑙− cos (𝜋 − 𝜃), (85)

𝑟2𝑞+ = 𝑟2 + (𝑙+)2 − 2𝑟𝑙+ cos 𝜃, (86)

where 𝑙− = 2𝑅2
𝑚/𝑟0 = 𝐿 and 𝑙+ = 2𝑅2

𝑚/𝑟0 = 𝐿 are the
distances from the image of the charge 𝑄− and the image of
the charge 𝑄+ to the center of the spherical cavity. Since the
charges in (83) are decreased by 𝜀 times, the charges of the
images in (84) are also decreased by 𝜀 times.

At 𝑟0/𝑅 ≪ 1, 𝑟 ≤ 𝑅𝑚, we have 𝑟/𝐿 ≪ 1. Let us use 𝑟/𝐿 as
a small parameter. Then relations (85) and (86) yield

1

𝑟𝑞−
=

1

𝐿

[︂
1−

𝑟 cos 𝜃

𝐿
+

𝑟2

𝐿2

(︂
3

2
cos2 𝜃 −

1

2

)︂
+

+
𝑟3

𝐿3

(︂
3

2
cos 𝜃 −

5

2
cos3 𝜃

)︂
+𝑂

(︂
𝑟4

𝐿4

)︂]︂
, (87)

1

𝑟𝑞+
=

1

𝐿

[︂
1 +

𝑟 cos 𝜃

𝐿
+

𝑟2

𝐿2

(︂
3

2
cos2 𝜃 −

1

2

)︂
+

+
𝑟3

𝐿3

(︂
5

2
cos3 𝜃 −

3

2
cos 𝜃

)︂
+𝑂

(︂
𝑟4

𝐿4

)︂]︂
. (88)

Substituting expansions (87) and (88) in (84) and taking the
relation 𝐿 = 2𝑅2

𝑚/𝑟0 into account, we get

𝜙(r) =
𝑄0𝑟𝑟0 cos 𝜃

𝜀

(︂
1

𝑅3
𝑚

−
1

𝑅3

)︂
+

ISSN 2071-0194. Ukr. J. Phys. 2019. Vol. 64, No. 6 519



M.D. Tomchenko

+
𝑄0𝑟3𝑟30
8𝑅7

𝑚𝜀
(5 cos3 𝜃 − 3 cos 𝜃) +𝑂

(︂
𝑟5

𝐿5

)︂
. (89)

In view of the formulae 𝑟𝑟0 cos 𝜃 = rr0, 𝑅𝑚 = 𝑅 + 𝑟0/2 and
the smallness of 𝑟0/𝑅, relation (89) yields finally:

𝜙(r) = −
𝑄0rr0
𝜀𝑅3

3𝑟0

2𝑅
+𝑂

(︂
𝑟30
𝑅3

)︂
, (90)

E(r) = −∇r𝜙(r) ≈
𝑄0r0
𝜀𝑅3

3𝑟0

2𝑅
= −

2𝜋P𝑠

𝜀

𝑟0

𝑅
. (91)

Two last formulae imply that the spherical conductor decreases
potential (81) and the field strength (82) approximately by
𝑅/𝑟0 times. For example, the known mechanisms of polariza-
tion of He II give the value of 𝑟0 comparable with (or much
less of) the interatomic distance. Taking the realistic values
𝑅 ∼ 1 cm and 𝑟0 ∼ 10 Å, we get 𝑅/𝑟0 ∼ 107. In other words,
the images almost completely suppress the electric field E in-
side a spontaneously polarized dielectric ball.

We remark that, at 𝑟0 = 0, the dielectric possesses a per-
fectly uniform polarization. In this case, relations (90) and (91)
yield solution (75). However, for real bodies, 𝑟0 is small, but
nonzero (since 𝑟0 is the size of an elementary dipole, e.g., a
molecule). Therefore, near the boundary, P is nonuniform in a
layer of finite thickness ∼𝑟0. The result given by (90) and (91)
is apparently new.

Formula (91) and the relation 4𝜋P𝑠 = 𝜁E yield 𝜁 =

= −2𝜀𝑅/𝑟0. The dielectric coefficient 𝜁 turns out to be very
large in modulus, which leads to the smallness of E. In this
case, D = (𝜀+ 𝜁)E = 𝜀E(1− 2𝑅/𝑟0).

We now determine the field inside a spherical conductor in
a thin layer of width 𝑟0 near the sphere surface. This layer is
divided into two regions: the region lying outside the (−)-ball
and inside the (+)-ball (or vice versa) and the region lying
outside the (−) and (+) balls.

For the region outside the (−)-ball and inside the (+)-ball,
the above formulae give

𝜙(r) =
2𝜋𝑔−

𝜀

(︃
𝑅2 −

𝑟2−
3

)︃
+

𝑄+

𝜀𝑟+
+

𝑞−

𝜀𝑟𝑞−
+

+
𝑞+

𝜀𝑟𝑞+
≈

3𝑄0

2𝜀𝑅
+

𝑄0rr0
2𝜀𝑅3

(︂
1−

3𝑟0

𝑅

)︂
−

−
𝑄0rr0
2𝜀𝑟3

−
𝑄0(4𝑟2 + 𝑟20)

8𝜀𝑅3
−

𝑄0

𝜀𝑟
−

−
𝑄0𝑟20(3 cos

2 𝜃 − 1)

8𝜀𝑟3
+𝑂

(︂
𝑟30
𝑅3

)︂
, (92)

E(r) ≈ −
3𝑄0(rr0)ir

2𝜀𝑟4
+

𝑄0ir(𝑟3 −𝑅3)

𝜀𝑅3𝑟2
, ir =

r
𝑟
. (93)

Since 𝑟 ≈ 𝑅 for this region, it is seen that the strength E is
comparable by magnitude with strength (82) of the problem
without a resonator.

For the region between the dielectric and the conductor (out-
side the (−) and (+) balls), we have

𝜙(r) =
𝑄−

𝜀𝑟−
+

𝑄+

𝜀𝑟+
+

𝑞−

𝜀𝑟𝑞−
+

𝑞+

𝜀𝑟𝑞+
≈

≈
𝑄0rr0
𝜀𝑅3

𝑚

−
𝑄0rr0
𝜀𝑟3

, (94)

E(r) ≈ −
𝑄0r0
𝜀𝑅3

𝑚

+
𝑄0r0
𝜀𝑟3

−
3𝑄0(rr0)ir

𝜀𝑟4
. (95)

Here, the field strength is also comparable with (82). In this
case, strength (93) is directed radially, (95) has the radial and
𝑧 components, and strength (82) is directed along the 𝑧-axis.

In the region 𝑟 ≤ 𝑅𝑚, the potential is continuous, whereas
the field strength undergoes a jump on the surface of the dielec-
tric and the internal surface of the conductor. It is seen from
(94) that BC (74) is satisfied.

Thus, the electric field is strong (comparable with the field in
the absence of a conductor) only in the narrow space of thick-
ness ≤ 𝑟0 near the internal surface of the conductor. In the
remaining volume inside the conductor (i.e., in almost whole
volume of the dielectric), the field E is almost completely sup-
pressed. This effect is caused by the presence of the conductor
around the dielectric. It has a simple visual explanation. Wi-
thout a conductor, the field E inside the dielectric is uniform
(see (82)). The field created by the conductor in the region
𝑟 ≤ 𝑅𝑚 coincides with the field of images. But the images are
remote from the dielectric by the distance 𝐿 = 2𝑅2

𝑚/𝑟0, which
is much larger than the size 2𝑅 of the dielectric. Therefore,
the field created by the images inside the dielectric is almost
uniform, but is directed against the intrinsic field (82) of the
dielectric and compensates it. If the compensation would be
absent, then the condition 𝜙 = 0 would not be satisfied: the
condition 𝜙 = 𝑐𝑜𝑛𝑠𝑡 requires E𝑡 = 0 on the internal surface of
the conductor. Since the field E is uniform inside the dielectric,
the condition E𝑡 = 0 on the surface requires that E ≈ 0 in the
whole volume of the dielectric.

Note that a decrease in the electric energy of the dielectric
because of the location of this dielectric in a spherical con-
ductor is equal to the work (with opposite sign) that must be
performed in order to transport two metallic hemispheres from
infinity and to enclose a polarized dielectric by these hemi-
spheres.

As a rule, a dielectric is in the gravity field. Therefore, such
dielectric is slightly spontaneously polarized. If the walls of a
vessel are vertical, and the bottom is horizontal, the polar-
ization is uniform. In this case, the electric field is weak, but
measurable [19]. However, if the shape of a vessel is a sphere,
then the polarization should have the 𝑧- and r-components and,
therefore, should be nonuniform. In other words, it is appar-
ently impossible to get the uniform spontaneous polarization
P𝑠 in a spherical vessel.

We mentioned above that, in experiments [9], the resonator
was placed in a metallic shell. The polarization of helium in
those experiments is due to the second sound and, therefore,
should be nonuniform. In this case, we expect that the shell
weakens the field E only by several times or by one order of
magnitude.
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М.Д.Томченко

ЕЛЕКТРИЧНЕ ПОЛЕ ТА ЕЛЕКТРИЧНI
СИЛИ У СПОНТАННО ПОЛЯРИЗОВАНОМУ
НЕПОЛЯРНОМУ IЗОТРОПНОМУ ДIЕЛЕКТРИКУ

Р е з ю м е

Виходячи з мiкроскопiчних рiвнянь Максвелла, ми буду-
ємо метод опису електричного поля в спонтанно поляри-
зованому iзотропному неполярному дiелектрику. Ми зна-
ходимо розв’язок для електричного поля E(r) для кiль-
кох характерних прикладiв. Крiм того, ми узагальнюємо
формулу Гельмгольця для електричної сили, яка дiє на
елемент об’єму дiелектрика, враховуючи внесок спонтанної
поляризацiї.
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