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LOW-LYING ENERGY LEVELS
OF A ONE-DIMENSIONAL WEAKLY INTERACTING
BOSE GAS UNDER ZERO BOUNDARY CONDITIONS

We diagonalize the second-quantized Hamiltonian of a one-dimensional Bose gas with a non-
point repulsive interatomic potential and zero boundary conditions. At a weak coupling, the
solutions for the ground-state energy 𝐸0 and the dispersion law 𝐸(𝑘) coincide with the Bogoli-
ubov solutions for a periodic system. In this case, the single-particle density matrix 𝐹1(𝑥, 𝑥

′)
at 𝑇 = 0 is close to the solution for a periodic system and, at 𝑇 > 0, is significantly different
from it. We also obtain that the wave function ⟨𝜓(𝑥, 𝑡)⟩ of the effective condensate is close to
a constant

√︀
𝑁0/𝐿 inside the system and vanishes on the boundaries (here, 𝑁0 is the number

of atoms in the effective condensate, and 𝐿 is the size of the system). We find the criterion
of applicability of the method, according to which the method works for a finite system at very
low temperature and with a weak coupling (a weak interaction or a large concentration).
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1. Introduction

In the description of uniform many-particle Bose sys-
tems, the real boundary conditions (BCs) are usually
replaced by periodic ones [1–5], since this simplifies
the finding of a solution. However, BCs in the Na-
ture are usually close to zero ones. Therefore, it is of
significance to solve the problem for zero BCs. Such
problem is of interest and not quite trivial from the
mathematical point of view. From the physical view-
point, it is very important whether the boundaries
affect the bulk properties of the system such as the
ground-state energy 𝐸0, dispersion law 𝐸(𝑘), the con-
densate, and thermodynamic parameters. It is usu-
ally assumed that no influence is present. However,
such influence is possible and, apparently, does not
contradict any physical laws [6]. The solutions for a
Bose system under zero BCs were found for a point
interaction [7–9]. According to those results, 𝐸0 and
𝐸(𝑘) of a one-dimensional (1D) system under zero
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BCs differ from 𝐸0 and 𝐸(𝑘) of a system under peri-
odic BCs only by a negligible surface correction. For
a nonpoint interaction, the problem was solved in
the Haldane’s harmonic-fluid approach [10,11]. It was
found that the sound velocity in a system under
zero BCs is the same as in a system under peri-
odic BCs [11]. The attempt was made [6] to deter-
mine 𝐸0 and 𝐸(𝑘) beyond the harmonic-fluid ap-
proximation. However, this calculation contains the
following weak place. The ground-state wave func-
tion of the system was sought in the form Ψ0 =
𝑒𝑆

∏︀𝑁
𝑗=1 sin (𝜋𝑥𝑗/𝐿) (for 1D), and then the equation

for 𝑆 was solved. In this case, zero BCs hold auto-
matically. Therefore, the differential equation for 𝑆
is not accompanied by BCs and has a continuous set
of solutions that consists of the infinite number of dis-
crete collections. One of these discrete collections is
the required solution of the problem. But the prob-
ability to find just it is not too high: 1/∞ = 0. In
other words, the BCs were lost on a definite step of
the method [6].
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In the present work, a solution of the problem with
zero BCs will be found for arbitrary nonpoint repul-
sive potential, which can be expanded in a Fourier
series, on the basis of the Bogoliubov method [1]. To
simplify the calculations, the 1D case will be consid-
ered. Though the Bogoliubov method was developed
[12–20], we will be guided by the original approach
[1], since it combines the simplicity and ability to de-
scribe the main properties of a system.

Note that a modified Bogoliubov method was used
for describing a weakly interacting Bose gas in a har-
monic trap [21, 22]. Moreover, the possibility to de-
scribe a Bose liquid as the Coulomb system of elec-
trons and nuclei is discussed in [23].

The solution obtained below is valid for a large
number of particles: 𝑁 >∼ 1000. The system with
𝑁 <∼ 100 can be described in the exactly solvable ap-
proach [5,7–9,24] (for a point-like potential) or by the
multiconfigurational time-dependent Hartree method
for bosons [25] (for a potential of the general form).

In Section 5, we obtain a criterion of applicability
of the method. According to it, the method can be
used at low temperatures 𝑇 , a small coupling con-
stant 𝛾, and large finite 𝑁 . In Section 6, we show
that the single-particle density matrix 𝐹1(𝑥1, 𝑥1 + 𝑥)
as a function of 𝑥 decreases, as 𝑥 increases: by a
power law at 𝑇 = 0 and exponentially at 𝑇 > 0. At
such properties, the term “quasicondensate” is usu-
ally used instead of the condensate (at the exponen-
tial decrease, the term quasicondensate can be ap-
plied at low temperatures, for which 𝐹1(𝑥1, 𝑥1 + 𝑥)
decreases weakly). In the region of parameters, for
which the method is valid, the quasicondensate is
close to the true condensate. The key aspect consists
in that the system should be finite. In an infinite 1D
system, the condensate (quasicondensate) is impossi-
ble for 𝑇 > 0 [13, 14, 26, 27]. The difference between
finite and infinite 1D systems is easily seen from for-
mulae in [1, 27]: for a finite system, one needs to
integrate over |𝑘| ∈ [2𝜋/𝐿,∞] instead of |𝑘| ∈ [0,∞],
which leads to a possibility for the condensate to exist
at 𝑇 > 0. The more strict analysis of the condensa-
tion of atoms and quasiparticles in a finite system can
be found, respectively, in [28] and [29].

2. Starting Reasonings

Consider 𝑁 spinless Bose particles that are located
on the interval [0, 𝐿] and interact via a repulsive po-
tential of the general form 𝑈(|𝑥𝑗 − 𝑥𝑙|). Our study is

essentially based on the classical work by Bogoliubov
[1], and we will try to conserve its notations for the
convenience of a reader. The Hamiltonian reads

�̂� = − ~2

2𝑚

𝑁∑︁
𝑗=1

𝜕2

𝜕𝑥2𝑗
+
∑︁
𝑗<𝑙

𝑈(|𝑥𝑗 − 𝑥𝑙|), (1)

and zero BCs are as follows:

𝜓(0, 𝑡) = 0, 𝜓(𝐿, 𝑡) = 0. (2)

Any operator 𝜓(𝑥, 𝑡) satisfying Eqs. (2) can be ex-
panded in the complete orthonormalized collection of
sines:
𝜓(𝑥, 𝑡) =

∑︁
𝑗=1,2,...,∞

𝑑𝑗(𝑡)
√︀
2/𝐿 sin(𝑘𝑗𝑥), (3)

where 𝑘𝑗 = 𝜋𝑗/𝐿. In the Bogoliubov work [1], the ex-
pansion 𝜓(𝑥, 𝑡) = 1√

𝐿

∑︀
𝑗=0,±1,...,±∞ 𝑑𝑗(𝑡)𝑒

𝑖2𝑘𝑗𝑥 was
used, and it was assumed that almost all atoms are
in the state 𝑗 = 0 (therefore, the replacement 𝑑0 → 𝑑0
is executed). This allows one to construct the descrip-
tion of weakly excited states of a uniform system with
weak coupling.

For the nonuniform system, we should apply a
more general approach. There are available two dif-
ferent definitions of a condensate for nonuniform sys-
tems. The first is grounded on the representation
[18, 30, 31]

𝜓(𝑥, 𝑡) = ⟨𝜓(𝑥, 𝑡)⟩+ 𝜗(𝑥, 𝑡). (4)

The system contains a condensate described by the
wave function ⟨𝜓(𝑥, 𝑡)⟩, if 𝑁0 ≡

∫︀ 𝐿

0
𝑑𝑥|⟨𝜓(𝑥, 𝑡)⟩|2 ∼

∼ 𝑁 . The second definition [18, 32] is based on the
diagonal expansion of the single-particle density ma-
trix 𝐹1(𝑥, 𝑥

′) in the complete orthonormalized basis
{𝜑𝑗(𝑥)}:

𝐹1(𝑥, 𝑥
′) =

∞∑︁
𝑗=0

𝜆𝑗𝜑
*
𝑗 (𝑥

′)𝜑𝑗(𝑥). (5)

If 𝜆0 ∼ 𝑁 , then a condensate is present in the state
𝜑0(𝑥). From the physical viewpoint, the primary cri-
terion is (5), since 𝜆𝑗/𝑁 is equal to the probability for
a particle to be in the state 𝜑𝑗(𝑥). Whereas criterion
(4) is rather a way to use a single-particle function
in the description of a many-particle system. These
two criteria are equivalent for a uniform periodic sys-
tem (Bogoliubov solution [1]). However, they can be
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nonequivalent for a nonuniform system [33]. There-
fore, we will consider the condensate defined on the
basis of criterion (5) to be genuine. In this case, we
will refer the order parameter ⟨𝜓(𝑥, 𝑡)⟩ to the effective
condensate.

Here and below, ⟨⟩ stands for the statistical aver-
age [34]:

⟨𝐴⟩𝑇>0 =
1

𝑍

∫︁
𝑑𝑥1 ... 𝑑𝑥𝑁

∑︁
𝑝

𝑒−𝐸𝑝/𝑘B𝑇Ψ*
𝑝𝐴Ψ𝑝, (6)

where 𝑍 =
∑︀

𝑙 𝑒
−𝐸𝑙/𝑘B𝑇 , and {Ψ𝑝(𝑥1, ..., 𝑥𝑁 )} is the

complete orthonormalized set of wave functions of a
system with a fixed number of particles 𝑁 . For the
pure state, which is possible in the many-particle sys-
tem only at 𝑇 = 0, it is the quantum-mechanical av-
erage:

⟨𝐴⟩𝑇=0 =

∫︁
𝑑𝑥1 ... 𝑑𝑥𝑁Ψ*

0𝐴Ψ0. (7)

The operator 𝜓(𝑥, 𝑡) can be expanded in any single-
particle basis satisfying zero BCs. In this case, the
operator 𝜓(𝑥, 𝑡), values of 𝐸𝑝, functions Ψ𝑝, and func-
tion ⟨𝜓(𝑥, 𝑡)⟩ are independent of the basis.

Relations (3) and (4) yield

𝑑𝑗(𝑡) = ⟨𝑑𝑗(𝑡)⟩+ �̂�𝑗(𝑡) ≡ 𝑑𝑗(𝑡) + �̂�𝑗(𝑡), (8)

⟨𝜓(𝑥, 𝑡)⟩ =
∑︁

𝑗=1,2,...,∞
𝑑𝑗(𝑡)

√︀
2/𝐿 sin(𝑘𝑗𝑥), (9)

𝜗(𝑥, 𝑡) =
∑︁

𝑙=1,2,...,∞

�̂�𝑙(𝑡)
√︀

2/𝐿 sin(𝑘𝑙𝑥), (10)

𝜓+(𝑥, 𝑡) =
∑︁

𝑗=1,2,...,∞
𝑑+𝑗 (𝑡)

√︀
2/𝐿 sin(𝑘𝑗𝑥) =

= ⟨𝜓+(𝑥, 𝑡)⟩+ 𝜗+(𝑥, 𝑡), (11)

𝜗+(𝑥, 𝑡) =
∑︁

𝑙=1,2,...,∞

�̂�+𝑙 (𝑡)
√︀

2/𝐿 sin(𝑘𝑙𝑥). (12)

The Bose operators 𝑑+𝑙 and 𝑑𝑗 satisfy the commuta-
tion relations

𝑑𝑗𝑑
+
𝑙 − 𝑑+𝑙 𝑑𝑗 = 𝛿𝑙,𝑗 ,

𝑑𝑗𝑑𝑙 − 𝑑𝑙𝑑𝑗 = 𝑑+𝑗 𝑑
+
𝑙 − 𝑑+𝑙 𝑑

+
𝑗 = 0.

(13)

The operators �̂�+𝑙 and �̂�𝑗 satisfy the same relations.
The subsequent analysis is based on relations (4)

and 𝜗 ≪ ⟨𝜓(𝑥, 𝑡)⟩. They are basic formulae allow-
ing one to construct the description of a nonuniform
weakly interacting Bose gas.

3. Method 1: Solving
the Operator Equation

The Heisenberg equation for the operator 𝜓 =
= ⟨𝜓(𝑥, 𝑡)⟩+ 𝜗 reads

𝑖~
𝜕𝜓(𝑥, 𝑡)

𝜕𝑡
= − ~2

2𝑚

𝜕2𝜓(𝑥, 𝑡)

𝜕𝑥2
+

+

𝐿∫︁
0

𝑑𝑥′𝑈(|𝑥− 𝑥′|)𝜓+(𝑥′, 𝑡)𝜓(𝑥′, 𝑡)𝜓(𝑥, 𝑡). (14)

At 𝜗 ≪ ⟨𝜓(𝑥, 𝑡)⟩, it can be separated into two equa-
tions (in this section, we denote ⟨𝜓(𝑥, 𝑡)⟩ ≡ 𝜓0(𝑥, 𝑡)):

𝑖~
𝜕𝜓0(𝑥, 𝑡)

𝜕𝑡
= − ~2

2𝑚

𝜕2𝜓0(𝑥, 𝑡)

𝜕𝑥2
+

+𝜓0(𝑥, 𝑡)

𝐿∫︁
0

𝑑𝑥′𝑈(|𝑥− 𝑥′|)|𝜓0(𝑥
′, 𝑡)|2, (15)

𝑖~
𝜕𝜗(𝑥, 𝑡)

𝜕𝑡
= − ~2

2𝑚

𝜕2𝜗(𝑥, 𝑡)

𝜕𝑥2
+

+𝜗(𝑥, 𝑡)

𝐿∫︁
0

𝑑𝑥′𝑈(|𝑥− 𝑥′|)|𝜓0(𝑥
′, 𝑡)|2 +

+𝜓0(𝑥, 𝑡)

𝐿∫︁
0

𝑑𝑥′𝑈(|𝑥− 𝑥′|)
[︁
𝜓0(𝑥

′, 𝑡)𝜗+(𝑥′, 𝑡)+

+ 𝜓*
0(𝑥

′, 𝑡)𝜗(𝑥′, 𝑡)
]︁
. (16)

Equation (15) was first obtained by Gross [35] and
is usually called the Gross–Pitaevskii equation [36,
37]. It is clear that the lowest energy solution of
Eq. (15) is given by the function 𝜓0(𝑥, 𝑡) = 𝜓0(𝑡). To
satisfy zero BCs, 𝜓0(𝑥, 𝑡) must decrease to zero near
the boundaries. Neglecting this nonuniformity, we
can write 𝜓0(𝑥, 𝑡) = 𝑎0(𝑡)/

√
𝐿 (more accurate solu-

tion for ⟨𝜓(𝑥, 𝑡)⟩ will be obtained in the next sec-
tion). We set 𝑎*0𝑎0 = 𝑁0 and 𝑛0 = 𝑁0/𝐿. Then
Eq. (15) takes the form

𝑖~
𝜕𝑎0(𝑡)

𝜕𝑡
= 𝑎0(𝑡)𝑛0

𝐿∫︁
0

𝑑𝑥′𝑈(|𝑥− 𝑥′|). (17)

We expand the potential in the Fourier series:

𝑈(|𝑥1 − 𝑥2|) =
1

2𝐿

∑︁
𝑗=0,±1,±2,...

𝜈(𝑘𝑗)𝑒
𝑖𝑘𝑗(𝑥1−𝑥2), (18)
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𝜈(𝑘𝑗) =

𝐿∫︁
−𝐿

𝑈(|𝑥|)𝑒−𝑖𝑘𝑗𝑥𝑑𝑥, 𝑘𝑗 = 𝜋𝑗/𝐿. (19)

This series restores the potential exactly in the whole
region 𝑥1, 𝑥2 ∈ [0, 𝐿] (expansions of the potential
for different BCs have been considered in [38]). Since
𝜈(𝑘𝑗) = 2

∫︀ 𝐿

0
𝑈(𝑥) cos(𝑘𝑗𝑥)𝑑𝑥 = 𝜈(−𝑘𝑗), we have

𝑈(|𝑥− 𝑥′|) = 𝜈(0)

2𝐿
+

∑︁
𝑗=1,2,...

𝜈(𝑘𝑗)

𝐿
×

× [cos(𝑘𝑗𝑥) cos(𝑘𝑗𝑥
′) + sin(𝑘𝑗𝑥) sin(𝑘𝑗𝑥

′)]. (20)

Substituting expansion (20) in (17) and making some
transformations, we get the equation

𝑖~
𝜕𝑎0(𝑡)

𝜕𝑡
= 𝑎0(𝑡)𝑛0𝜈(0) (1 + 𝑆1(𝑥)). (21)

The function 𝑆1(𝑥) and the functions 𝑆𝑗(𝑥) arising
below are given and calculated in Appendix B. If the
interaction radius 𝑎 is small as compared with the
system size 𝐿, then all functions 𝑆𝑗(𝑥) are negligibly
small. We find the solution of Eq. (21) as

𝑎0(𝑡) = 𝑒𝜖0𝑡/𝑖~𝑏0, 𝜖0 = 𝑛0𝜈(0). (22)

In view of zero BCs, the solution for 𝜓0 can be written
in the form (9):

𝜓0(𝑥, 𝑡) =
𝑎0(𝑡)√
𝐿

∑︁
𝑗=0,1,...,∞

4 sin(𝑘2𝑗+1𝑥)

𝜋(2𝑗 + 1)
=

=

⎡⎣𝑎0(𝑡)√
𝐿
, if 𝑥 ∈]0, 𝐿[,

0, if 𝑥 = 0;𝐿.

(23)

Now, let us substitute 𝜗 (10) and 𝜗+ (12) in
Eq. (16). With regard for relations (20) and (23),
Eq. (16) is separated into two equations for the har-
monics �̂�2𝑙 and �̂�2𝑗+1. The equation for �̂�2𝑙 reads

𝑖~
∑︁

𝑙=1,2,...,∞

sin(𝑘2𝑙𝑥)
𝜕�̂�2𝑙(𝑡)

𝜕𝑡
=

∑︁
𝑙=1,2,...,∞

sin(𝑘2𝑙𝑥)×

× �̂�2𝑙(𝑡) (𝐾(𝑘2𝑙) + 𝑛0𝜈(0)[1 + 𝑆1(𝑥)])+

+
∑︁

𝑙=1,2,...,∞

(︂
𝑛0�̂�2𝑙(𝑡) +

𝑎20
𝐿
�̂�+2𝑙(𝑡)

)︂
×

×
(︂
𝜈(𝑘2𝑙)

2
sin(𝑘2𝑙𝑥) + 𝐼1(𝑥, 𝑙)

)︂
, (24)

𝐼1(𝑥, 𝑙)=
∑︁

𝑗=1,3,5,...

𝜈(𝑘𝑗)

𝜋
cos(𝑘𝑗𝑥)

(︂
1

2𝑙−𝑗
+

1

2𝑙+𝑗

)︂
, (25)

where 𝐾(𝑘) = ~2𝑘2

2𝑚 . Using the expansion

cos(𝑘𝑗𝑥) =
∑︁

𝑝=1,2,3,...

𝑐𝑝𝑗 sin(𝑘𝑝𝑥),

𝑐𝑝𝑗 =

⎡⎣0 for even 𝑝− 𝑗,
2

𝜋

(︂
1

𝑝− 𝑗
+

1

𝑝+ 𝑗

)︂
for odd 𝑝− 𝑗,

(26)

the sum 𝐼1 (25) can be represented in the form

𝐼1(𝑥, 𝑙) = 𝜈(𝑘2𝑙) sin(𝑘2𝑙𝑥)

(︂
1

2
+ 𝑆2(𝑙)

)︂
+

+
2

𝜋2

∑︁
𝑗=1,3,5,...

𝜈(𝑘𝑗)

𝑝 ̸=𝑙∑︁
𝑝=1,2,3,...

sin(𝑘2𝑝𝑥)×

×
(︂

1

2𝑙 − 𝑗
+

1

2𝑙 + 𝑗

)︂(︂
1

2𝑝− 𝑗
+

1

2𝑝+ 𝑗

)︂
. (27)

Then Eq. (24) takes the form

𝑖~
∑︁

𝑙=1,2,...,∞

sin(𝑘2𝑙𝑥)
𝜕�̂�2𝑙(𝑡)

𝜕𝑡
=

=
∑︁

𝑙=1,2,...,∞

sin(𝑘2𝑙𝑥)
𝑎20
𝐿
𝜈(𝑘2𝑙)�̂�

+
2𝑙(𝑡)(1 + 𝑆2(𝑙))+

+
∑︁

𝑙=1,2,...,∞

sin(𝑘2𝑙𝑥)�̂�2𝑙(𝑡) [𝐾(𝑘2𝑙)+

+ 𝑛0𝜈(0)(1 + 𝑆1(𝑥)) + 𝑛0𝜈(𝑘2𝑙)(1 + 𝑆2(𝑙))] +

+
∑︁

𝑙=1,2,...,∞

sin(𝑘2𝑙𝑥)

𝑝 ̸=𝑙∑︁
𝑝=1,2,...,∞

(︂
𝑛0�̂�2𝑝(𝑡)+

+
𝑎20
𝐿
�̂�+2𝑝(𝑡)

)︂
𝑆3(𝑙, 𝑝). (28)

Since the functions sin(𝑘2𝑙𝑥) are independent, and the
corrections 𝑆1, 𝑆2, and 𝑆3 are vanishingly small (see
Appendix B), Eq. (28) yields the system of equations

𝑖~
𝜕�̂�2𝑙(𝑡)

𝜕𝑡
= [𝐾(𝑘2𝑙) + 𝑛0𝜈(0) + 𝑛0𝜈(𝑘2𝑙)] �̂�2𝑙(𝑡)+

+
𝑎20𝜈(𝑘2𝑙)

𝐿
�̂�+2𝑙(𝑡), 𝑙 = 1, 2, ...,∞. (29)

In a similar way, we find the following equation for
the operators �̂�2𝑗+1 from (16):

𝑖~
∑︁

𝑗=0,1,...,∞
sin(𝑘2𝑗+1𝑥)

𝜕�̂�2𝑗+1(𝑡)

𝜕𝑡
=
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=
∑︁

𝑗=0,1,...,∞
sin(𝑘2𝑗+1𝑥)

𝑎20
𝐿
𝜈(𝑘2𝑗+1)×

× �̂�+2𝑗+1(𝑡) (1 + 𝑆4(𝑗))+

+
∑︁

𝑗=0,1,...,∞
sin(𝑘2𝑗+1𝑥)�̂�2𝑗+1(𝑡) [𝐾(𝑘2𝑗+1)+

+ 𝑛0𝜈(0)(1 + 𝑆1(𝑥)) + 𝑛0𝜈(𝑘2𝑗+1)(1 + 𝑆4(𝑗))] +

+
∑︁

𝑗=0,1,...,∞
sin(𝑘2𝑗+1𝑥)×

×
𝑙 ̸=𝑗∑︁

𝑙=0,1,...,∞

(︂
𝑛0�̂�2𝑙+1(𝑡) +

𝑎20
𝐿
�̂�+2𝑙+1(𝑡)

)︂
𝑆5(𝑙, 𝑗). (30)

Since the corrections 𝑆1, 𝑆4, 𝑆5 are small, and the
functions sin(𝑘2𝑗+1𝑥) are independent, Eq. (30) leads
to the equations

𝑖~
𝜕�̂�2𝑗+1(𝑡)

𝜕𝑡
=
𝑎20𝜈(𝑘2𝑗+1)

𝐿
�̂�+2𝑗+1(𝑡)+

+ [𝐾(𝑘2𝑗+1) + 𝑛0𝜈(0) + 𝑛0𝜈(𝑘2𝑗+1)] �̂�2𝑗+1(𝑡), (31)

where 𝑗 = 0, 1, ...,∞.
Thus, the starting equation (14) is reduced to

Eqs. (21), (29), and (31). Equations (29) and (31)
coincide with the equation for �̂�𝑝 from the Bogoli-
ubov work [1] with the only difference that our equa-
tions involve �̂�+𝑝 instead of �̂�+−𝑝 in [1]. This allows us
to write the solution immediately. We set �̂�𝑝(𝑡) =

= 𝑒𝜖0𝑡/𝑖~�̂�𝑝 (𝑝 = 1, 2, ...,∞) and 𝑎0(𝑡) = 𝑒𝜖0𝑡/𝑖~𝑏0.
With the help of Bogoliubov transformations

�̂�𝑝 =
𝜉𝑝 + Λ𝑝𝜉

+
𝑝√︀

1− |Λ𝑝|2
, �̂�+𝑝 =

𝜉+𝑝 + Λ*
𝑝𝜉𝑝√︀

1− |Λ𝑝|2
, (32)

𝜉𝑝 =
�̂�𝑝 − Λ𝑝�̂�

+
𝑝√︀

1− |Λ𝑝|2
, 𝜉+𝑝 =

�̂�+𝑝 − Λ*
𝑝�̂�𝑝√︀

1− |Λ𝑝|2
, (33)

Λ𝑝 =
𝑏20

𝑁0𝑛0𝜈(𝑘𝑝)
(𝐸𝑏(𝑘𝑝)−𝐾(𝑘𝑝)− 𝑛0𝜈(𝑘𝑝)) , (34)

we obtain the following equations from (29) and (31):

𝑖~
𝜕𝜉𝑝
𝜕𝑡

= 𝐸𝑏(𝑘𝑝)𝜉𝑝, −𝑖~
𝜕𝜉+𝑝
𝜕𝑡

= 𝐸𝑏(𝑘𝑝)𝜉
+
𝑝 . (35)

Here, 𝑝 = 1, 2, ...,∞ and

𝐸𝑏(𝑘) =
√︀
𝐾2(𝑘) + 2𝑛0𝜈(𝑘)𝐾(𝑘). (36)

Our solution coincides with the Bogoliubov one [1]
except for the following difference: in the Bogoli-
ubov formulae (35), 𝑝 runs the values ±1,±2, ...,±∞;
whereas our 𝑝 are positive (𝑝 = 1, 2, ...,∞), since the
excitations are standing waves. Formulae (35) show
that the excited state of the system can be consid-
ered as an ideal gas of elementary excitations with
the dispersion law 𝐸𝑏(𝑘) (36).

4. Method 2: Diagonalization
of the Hamiltonian

In the second-quantized formalism, Hamiltonian (1)
takes the form [34]

�̂� = �̂�kin + �̂�pot, (37)

�̂�kin = − ~2

2𝑚

𝐿∫︁
0

𝑑𝑥𝜓+(𝑥, 𝑡)
𝜕2

𝜕𝑥2
𝜓(𝑥, 𝑡), (38)

�̂�pot =
1

2

𝐿∫︁
0

𝑑𝑥𝑑𝑥′𝑈(|𝑥− 𝑥′|)𝜓+(𝑥, 𝑡)𝜓+(𝑥′, 𝑡)×

×𝜓(𝑥, 𝑡)𝜓(𝑥′, 𝑡). (39)

We set 𝜓(𝑥, 𝑡) = ⟨𝜓(𝑥, 𝑡)⟩ + 𝜗(𝑥, 𝑡), where
⟨𝜓(𝑥, 𝑡)⟩ = 𝜓0(𝑥, 𝑡) + 𝛿𝜓0(𝑥, 𝑡). Here, 𝜓0(𝑥, 𝑡) =

=
∑︀

𝑗=1,2,...,∞ 𝑑
(0)
𝑗 (𝑡)

√︀
2/𝐿 sin(𝑘𝑗𝑥) is the bare part

of the function ⟨𝜓(𝑥, 𝑡)⟩ and is given by formula (23),
and 𝛿𝜓0(𝑥, 𝑡) is an unknown small correction. First,
we set 𝛿𝜓0(𝑥, 𝑡) = 0. Then 𝛿𝜓0(𝑥, 𝑡) will be deter-
mined from the analysis. In this case, while calculat-
ing (𝜕2/𝜕𝑥2)𝜓(𝑥), we should take into account that
the function 𝜓0(𝑥) (23) is constant for 𝑥 ∈]0, 𝐿[ and
decreases to zero by jump at the points 𝑥 = 0 and
𝐿. Instead, it is simpler to use the initial exact ex-
pansion (3). In this case, we note that (23) yields

𝑑
(0)
2𝑗 = 0, 𝑗 = 1, 2, ...,∞. (40)

In such way with regard for the relations 𝑑𝑗(𝑡) =

= 𝑑
(0)
𝑗 (𝑡) + �̂�𝑗(𝑡), �̂�𝑗(𝑡) = 𝑒𝜖0𝑡/𝑖~�̂�𝑗 , and (40), we ob-

tain

�̂�kin =
∑︁

𝑙=1,2,...,∞

𝐾(𝑘2𝑙)�̂�
+
2𝑙�̂�2𝑙 +

+
∑︁

𝑗=0,1,...,∞
𝐾 (𝑘2𝑗+1)

(︁
𝑏+2𝑗+1 + 𝑓*2𝑗+1

)︁
×

×
(︁
𝑏2𝑗+1 + 𝑓2𝑗+1

)︁
, (41)
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where

𝑓2𝑗+1 = 𝑑
(0)
2𝑗+1𝑒

−𝜖0𝑡/𝑖~ =
2
√
2𝑏0

𝑘2𝑗+1𝐿
. (42)

The operator �̂�pot contains no derivatives. There-
fore, we use the representation 𝜓 = 𝜓0 + 𝜗 with 𝜓0

(23). Similarly to the Bogoliubov work, we neglect
the terms of the 3-rd and 4-th degrees in 𝜗 and 𝜗+ in
the product 𝜓+(𝑥)𝜓+(𝑥′)𝜓(𝑥)𝜓(𝑥′). Then

𝜓+(𝑥)𝜓+(𝑥′)𝜓(𝑥)𝜓(𝑥′) =
(𝑎0𝑎

*
0)

2

𝐿2

⃒⃒⃒
1
+

+
𝑎*0𝑎

2
0

𝐿3/2
(𝜗+(𝑥) + 𝜗+(𝑥′))

⃒⃒⃒
3
+

(𝑎*0)
2

𝐿
𝜗(𝑥)𝜗(𝑥′)

⃒⃒⃒
4
+

+
𝑎0(𝑎

*
0)

2

𝐿3/2
(𝜗(𝑥) + 𝜗(𝑥′))

⃒⃒⃒
2
+
𝑎20
𝐿
𝜗+(𝑥)𝜗+(𝑥′)

⃒⃒⃒
5
+

+
𝑎0𝑎

*
0

𝐿

(︁
𝜗+(𝑥) + 𝜗+(𝑥′)

)︁(︁
𝜗(𝑥) + 𝜗(𝑥′)

)︁
6
≡

≡
∑︁

𝑙=1,2,...,6

𝜂𝑙. (43)

Expression (43) is a sum of six terms. Each of them is
enumerated by the mark |𝑙 and is denoted by 𝜂𝑙. Using
expansion (20) of the potential, we get

�̂�pot =
∑︁

𝑙=1,2,...,6

𝐼𝑙, (44)

𝐼𝑙 =
1

2

𝐿∫︁
0

𝑑𝑥𝑑𝑥′𝜂𝑙

{︃
𝜈(0)

2𝐿
+

∑︁
𝑗=1,2,...

𝜈(𝑘𝑗)

𝐿
×

× [cos(𝑘𝑗𝑥) cos(𝑘𝑗𝑥
′) + sin(𝑘𝑗𝑥) sin(𝑘𝑗𝑥

′)]

}︃
. (45)

The calculation of integrals (45) gives rather awkward
sums, and the main problem consists in the separa-
tion of their principal parts. With regard for formulae
(9)–(12), (42), 𝑎0(𝑡) = 𝑒𝜖0𝑡/𝑖~𝑏0, and 𝑏*0𝑏0 = 𝑁0, we
obtain

𝐼1 =
𝑁0𝑛0𝜈(0)

2
(1 + 𝑆21), (46)

𝐼2 =
𝑛0
2

∑︁
𝑗=0,1,...,∞

𝑓*2𝑗+1�̂�2𝑗+1 (𝜈(0) + 𝜈(𝑘2𝑗+1)), (47)

𝐼3 =
𝑛0
2

∑︁
𝑗=0,1,...,∞

𝑓2𝑗+1�̂�
+
2𝑗+1 (𝜈(0) + 𝜈(𝑘2𝑗+1)), (48)

𝐼4 =
(𝑏*0)

2

2𝐿

[︃ ∑︁
𝑙=1,2,...,∞

𝜈(𝑘2𝑙)�̂�
2
2𝑙(1 + 𝑆22(𝑙))+

+
∑︁

𝑗=0,1,...,∞
𝜈(𝑘2𝑗+1)�̂�

2
2𝑗+1(1 + 𝑆23(𝑗))+

+

𝑙1 ̸=𝑙2∑︁
𝑙1,𝑙2=1,2,...,∞

�̂�2𝑙1 �̂�2𝑙2𝑆24(𝑙1, 𝑙2)+

+

𝑗1 ̸=𝑗2∑︁
𝑗1,𝑗2=0,1,...,∞

�̂�2𝑗1+1�̂�2𝑗2+1𝑆25(𝑗1, 𝑗2)

]︃
, (49)

𝐼5 =
𝑏20
2𝐿

[︃ ∑︁
𝑙=1,2,...,∞

𝜈(𝑘2𝑙)(�̂�
+
2𝑙)

2(1 + 𝑆22(𝑙))+

+
∑︁

𝑗=0,1,...,∞
𝜈(𝑘2𝑗+1)(�̂�

+
2𝑗+1)

2(1 + 𝑆23(𝑗))+

+

𝑙1 ̸=𝑙2∑︁
𝑙1,𝑙2=1,2,...,∞

�̂�+2𝑙1 �̂�
+
2𝑙2
𝑆24(𝑙1, 𝑙2)+

+

𝑗1 ̸=𝑗2∑︁
𝑗1,𝑗2=0,1,...,∞

�̂�+2𝑗1+1�̂�
+
2𝑗2+1𝑆25(𝑗1, 𝑗2)

]︃
, (50)

𝐼6 =
(𝑁 − ^̃𝑁)𝑛0𝜈(0)

2
+

+
∑︁

𝑙=1,2,...,∞

𝑛0𝜈(𝑘2𝑙)�̂�
+
2𝑙�̂�2𝑙(1 + 𝑆22(𝑙) + 𝑆26(𝑙))+

+
∑︁

𝑗=0,1,...,∞
𝑛0𝜈(𝑘2𝑗+1)�̂�

+
2𝑗+1�̂�2𝑗+1 ×

× (1 + 𝑆23(𝑗) + 𝑆27(𝑗))+

+

𝑙1 ̸=𝑙2∑︁
𝑙1,𝑙2=1,2,...,∞

𝑛0�̂�
+
2𝑙1
�̂�2𝑙2 [𝑆24(𝑙1, 𝑙2) + 𝑆28(𝑙1, 𝑙2)] +

+

𝑗1 ̸=𝑗2∑︁
𝑗1,𝑗2=0,1,...,∞

𝑛0�̂�
+
2𝑗1+1�̂�2𝑗2+1 ×

× [𝑆25(𝑗1, 𝑗2) + 𝑆29(𝑗1, 𝑗2)], (51)

where we denote

𝑁 − ^̃𝑁 ≡
∑︁

𝑙=1,2,...,∞

�̂�+2𝑙�̂�2𝑙 +
∑︁

𝑗=0,1,...,∞
�̂�+2𝑗+1�̂�2𝑗+1. (52)

Using the relations �̂�𝑙=𝑒−𝜖0𝑡/𝑖~�̂�𝑙=𝑒
−𝜖0𝑡/𝑖~(𝑑𝑙−𝑑(0)𝑙 ),

(40) and the normalization condition∑︀
𝑙=1,2,...,∞ 𝑑+𝑙 𝑑𝑙 = 𝑁 , we represent (52) in the

form

𝑁 − ^̃𝑁 = 𝑁 −
∑︁

𝑗=0,1,...,∞
|𝑓2𝑗+1|2 −

−
∑︁

𝑗=0,1,...,∞

(︁
𝑏+2𝑗+1𝑓2𝑗+1 + �̂�2𝑗+1𝑓

*
2𝑗+1

)︁
. (53)
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It is shown in Appendix B that 𝑆26(𝑙) = 𝜈(0)
2𝜈(𝑘2𝑙)

−
−𝑆26(𝑙), 𝑆27(𝑗) = 𝜈(0)

2𝜈(𝑘2𝑗+1)
− 𝑆27(𝑗), and the cor-

rections 𝑆2𝑗 with 𝑗 = 1, 2, ..., 9 are negligibly small
at 𝑎 ≪ 𝐿. Taking this into account, we find from
Eqs. (37)–(53):

�̂� = �̂�lin +
𝑁0𝑛0𝜈(0)

2
+𝑁𝑛0𝜈(0)+

+
∑︁

𝑗=0,1,...,∞
(𝐾(𝑘2𝑗+1)− 𝑛0𝜈0) |𝑓2𝑗+1|2 +

+
∑︁

𝑙=1,2,...,∞

[︃
(𝐾(𝑘2𝑙) + 𝑛0𝜈(𝑘2𝑙)) �̂�

+
2𝑙�̂�2𝑙 +

+
(𝑏*0)

2

2𝐿
𝜈(𝑘2𝑙)�̂�

2
2𝑙 +

𝑏20
2𝐿
𝜈(𝑘2𝑙)(�̂�

+
2𝑙)

2

]︃
+

+
∑︁

𝑗=0,1,...

[︃
(𝐾(𝑘2𝑗+1) + 𝑛0𝜈(𝑘2𝑗+1)) �̂�

+
2𝑗+1�̂�2𝑗+1 +

+
(𝑏*0)

2

2𝐿
𝜈(𝑘2𝑗+1)�̂�

2
2𝑗+1 +

𝑏20
2𝐿
𝜈(𝑘2𝑗+1)(�̂�

+
2𝑗+1)

2

]︃
, (54)

�̂�lin =
∑︁

𝑗=0,1,...,∞

(︁
𝑓*2𝑗+1�̂�2𝑗+1 + 𝑓2𝑗+1�̂�

+
2𝑗+1

)︁
×

× [𝐾(𝑘2𝑗+1) + 𝑛0𝜈(𝑘2𝑗+1)/2− 𝑛0𝜈0/2]. (55)

The correction term �̂�lin is linear in �̂�2𝑗+1 and �̂�+2𝑗+1

and can be removed with the help of the transforma-
tion

�̂�2𝑗+1 =
^̃
𝑏2𝑗+1 + 𝛽2𝑗+1, �̂�+2𝑗+1 =

^̃
𝑏+2𝑗+1 + 𝛽*

2𝑗+1, (56)

𝛽2𝑗+1 = −𝑓2𝑗+1
2𝐾(𝑘2𝑗+1) + 𝑛0𝜈(𝑘2𝑗+1)− 𝑛0𝜈0

2𝐾(𝑘2𝑗+1) + 4𝑛0𝜈(𝑘2𝑗+1)
, (57)

where 𝑗 = 0, 1, ...,∞. The operators ^̃
𝑏+2𝑗+1 and ^̃

𝑏2𝑝+1

satisfy the same commutation relations as the oper-
ators �̂�+2𝑗+1 and �̂�2𝑝+1. Thus, we have found the cor-
rection 𝛿𝜓0(𝑥, 𝑡):

𝛿𝜓0(𝑥, 𝑡) ≡ ⟨𝜓(𝑥, 𝑡)⟩ − 𝜓0(𝑥, 𝑡) =

= 𝑒𝜖0𝑡/𝑖~
∑︁

𝑗=0,1,...,∞
𝛽2𝑗+1

√︀
2/𝐿 sin(𝑘2𝑗+1𝑥). (58)

In the previous section, the correction 𝛽2𝑗+1 did
not arise, because a more approximate solution was
found. Let us substitute the operators �̂�2𝑗+1 and �̂�+2𝑗+1

(56) in Eqs. (54), (55). After some transformations,
we obtain the following total Hamiltonian:

�̂� =
𝑁0𝑛0𝜈(0)

2
+ (𝑁 −𝑁0)𝑛0𝜈(0) + 𝛿𝐸0 +

+
∑︁

𝑙=1,2,...,∞

[︃
(𝐾 (𝑘2𝑙) + 𝑛0𝜈 (𝑘2𝑙)) �̂�

+
2𝑙�̂�2𝑙 +

+
(𝑏*0)

2

2𝐿
𝜈 (𝑘2𝑙) �̂�

2
2𝑙 +

𝑏20
2𝐿
𝜈 (𝑘2𝑙)

(︁
�̂�+2𝑙

)︁2]︃
+

+
∑︁

𝑗=0,1,...,∞

[︃
(𝐾 (𝑘2𝑗+1) + 𝑛0𝜈 (𝑘2𝑗+1))×

× ^̃
𝑏+2𝑗+1

^̃
𝑏2𝑗+1 +

(𝑏*0)
2

2𝐿
𝜈 (𝑘2𝑗+1)

^̃
𝑏22𝑗+1 +

+
𝑏20
2𝐿
𝜈 (𝑘2𝑗+1)

(︁
^̃
𝑏+2𝑗+1

)︁2]︃
, (59)

𝛿𝐸0 = 𝑁0𝑛0𝜈(0)+

+
∑︁

𝑗=0,1,...,∞
|𝑓2𝑗+1|2 (𝐾 (𝑘2𝑗+1)− 𝑛0𝜈0)−

−
∑︁

𝑗=0,1,...,∞
|𝛽2𝑗+1|2 (𝐾 (𝑘2𝑗+1) + 2𝑛0𝜈 (𝑘2𝑗+1)). (60)

With the help of transforms (32), where we use
the operators �̂�+2𝑙, �̂�2𝑙 for even 𝑝 and the operators
^̃
𝑏+2𝑗+1,

^̃
𝑏2𝑗+1 for odd 𝑝, Hamiltonian (59) is reduced

to the diagonal form:

�̂� = 𝐸0 +
∑︁

𝑙=1,2,...,∞

𝐸𝑏 (𝑘𝑙) 𝜉
+
𝑙 𝜉𝑙, (61)

𝐸0 =
𝑁0𝑛0𝜈(0)

2
+ (𝑁 −𝑁0)𝑛0𝜈(0) + 𝛿𝐸0 +

+
1

2

∑︁
𝑙=1,2,...,∞

(𝐸𝑏 (𝑘𝑙)−𝐾 (𝑘𝑙)− 𝑛0𝜈 (𝑘𝑙)). (62)

We remark that the operators 𝜉+𝑙 , 𝜉𝑝 (33) (with re-

placements �̂�2𝑗+1 → ^̃
𝑏2𝑗+1, �̂�+2𝑗+1 → ^̃

𝑏+2𝑗+1 or without
them) satisfy the commutation relations (13) for Bose
operators.

According to solution (61), (62), the system can
be considered as a gas of noninteracting quasiparti-
cles with the energy 𝐸𝑏(𝑘), and the number of quasi-
particles can vary. Our solution differs from the Bo-
goliubov one by that the quasiparticles are standing
waves rather than traveling ones, which is natural,
and by the term 𝛿𝐸0. It is shown in Appendix B that
𝛿𝐸0 is negligible provided that the coupling is weak,
and the interaction radius is less or comparable with
the interatomic distance. Under these conditions, our
solutions 𝐸(𝑘) and 𝐸0 coincide with the Bogoliubov
ones for a periodic system.
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We note that if the interaction radius tends to zero,
then the energy levels 𝐸𝑏(𝑘) with 𝑘 = 𝜋/𝐿, 2𝜋/𝐿, ...
coincide with the corresponding levels [8, 9] of a sys-
tem of point bosons, which is described via the Bethe
ansatz.

Since the excitations are standing waves, index 𝑙 in
(61), (62) takes only positive values (1, 2, 3, ...). As
𝑘𝑙 varies with the step △𝑘 = 𝜋/𝐿, the value of
the sum

∑︀
𝑙 𝑓(𝑘𝑙) for zero BCs is the same as for

periodic BCs, for which 𝑙 = ±1,±2,±3, ... and
△𝑘 = 2𝜋/𝐿 [1]. Therefore, the values of thermody-
namic quantities under zero and periodic BCs are
identical (the same result was obtained for point
bosons [8]).

We remark also that the replacement by a c-number
was made twice (rough and fine tunings): first, we
separated 𝑑

(0)
2𝑗+1 from 𝑑2𝑗+1 and, second, 𝛽2𝑗+1 from

�̂�2𝑗+1. The latter is equivalent to the separation of an
additional c-number 𝛽2𝑗+1𝑒

𝜖0𝑡/𝑖~ from 𝑑2𝑗+1: that is,
𝑑2𝑗+1 = 𝑑

(0)
2𝑗+1 + 𝛽2𝑗+1𝑒

𝜖0𝑡/𝑖~. If the (2𝑗 + 1)-state is
macroscopically occupied, then |𝛽2𝑗+1| ≪ |𝑑(0)2𝑗+1|.

Note that, in the Hamiltonian, we neglected small
corrections of the kind �̂�3𝑗 , �̂�4𝑗 , which leads to the
absence of the interaction between quasiparticles.
Therefore, the model describes only such states of the
system, for which the interaction of quasiparticles is
inessential, i.e., the states with a not large number
of quasiparticles. The criterion of applicability of the
method (see Section 5 below) imposes the stronger
restriction on the number of quasiparticles.

It is also worth noting that, in the Bogoliubov
method after the replacement 𝑑0 → 𝑑0, the exact
Hamiltonian (37)–(39) does not commute with the
operator �̂� = Σ𝑗𝑑

+
𝑗 𝑑𝑗 of the total number of par-

ticles. Therefore, the number of particles 𝑁 is not
conserved. Several close modifications of the Bogoli-
ubov method, in which the number of particles is con-
served, were proposed [12, 16, 17, 20]. In our method,
replacement (8) does not cause the violation of
the equality [�̂�, �̂� ] = 0. However, for the diagonal
Hamiltonian (61), we have [�̂�, �̂� ] ̸= 0. The law of
conservation of 𝑁 is broken due to the neglect of cor-
rections of the orders 𝜗3 and 𝜗4 in the exact �̂�. It
is necessary to modify the model so that the law of
conservation of 𝑁 be satisfied. On the other hand, in
order that ⟨𝜓(𝑥, 𝑡)⟩ exist and be nonzero, one needs
to break the invariance of the Hamiltonian relative to
the transformation 𝜓 → 𝑒𝑖𝛼𝜓 [13, 14], which causes

the violation of the law of conservation of 𝑁 (at least,
formally).

5. A Criterion of Applicability
of the Method

To find the condition of applicability of the method,
we need to calculate the “anomalous” averages
⟨𝑑+𝑙 𝑑𝑗⟩|𝑙 ̸=𝑗 and ⟨𝜓(𝑥, 𝑡)⟩. The symmetry-based rea-
soning [13, 14] implies that the law of conservation of
the number of particles leads to ⟨𝜓(𝑥, 𝑡)⟩ = 0. How-
ever, the Bogoliubov model gives a nonzero value of
⟨𝜓(𝑥, 𝑡)⟩. This contradiction can be removed with the
help of the introduction of a negligible correction with
a certain structure into the Hamiltonian (the method
of quasiaverages [13,14]). In this case, the law of con-
servation of the number of particles is formally bro-
ken, the average ⟨𝜓(𝑥, 𝑡)⟩ can be nonzero, and the
method of quasiaverages allows one to find it. Howe-
ver, in order to calculate ⟨𝜓(𝑥, 𝑡)⟩, there is no need
to use the method of quasiaverages. It is sufficient to
use the quasiparticle representation [34] in formula
(6). We express 𝑑+𝑗 and 𝑑𝑗 in the operator 𝐴 in (6)
through the operators 𝜉+𝑗 and 𝜉𝑗 . Then we construct
the collection {Ψ𝑝(𝑥1, ..., 𝑥𝑁 )} from the wave func-
tion of the ground state Ψ0, the wave functions of
states with one quasiparticle (𝐶𝑙𝜉

+
𝑙 Ψ0), two quasi-

particles (𝐶𝑙𝑗𝜉
+
𝑙 𝜉

+
𝑗 Ψ0), and so on (𝐶𝑙 and 𝐶𝑙𝑗 are

normalization factors). These functions are the eigen-
functions of Hamiltonian (61). The functions Ψ𝑝 of
a Bose gas have the same structure [3]. It is known
that the Schrödinger equation with given BCs has
a set of solutions, which form a complete collection
{Ψ𝑝(𝑥1, ..., 𝑥𝑁 )}. It is clear that the lowest states
in this collection should coincide with the above-
constructed ones. The energy levels in (6) are de-
scribed by the formula

𝐸𝑝 = 𝐸0 +
∑︁

𝑙=1,2,...,∞

𝑛𝑙𝐸𝑏(𝑘𝑙), (63)

where the occupation numbers take values 𝑛𝑙 =
= 0, 1, 2, ...,∞ for all 𝑙. In such way, we can find any
averages. In this case, the system of interacting par-
ticles with a fixed 𝑁 is described as an ideal gas of
quasiparticles, whose number varies.

Let us find the criterion of applicability of the
method. The equations∑︁
𝑗=1,2,...,∞

�̂�𝑗 = �̂� , �̂�𝑗 = 𝑑+𝑗 𝑑𝑗 (64)
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yield∑︁
𝑗=1,2,...,∞

⟨𝑑+𝑗 𝑑𝑗⟩
𝑁

= 1, (65)

where ⟨𝑑+𝑗 𝑑𝑗⟩ = ⟨�̂�𝑗⟩ is the average number of atoms
in the state

√︀
2/𝐿 · sin(𝑘𝑗𝑥). For 𝑗 = 2𝑙, we have

⟨𝑑+2𝑙𝑑2𝑙⟩ = ⟨�̂�+2𝑙�̂�2𝑙⟩. In order to determine ⟨�̂�+2𝑙�̂�2𝑙⟩ by
formula (6), we express �̂�+2𝑙, �̂�2𝑙 in terms of 𝜉+2𝑙, 𝜉2𝑙
according to (32) and take into account that ⟨𝜉+𝑝 ⟩ =
= ⟨𝜉𝑝⟩ = 0. We obtain

⟨�̂�+2𝑙�̂�2𝑙⟩ =
⟨�̂�2𝑙⟩+ |Λ2𝑙|2(⟨�̂�2𝑙⟩+ 1)

1− |Λ2𝑙|2
, (66)

|Λ𝑝|2

1− |Λ𝑝|2
=

(𝑛0𝜈(𝑘𝑝))
2
(2𝐸𝑏(𝑘𝑝))

−1

𝐸𝑏(𝑘𝑝) +𝐾(𝑘𝑝) + 𝑛0𝜈(𝑘𝑝)
. (67)

In the approximation of free quasiparticles, the aver-
age number of quasiparticles with the quasimomen-
tum 𝑘 = 𝑘𝑙 is determined by the Bose distribution
[34, 39, 40]:

⟨�̂�𝑙⟩ = ⟨𝜉+𝑙 𝜉𝑙⟩ =
(︁
𝑒𝐸𝑏(𝑘𝑙)/𝑘B𝑇 − 1

)︁−1

. (68)

In this case, ⟨�̂�𝑙⟩|𝑇=0 = 0. Formula (66) with ⟨�̂�2𝑙⟩ =
= 0 follows also from (7), (32).

With regard for (8) and (56), we obtain

⟨𝑑+2𝑗+1𝑑2𝑗+1⟩ =
⟨(︁
𝑏+2𝑗+1 + 𝛽*

2𝑗+1 + 𝑓*2𝑗+1

)︁
×

×
(︁
𝑏2𝑗+1 + 𝛽2𝑗+1 + 𝑓2𝑗+1

)︁⟩
. (69)

By expressing the operators ^̃
𝑏+2𝑗+1,

^̃
𝑏2𝑗+1 through

𝜉+2𝑗+1, 𝜉2𝑗+1 according to (32), we find

⟨𝑑+2𝑗+1𝑑2𝑗+1⟩ = 𝐺2𝑗+1 + ⟨^̃𝑏+2𝑗+1
^̃
𝑏2𝑗+1⟩, (70)

𝐺2𝑗+1 =
(︀
𝛽*
2𝑗+1 + 𝑓*2𝑗+1

)︀
(𝛽2𝑗+1 + 𝑓2𝑗+1), (71)

⟨^̃𝑏+2𝑗+1
^̃
𝑏2𝑗+1⟩ =

⟨�̂�2𝑗+1⟩+ |Λ2𝑗+1|2(⟨�̂�2𝑗+1⟩+ 1)

1− |Λ2𝑗+1|2
. (72)

The above formulae yield

1− �̃�0

𝑁
=

1

𝑁
×

×
∑︁

𝑗=1,2,...,∞

(𝑛0𝜈(𝑘𝑗))
2

2𝐸𝑏(𝑘𝑗)[𝐸𝑏(𝑘𝑗) +𝐾(𝑘𝑗) + 𝑛0𝜈(𝑘𝑗)]
+

+
1

𝑁

∑︁
𝑗=1,2,...,∞

𝐾(𝑘𝑗) + 𝑛0𝜈(𝑘𝑗)[︀
𝑒𝐸𝑏(𝑘𝑗)/𝑘B𝑇 − 1

]︀
𝐸𝑏(𝑘𝑗)

, (73)

where �̃�0 is the number of atoms in the effective con-
densate ⟨𝜓(𝑥, 𝑡)⟩:

�̃�0 =

𝐿∫︁
0

|⟨𝜓(𝑥, 𝑡)⟩|2𝑑𝑥 =

=
∑︁

𝑗=0,...,∞
⟨𝑑+2𝑗+1(𝑡)⟩⟨𝑑2𝑗+1(𝑡)⟩ =

∑︁
𝑗=0,...,∞

𝐺2𝑗+1. (74)

Here, ⟨𝑑2𝑗+1(𝑡)⟩ = 𝑒𝜖0𝑡/𝑖~ [𝑓2𝑗+1 + 𝛽2𝑗+1]. According
to the above analysis, the effective condensate is de-
scribed by the formula

⟨𝜓(𝑥, 𝑡)⟩=
∑︁

𝑗=0,1,...,∞
⟨𝑑2𝑗+1(𝑡)⟩

√︂
2

𝐿
sin (𝑘2𝑗+1𝑥). (75)

For simplicity, we consider the point potential
𝑈 (|𝑥𝑗 − 𝑥𝑙|) = 2𝑐𝛿 (𝑥𝑗 − 𝑥𝑙) (i.e. 𝜈(𝑘) = 2𝑐) and set
𝑛 = 𝑁

𝐿 , 𝐾(𝑘)
𝑛02𝑐

= 𝑘2

2𝑛0𝑛𝛾
, where 𝛾 = 2𝑚𝑐

~2𝑛 coincides with
𝛾 by Lieb–Liniger [5]. Then

𝑓𝑗 + 𝛽𝑗 = 𝑓𝑗
4𝛾𝑛0𝑛

𝑘2𝑗 + 4𝛾𝑛0𝑛
, (76)

𝐺𝑗 = |𝑓𝑗 |2
(4𝛾𝑛0𝑛)

2(︀
𝑘2𝑗 + 4𝛾𝑛0𝑛

)︀2 =
8𝑁0

𝜋2𝑗2
1[︀

𝑦2𝑗 /4 + 1
]︀2 , (77)

�̃�0 ≡
∑︁

𝑗=0,1,...,∞
𝐺2𝑗+1 = 𝑁0

(︂
1− 1.5

𝜋
√
Γ

)︂
, (78)

𝜒𝑗 ≡
(𝑛0𝜈(𝑘𝑗))

2

2𝐸𝑏(𝑘𝑗) [𝐸𝑏(𝑘𝑗) +𝐾(𝑘𝑗) + 𝑛0𝜈(𝑘𝑗)]
=

=
2√︁

𝑦4𝑗 + 4𝑦2𝑗

(︁√︁
𝑦4𝑗 + 4𝑦2𝑗 + 𝑦2𝑗 + 2

)︁ , (79)

𝜔𝑗 ≡
𝐾(𝑘𝑗) + 𝑛0𝜈(𝑘𝑗)[︀

𝑒𝐸𝑏(𝑘𝑗)/𝑘B𝑇 − 1
]︀
𝐸𝑏(𝑘𝑗)

=

=
𝑦2𝑗 + 2[︁

𝑒
√

𝑦4
𝑗+4𝑦2

𝑗/𝑇 − 1
]︁√︁

𝑦4𝑗 + 4𝑦2𝑗

, (80)

∑︁
𝑗=1,2,...,∞

𝜒𝑗 = 𝑞0(Γ)

√
Γ lnΓ

4
, (81)∑︁

𝑗=1,2,...,∞
𝜔𝑗 = 𝑞𝑇

(︁
Γ, 𝑇

)︁
0.82𝑇Γ, (82)

where 𝑦𝑗 =
𝑘𝑗√
𝛾𝑛𝑛0

= 𝑗√
Γ
, 𝑇 = 𝑘B𝑇

𝑐𝑛0
, Γ = 𝛾𝑁𝑁0

𝜋2 . The
equality (78) holds at Γ >∼ 1.

Relations (73)–(82) yield

1− �̃�0

𝑁
=
𝑞0(Γ)

√
Γ

4𝑁
ln Γ + 𝑞𝑇 (Γ, 𝑇 )

0.82𝑇Γ

𝑁
, (83)
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where 𝑞0(Γ) ≈ 1 at Γ ≫ 1, and 𝑞𝑇 ≈ 1 at Γ ≫ 1,
𝑇 ≫ Γ−1/2. The condition 𝑇 ≫ Γ−1/2 follows from
𝐸𝑏(𝑘1) ≪ 𝑘B𝑇 (nonzero temperature has a meaning,
if the system is in the equilibrium state; the equilib-
rium is possible for a large number of quasiparticles;
the last is satisfied for 𝐸𝑏(𝑘1) ≪ 𝑘B𝑇 ).

Under periodic BCs, the solution [1] yields formula
(83) with the replacement �̃�0 → 𝑁0 and with the
parameters 𝑞0 ≈ 0.9, 𝑞𝑇 ≈ 0.5 (at Γ ≫ 1, 𝑇 ≫
≫ Γ−1/2).

We have used the approximation 𝜗 ≪ ⟨𝜓(𝑥, 𝑡)⟩,
which holds for 𝑁 − �̃�0 ≪ 𝑁 . The condition 𝑁 −
− �̃�0 ≪ 𝑁 implies that almost all atoms are in the
effective condensate ⟨𝜓(𝑥, 𝑡)⟩. From relation (83), we
obtain the criterion of applicability of the method:

𝑁−�̃�0≪𝑁 ⇔ 0<

√
𝛾

2𝜋
ln
𝑁
√
𝛾

𝜋
+0.08𝛾𝑁𝑇≪1. (84)

At 𝑁 = ∞ and 𝑇 = 0, inequalities (84) are bro-
ken for any finite 𝛾. From (78), (83), we get 𝑞0 ≈ 1,

�̃�0 = 𝑁0 ≈ 𝑁
(︁

2𝜋√
𝛾 ln𝑁

)︁2
≪ 𝑁 . Such value of �̃�0

can be considered macroscopic at √
𝛾 <∼ 2𝜋 (for the

system with finite 𝑁, we consider the 𝑗-th state to
be macroscopically occupied, if ⟨�̂�𝑗⟩ >∼ 𝑁/Θ, where
Θ = ln2𝑁). If 𝑁 = ∞ and 𝑇 > 0, then (83) im-
plies that �̃�0 is microscopic. It was shown in [33] that
�̃�0 is close to the number of atoms in the unique
condensate. Such results agree with the conclusion of
the well-known works [26, 27] that the existence of
a condensate in an infinite 1D system at 𝑇 > 0 is
impossible.

At finite 𝑁 and 𝑇 = 0, inequalities (84) hold pro-
vided that 𝛾 is small. At finite 𝑁 and 𝑇 > 0, re-
lation (84) yields 𝛾𝑁𝑇 ≪ 12, and the condition
𝑇 ≫ Γ−1/2 gives 𝑇 ≫ 𝜋/(

√
𝛾𝑁). These inequali-

ties are compatible at 𝛾 < 10−3. Additionally, the
relation

√
𝛾

2𝜋 ln
𝑁

√
𝛾

𝜋 ≪ 1 should hold. This shows
that, in a finite system, criterion (84) holds even
at 𝑇 > 0, if 𝛾 < 10−3 and the temperature is
small: 𝑇 ≪ 12

𝛾𝑁 , i.e., 𝑘B𝑇 ≪ 6~2𝑛2

𝑚𝑁 . Interestingly,
the last inequality contains no interaction constant
𝑐. At first sight, the condition 𝑘B𝑇 ≪ 6~2𝑛2

𝑚𝑁 differs
radically from the criterion of Bose condensation for
the ideal Bose gas in a 1D trap: 𝑘B𝑇 <∼

𝑁~𝜔
ln (2𝑁) [41],

where 𝜔 is the trap frequency. But this is not the
case. Zero BCs are similar to a trap with the fre-
quency ~𝜔 =

~2𝑘2
min

2𝑚 , where 𝑘min = 𝜋
𝐿 . Therefore, the

criterion 𝑘B𝑇 <∼
𝑁~𝜔

ln (2𝑁) leads to 𝑘B𝑇 <∼
𝜋2~2𝑛2

2𝑚𝑁 ln (2𝑁) ,

which is close to 𝑘B𝑇 ≪ 6~2𝑛2

𝑚𝑁 .
Thus, our method can be used for the description

of a finite system at low temperatures and with weak
coupling.

6. Single-Particle Density
Matrix and the Quasicondensate

For the completeness, we now find the density matrix:

𝐹1(𝑥, 𝑥
′) = ⟨𝜓+(𝑥′, 𝑡)𝜓(𝑥, 𝑡)⟩ =

=
∑︁

𝑗1𝑗2=1,2,...,∞
𝑔*2𝑗1−1(𝑥

′)𝑔2𝑗2−1(𝑥)×

×
[︁
𝑑
(0)*
2𝑗1−1𝑑

(0)
2𝑗2−1 + 𝑑

(0)*
2𝑗1−1⟨�̂�2𝑗2−1⟩+

+ 𝑑
(0)
2𝑗2−1⟨�̂�

+
2𝑗1−1⟩+ ⟨�̂�+2𝑗1−1�̂�2𝑗2−1⟩

]︁
+

+
∑︁

𝑙1𝑙2=1,2,...,∞

𝑔*2𝑙1(𝑥
′)𝑔2𝑙2(𝑥)⟨�̂�+2𝑙1 �̂�2𝑙2⟩+

+
∑︁

𝑗1𝑙2=1,2,...,∞

𝑔*2𝑗1−1(𝑥
′)𝑔2𝑙2(𝑥)×

×
[︁
𝑑
(0)*
2𝑗1−1⟨�̂�2𝑙2⟩+ ⟨�̂�+2𝑗1−1�̂�2𝑙2⟩

]︁
+

+
∑︁

𝑙1𝑗2=1,2,...,∞

𝑔*2𝑙1(𝑥
′)𝑔2𝑗2−1(𝑥)×

×
[︁
𝑑
(0)
2𝑗2−1⟨�̂�

+
2𝑙1

⟩+ ⟨�̂�+2𝑙1 �̂�2𝑗2−1⟩
]︁
. (85)

We take into account that �̂�𝑝(𝑡) = 𝑒𝜖0𝑡/𝑖~�̂�𝑝, �̂�2𝑗−1 =

=
^̃
𝑏2𝑗−1 + 𝛽2𝑗−1, 𝑑

(0)
2𝑗−1 = 𝑒𝜖0𝑡/𝑖~𝑓2𝑗−1. Let us exp-

ress the operators ^̃
𝑏2𝑗−1, �̂�2𝑗 in terms of 𝜉+𝑝 , 𝜉𝑝 with

the help of relations (32). We can verify that ⟨�̂�2𝑗⟩ =
= ⟨^̃𝑏2𝑗−1⟩ = 0, ⟨�̂�+2𝑗⟩ = ⟨^̃𝑏+2𝑗−1⟩ = 0, ⟨^̃𝑏+2𝑗1−1

^̃
𝑏2𝑗2−1⟩ =

= 𝛿𝑗1,𝑗2⟨
^̃
𝑏+2𝑗1−1

^̃
𝑏2𝑗1−1⟩, ⟨�̂�+2𝑙1 �̂�2𝑙2⟩ = 𝛿𝑙1,𝑙2⟨�̂�+2𝑙1 �̂�2𝑙1⟩,

⟨^̃𝑏+2𝑗1−1�̂�2𝑙2⟩ = ⟨�̂�+2𝑙1
^̃
𝑏2𝑗2−1⟩ = 0. Then relation (85)

yields

𝐹1(𝑥, 𝑥
′) = ⟨𝜓(𝑥′, 𝑡)⟩*⟨𝜓(𝑥, 𝑡)⟩+

+
∑︁

𝑙=1,2,...,∞

𝑔*2𝑙(𝑥
′)𝑔2𝑙(𝑥)⟨�̂�+2𝑙�̂�2𝑙⟩+

+
∑︁

𝑗=1,2,...,∞
𝑔*2𝑗−1(𝑥

′)𝑔2𝑗−1(𝑥)⟨^̃𝑏+2𝑗−1
^̃
𝑏2𝑗−1⟩. (86)
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Concentration 𝑛(𝑥)/𝑛 = 𝐹1(𝑥, 𝑥)/𝑛 (squares, 𝑁 = 104, 𝛾 =

= 0.0001) and the density matrix 𝐹1(𝑥1, 𝑥1 + 𝑥)/𝑛 (open cir-
cles, 𝑥1 = 0.1𝐿, 𝑁 = 105, Γ = 106, 𝛾 ≈ 0.00102) under zero
BCs determined numerically by formulae (87), (88) at 𝑇 = 0.
Crosses show solution (90) for the density matrix under peri-
odic BCs. In order to separate the curves, the values of the
concentration 𝑛(𝑥) are multiplied by 0.8

With regard for the formula 𝑔𝑙(𝑥) =
√︀
2/𝐿 sin (𝑘𝑙𝑥)

and relations (66), (67), (68), (72), for the point in-
teraction (𝜈(𝑘) = 2𝑐), relation (86) yields

𝐹1(𝑥, 𝑥
′) = 𝑓*0 (𝑥

′)𝑓0(𝑥)+

+
2

𝐿

∑︁
𝑙=1,2,...,∞

sin (𝑘𝑙𝑥
′) sin (𝑘𝑙𝑥)√︀

𝑦4𝑙 + 4𝑦2𝑙
×

×

⎛⎝ 2√︀
𝑦4𝑙 + 4𝑦2𝑙 + 𝑦2𝑙 + 2

+
𝑦2𝑙 + 2

𝑒

√
𝑦4
𝑙
+4𝑦2

𝑙

𝑇 − 1

⎞⎠, (87)

𝑓0(𝑥) =
4
√
𝑛0
𝜋

∑︁
𝑗=1,2,...,∞

sin (𝑘2𝑗−1𝑥)

2𝑗 − 1

4

𝑦22𝑗−1 + 4
, (88)

where 𝑦𝑙 = 𝑙/
√
Γ. The total concentration of the gas

is given by the formula

𝑛(𝑥) = 𝐹1(𝑥, 𝑥). (89)

In Figure, we show the concentration 𝑛(𝑥) and the
density matrix 𝐹1(𝑥1, 𝑥1 + 𝑥) (as a function of 𝑥) de-
termined numerically from (87)–(89) for 𝑇 = 0. In
this case, we obtained 𝑁0 from (78), (83). As is
seen, the concentration is constant inside the sys-
tem, decreases by approaching the boundary, and
turns to zero on the boundary. The width of a
band near the boundary, where the concentration
varies, is 𝛿𝐿 ≈ 𝐿/

√
Γ = 𝜋/

√
𝛾𝑛𝑛0. The density ma-

trix 𝐹1(𝑥1, 𝑥1 + 𝑥) depends on 𝑥 and is almost in-
dependent of 𝑥1, if the point 𝑥1 is at a distance

>∼𝛿𝐿 from the boundary. It is seen from Figure that
𝐹1(𝑥1, 𝑥1+𝑥)|𝑇=0 (87) is very close to the solution for
a periodic system at 𝑇 = 0, which reads [40, 42–49]

𝐹1(𝑥1, 𝑥1 + 𝑥)||𝑥| >∼ 𝛿𝐿 ≈ 𝑛

(︂
𝛿𝐿 𝑓2(|𝑥|)

|𝑥|

)︂√
𝛾/2𝜋

. (90)

The available literature gives several close values
for 𝑓2(𝑥): 1/𝜋 [40, 43–45], 0.33 [46–48], and 1

3 [0.98+
+2(𝑥/𝐿)2] [42]. In Figure, we present function (90)
with 𝑓2(𝑥) =

1
3 [0.98 + 2(𝑥/𝐿)2]. Such 𝑓2(𝑥) leads to

a slightly better agreement than 𝑓2(𝑥) = 1/𝜋; 0.33. It
is seen that, as 𝑥 varies from 0 to 𝐿−𝑥1, the function
𝐹1(𝑥1, 𝑥1 + 𝑥) is changed only by 3% at 𝛾 ≈ 0.00102,
|𝑥| >∼ 𝛿𝐿. For 𝛾 = 0.0001, the function 𝐹1(𝑥1, 𝑥1 + 𝑥)
varies only by 0.5%, as 𝑥 increases. If 𝐹1(𝑥1, 𝑥1 + 𝑥)
decreases (as the function of 𝑥) by a power law, the
term “quasicondensate” [50] is usually used instead
of “condensate”. But our solution 𝐹1(𝑥1, 𝑥1 + 𝑥) de-
creases, as 𝑥 increases, very slowly for any parameters
𝛾 and 𝑁 satisfying criterion (84). That is, we have
the true condensate for such parameters. Such regime
was found previously in [42]. For the applicability of
our method, it is insignificant whether ⟨𝜓(𝑥, 𝑡)⟩ cor-
responds to the condensate or quasicondensate. It is
important that the system be finite.

Note that the curve 𝐹1(𝑥1, 𝑥1 + 𝑥) (87) (circles in
Figure) drops to zero at 𝑥 = 0.9𝐿. This is due to
the fact that Figure is plotted for 𝑥1 = 0.1𝐿. So, for
𝑥 = 0.9𝐿, the coordinate 𝑥2 turns out to be on the
boundary: 𝑥2 ≡ 𝑥1 + 𝑥 = 𝐿.

Our analysis shows that, under zero BCs, the power
law (90) holds for all 𝑥1 ∈ [𝛿𝐿, 𝐿− 𝛿𝐿], 𝑥 ∈ [𝛿𝐿, 𝐿−
−𝑥1−𝛿𝐿]. In works by Cazalilla [10,11], 𝐹1(𝑥, 𝑥

′) was
also calculated for a 1D system of interacting bosons
with zero BCs. According to those results, 𝐹1(𝑥, 𝑥

′)
decreases by a power law, as |𝑥 − 𝑥′| increases, only
at the points near the vessel center. The deviation
from a power law for the remaining points is related,
apparently, to the harmonic-fluid approximation used
in [10, 11].

We remark that the function 𝐹1(0, 𝑥)|𝑇=0 was also
calculated for a periodic system of point bosons at
intermediate values of 𝛾 and finite 𝑁 [51, 52].

By neglecting the terms 𝜗 and 𝛿𝜓0 in the formula
𝜓 = 𝜓0(𝑥, 𝑡) + 𝛿𝜓0(𝑥, 𝑡) + 𝜗(𝑥, 𝑡), we obtain

𝐹1(𝑥, 𝑥
′) = 𝜓*

0(𝑥
′, 𝑡)𝜓0(𝑥, 𝑡) =

=

[︂
𝑛0, if 𝑥, 𝑥′ ∈]0, 𝐿[,
0, if 𝑥 = 0;𝐿 or 𝑥′ = 0;𝐿.

(91)
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In this case, we lost both the smooth decrease in
𝐹1 near the boundaries and the power decrease by
law (90).

Using formulae (87) and (88), we have found
numerically the density matrix for 𝑇 > 0. At
𝛿𝐿 <∼ 𝑥1 <∼ 𝐿 − 𝛿𝐿, 10𝛿𝐿 <∼ 𝑥 <∼ 𝐿 − 10𝛿𝐿, 𝜋√

𝛾𝑁 ≪
≪ 𝑇 <∼

4
𝛾𝑁 , the solution takes the form

𝐹1(𝑥1, 𝑥1 + 𝑥)|𝑇>0 ≈ 𝐶𝑇 (𝑥1)𝑛𝑒
−0.5𝛾𝑛𝑇𝑥𝑥1𝐿

−1

, (92)

where 𝐶𝑇 (𝑥1) is the normalization factor depending
on 𝑥1. If criterion (84) (𝛾𝑁𝑇 <∼ 1) is satisfied, the
function 𝐹1(𝑥1, 𝑥1+𝑥) (92) decreases weakly, as 𝑥 in-
creases. This corresponds to the true condensate. At
0 < 𝑇 <∼

𝜋√
𝛾𝑁 , the solution is intermediate between

(90) and (92). We did not find it, since such temper-
atures are not quite physical (at such 𝑇 , the system
contains only several quasiparticles, and the thermal
equilibrium is impossible). We note that solution (92)
differs significantly from the solution for a periodic
system, which is independent of 𝑥1 [43, 46, 48]:

𝐹1(𝑥1, 𝑥1 + 𝑥)|𝑇>0 ≈

≈ 𝑛

(︂
𝛿𝐿 𝑓2(|𝑥|)

|𝑥|

)︂√𝛾/2𝜋

𝑒−0.25𝛾𝑛0𝑇 |𝑥|. (93)

Let us write the wave function of the effective
condensate in the form ⟨𝜓(𝑥, 𝑡)⟩ =

√︀
𝑛𝑐(𝑥)𝑒

𝑖𝛼(𝑥,𝑡),
𝑛𝑐(𝑥) = 𝑓20 (𝑥). The numerical solution indicates
that, at 𝛾 ≪ 1, 𝑇 = 0, the condensate concentra-
tion 𝑛𝑐(𝑥) is very close to the total concentration
𝑛(𝑥): 𝑛𝑐(𝑥) = (1− |𝜅(𝑥)|)𝑛(𝑥), where |𝜅(𝑥)| ≪ 1.
In particular, for 𝑁 = 104, 𝛾 = 0.0001, we have
𝜅(𝑥) = 0.001–0.007.

We remarked above that the concentration
𝑛(𝑥)|𝑇=0 is nonuniform near the boundaries in the
layer of thickness 𝛿𝐿 ≈ 𝜋/

√
𝛾𝑛𝑛0. For 𝛾 <∼ 𝑁−2, we

obtain 𝛿𝐿 >∼ 𝐿: the concentration is nonuniform in
the whole system. This corresponds to the regime of
almost free particles. Our model does not work for it,
since the approximation 𝜗≪ ⟨𝜓(𝑥, 𝑡)⟩ is violated. At
𝛾 <∼ 𝑁−2, the correction 𝛿𝐸0 (60) becomes large (see
Appendix B). The value of 𝐸0 for this regime was
found for point bosons described via the Bethe ansatz
[8, 53].

7. Summary

We have generalized the Bogoliubov method and
have constructed a description of low-lying levels

of a one-dimensional system of weakly interacting
bosons under zero boundary conditions. Two points
are significant for the method: (i) the representation
𝜓(𝑥, 𝑡) = ⟨𝜓(𝑥, 𝑡)⟩ + 𝜗(𝑥, 𝑡) and (ii) the separation
of the principal part in integrals. We emphasize that
the method requires the existence of the order param-
eter ⟨𝜓(𝑥, 𝑡)⟩, rather than a condensate (determined
on the basis of a diagonal expansion of the density
matrix). Sometimes, the average ⟨𝜓(𝑥, 𝑡)⟩ coincides
with a condensate [1]; sometimes, ⟨𝜓(𝑥, 𝑡)⟩ is only
close to the condensate [33]. Apparently, it is possi-
ble that the condensate (quasicondensate) is absent,
but ⟨𝜓(𝑥, 𝑡)⟩ ̸= 0, and the method is valid. Though
we were not faced with such case yet.

In the subsequent work [33] we diagonalized the
density matrix (87). It turned out that the average
⟨𝜓(𝑥, 𝑡)⟩ does not quite coincide with the true quasi-
condensate defined on the basis of expansion (5). Mo-
reover, the quasicondensate is fragmented, and its
structure depends on the boundary conditions.

In Appendix А, we argue that the Bogoliubov qua-
siparticles are collective excitations, though they look
as one-particle excitations.

It is important that our solutions for 𝐸0 and
𝐸(𝑘) coincide with those obtained by the exactly
solvable approach, based on the Bethe ansatz [7–
9]. In addition, our solution for the density matrix
𝐹1(𝑥1, 𝑥2)|𝑇=0 coincides with the solution obtained
within other methods for periodic BCs [40, 42–49].
This clearly shows that the Bogoliubov approxima-
tion is quite accurate for a finite 1D Bose system
with weak coupling. Interestingly, for the point in-
teraction, the Bogoliubov solutions 𝐸0 and 𝐸(𝑘) are
approximately valid also at 𝛾 ∼ 1 even in the limit
𝑁 → ∞ [5,8,9], which contradicts criterion (84). This
means that the region of applicability of the Bogoli-
ubov solutions is much wider than the region of ap-
plicability of the Bogoliubov method.

We have found that the bulk properties (𝐸0 and
𝐸(𝑘)) of the system with boundaries are the same as
for a periodic system. This is understandable in view
of the definition

𝐸0 =

∫︁
𝑑𝑥1...𝑑𝑥𝑁Ψ*

0

⎡⎣− ~2

2𝑚

𝑁∑︁
𝑗=1

𝜕2

𝜕𝑥2𝑗
+

+
∑︁
𝑗<𝑙

𝑈(|𝑥𝑗 − 𝑥𝑙|)

⎤⎦Ψ0. (94)
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In order that 𝐸0 depend on the boundaries, it is
necessary that the roughness of a landscape of the
wave function Ψ0(𝑥1, ..., 𝑥𝑁 ) or the probability of
overlapping of two adjacent atoms be dependent on
the boundaries. However, both these properties have
a local nature and, apparently, should not depend
on the remote boundaries. If such dependence would
exist, we would have a nontrivial effect. In order
that such effect be, it is necessary that a solution
with a substantially smaller energy than 𝐸0 obtained
above (see Eq. (62)) exist. However, our ground state
is characterized by the uniform effective condensate
⟨𝜓(𝑥, 𝑡)⟩, which contains almost all atoms. We see no
state, which would possess a smaller energy. There-
fore, we may conclude with a high degree of con-
fidence that the boundaries do not affect the bulk
properties of a system of weakly interacting bosons.
Though, it would be of high interest, if such influence
would exist.

The author is grateful to Yu. Shtanov for the
valuable discussion. The present work is partially
supported by the National Academy of Sciences of
Ukraine (project No. 0116U003191).

APPENDIX A.
Remarks on the Bogoliubov method

According to the Bogoliubov transformations (33), the oper-
ator of creation of a quasiparticle 𝜉+𝑝 is the sum of the op-
erators of creation (�̂�+𝑝 ) and annihilation (�̂�𝑝) of one parti-
cle. From whence, many authors made conclusion about the
single-particle nature of Bogoliubov quasiparticles. However,
the solutions by Feynman [2] and by Bogoliubov–Zubarev [3]
clearly show that a quasiparticle is a collective oscillation of
the whole gas (condensate and above-condensate atoms). Let
us consider this point.

First, one-particle excitations are impossible in the one-
dimensional case, since the moving atom will necessarily col-
lide with the neighbor atom [54]. But the Bogoliubov solutions
in 1D, 2D, and 3D cases are similar. Hence, the Bogoliubov
quasiparticles in 1D, 2D, and 3D should be collective and
should coincide with quasiparticles in [2, 3]. The solutions for
𝐸0 and 𝐸(𝑘) obtained in the Bogoliubov [1] and collective [3]
approaches coincide.

The method of secondary quantization is based on that the
𝑁 -particle Bose-symmetric wave function of the system can be
presented as the expansion [34]

Ψ(𝑥1, ..., 𝑥𝑁 ) =
∑︁
{𝑛𝑓}

𝐶(𝑛𝑓1 , ..., 𝑛𝑓𝑁 )𝜓{𝑛𝑓}(𝑥1, ..., 𝑥𝑁 ), (95)

𝜓{𝑛𝑓}(𝑥1, ..., 𝑥𝑁 ) = 𝑐{𝑛𝑓𝑗
}
∑︁
𝑃

𝑃𝜙𝑓1 (𝑥1) ...𝜙𝑓𝑁 (𝑥𝑁 ). (96)

Here, {𝑛𝑓} = (𝑛𝑓1 , ..., 𝑛𝑓𝑁 ), 𝑛𝑓1 + ... + 𝑛𝑓𝑁 = 𝑁 , the func-
tions 𝜙𝑙(𝑥) form a complete orthonormalized collection, the
number 𝑛𝑓𝑗 = 0, 1, 2, ... indicates the number of identical func-
tions 𝜙𝑓𝑗 (𝑥) in expansion (96) (each index 𝑓𝑗 runs the same
values as 𝑙), and 𝑃 means all possible permutations. Based on
formulae (95), (96), and

𝜓(𝑥) =
∑︁
𝑙

�̂�𝑙𝜙𝑙(𝑥), (97)

one can obtain the basic formulae of the method: (14) and
(37)–(39) [34]. We now pass from �̂�+𝑝 , �̂�𝑝 to the operators
of creation and annihilation of quasiparticles 𝜉+𝑝 , 𝜉𝑝. In this
case, we consider the basis functions 𝜙𝑙(𝑥) from the equal-
ity 𝜓(𝑥) =

∑︀
𝑙 𝜉𝑙𝜙𝑙(𝑥) instead of the functions 𝜙𝑙(𝑥). Each

eigenfunction Ψ{𝑛𝑓} of the Hamiltonian can be represented

in the form 𝐶(𝜉+𝑙1
)𝑛𝑙1 ...(𝜉+𝑙𝑝 )

𝑛𝑙𝑝Ψ0, where 𝑛𝑙 is the number of
quasiparticles corresponding to index 𝑙. These numbers 𝑛𝑙 co-
incide with the numbers 𝑛𝑙 in relation (63) and do not coincide
with the numbers 𝑛𝑙 in expansion (96) executed in the single-
particle basis {𝜙𝑙(𝑥)} (in the case of coincidence, we would get
the wave function of the ground state Ψ0(𝑥1, ..., 𝑥𝑁 ) = const,
since 𝑛𝑓1 = 𝑛𝑓2 = ... = 𝑛𝑓𝑁 = 0 for the state without quasi-
particles; but the function Ψ0(𝑥1, ..., 𝑥𝑁 ) = const is not a so-
lution of the Schrödinger equation with an interaction; more-
over, the requirement 𝑛𝑓1 + ... + 𝑛𝑓𝑁 = 𝑁 is violated). This
means that a quasiparticle is not a single-particle structure,
despite the single-particle form of formulae (33). We see also
that the Bogoliubov method does not allow one to find the ex-
plicit form of the eigenfunctions Ψ{𝑛𝑓}(𝑥1, ..., 𝑥𝑁 ). However,
the diagonalization of the Hamiltonian enables one to find all
observable parameters of the system: lowest energy levels 𝐸𝑗

(63), concentration 𝑛(𝑥) (89), correlation functions, and ther-
modynamic parameters.

The experiment [55] seems to be consistent with the single-
particle interpretation of formulae (33), according to which
�̂�+𝑝 creates one atom. Note that the formula �̂�+𝑝 |𝑁𝑝 = 𝑗⟩ =

=
√
𝑗 + 1|𝑁𝑝 = 𝑗 + 1⟩ used in [55] is valid for the ideal gas

with a variable number of particles and gives zero anomalous
averages ⟨�̂�+k �̂�

+
−k⟩, ⟨�̂�k�̂�−k⟩. But, in the Bogoliubov model, the

averages ⟨�̂�+k �̂�
+
−k⟩, ⟨�̂�k�̂�−k⟩ are nonzero and play the impor-

tant role [1, 33]. In the Bogoliubov approach, the state with
one quasiparticle is described by the wave function 𝜉+𝑝 Ψ0 =

= (1 − |Λ𝑝|2)−1/2(�̂�+𝑝 − Λ*
𝑝�̂�𝑝)Ψ0, which is a superposition of

the state with 𝑁 + 1 particles and the state with 𝑁 − 1 parti-
cles (Ψ0 is a state with 𝑁 particles). In contrast, in the models
[2, 3], the wave functions for the ground state and states with
one quasiparticle are eigenfunctions of the Schrödinger equa-
tion with the same fixed number of particles 𝑁 . We assume
that such contradiction is due to the limitation of the lan-
guage of operators �̂�+𝑝 , �̂�𝑝: some properties expressed in this
language become distorted. It arose, apparently, because the
method of secondary quantization is based on a formalism with
a variable number of particles 𝑁 , but it is used for the calcula-
tion of the energy eigenvalues of the Schrödinger equation with
fixed 𝑁 . Despite this difficulty, the Bogoliubov method gives
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results for the observable quantities in agreement with other
approaches.

We note that the many-particle nature of excitations in the
Bogoliubov model is hidden [55] in the values of the coefficients
𝑢𝑝 = (1− |Λ𝑝|2)−1/2 and 𝑣𝑝 = −Λ*

𝑝(1− |Λ𝑝|2)−1/2 from (33):
at a small quasimomentum 𝑘 = 𝜋𝑝/𝐿, we have 𝑢𝑝 ≈ |𝑣𝑝| ≫ 1

(excitation involves many atoms); for large 𝑘, we get 𝑢𝑝 ≃ 1,
𝑣𝑝 ≃ 0 (excitation is mainly connected with one atom).

We remark also that, in the calculation of the average
⟨𝐴(𝑥, 𝑡)⟩, one needs to use the canonical ensemble (for a sys-
tem with fixed 𝑁) or the grand canonical ensemble (for a sys-
tem with variable 𝑁). In a system with zero BCs, the number
of particles must be conserved. Therefore, in formula (6), we
based ourselves on the canonical ensemble. Bogoliubov [1] used
the canonical ensemble as well (it is clearly seen from the anal-
ysis in [34]).

APPENDIX B.
Corrections 𝑆𝑗 and 𝛿𝐸0

1) Below, we list the formulae and estimates for the functions
𝑆𝑗(𝑥) from Sections 3 and 4. The numerical calculations are
carried out for the potential

𝑈(|𝑥− 𝑥′|) =
𝑐0

𝑎
𝑒−|𝑥−𝑥′|/𝑎, (98)

which is characterized by the interaction radius 𝑎 and the

Fourier transform 𝜈(𝑘𝑗) =
2𝑐0(1−𝑒−𝐿/𝑎 cos(𝜋𝑗))

1+(𝑘𝑗𝑎)2
, 𝑘𝑗 = 𝜋𝑗/𝐿.

We consider the interaction radius to be small (𝑎≪ 𝐿) and set
𝑒−𝐿/𝑎 = 0. For each function 𝑆𝑗 , we give the exact formula
and a numerical estimate made for potential (98). The results
are the following:

𝑆1(𝑥) =
2

𝐿

∑︁
𝑗=1,3,5,...,∞

sin(𝑘𝑗𝑥)

𝑘𝑗

(︂
𝜈(𝑘𝑗)

𝜈(0)
− 1

)︂
≈

≈
1

𝜋

∞∫︁
0

𝑑𝑦
sin(𝑦𝑥/𝑎)

𝑦

(︂
𝜈(𝑦/𝑎)

𝜈(0)
− 1

)︂
. (99)

Here, for potential (98), we have 𝑆1(𝑥 = 0, 𝐿) = −0.5 on the
boundaries. As the distance from boundaries increases, |𝑆1| de-
creases. For 𝑥 ∈]5𝑎, 𝐿 − 5𝑎[, we have |𝑆1| <∼ 𝑎/𝐿. That is, the
correction 𝑆1 is not small near the boundaries. Therefore, so-
lution (22) of Eq. (15) is incorrect near the boundaries. We
neglected this fact in Section 3, since the inaccuracy of the so-
lution near the boundaries should not affect the bulk properties
of the system. We have also

𝑆2(𝑙) = 𝑆22(𝑙) =
∑︁

𝑗=1,3,5,...,∞

2

𝜋2

(︂
𝜈(𝑘𝑗)

𝜈(𝑘2𝑙)
− 1

)︂
×

×
(︂

1

2𝑙 − 𝑗
+

1

2𝑙 + 𝑗

)︂2
, (100)

0 < 𝑆2 <∼ 80𝑙2
(︁𝑎
𝐿

)︁3
, (101)

𝑆3(𝑙1, 𝑙2)|𝑙1 ̸=𝑙2 = 𝑆24(𝑙1, 𝑙2) =
2

𝜋2

∑︁
𝑗=1,3,...,∞

𝜈(𝑘𝑗)×

×
(︂

1

2𝑙1 − 𝑗
+

1

2𝑙1 + 𝑗

)︂(︂
1

2𝑙2 − 𝑗
+

1

2𝑙2 + 𝑗

)︂
,

0 < 𝑆3 <∼
3

𝜋2
𝑐0𝑙1𝑙2

(︂
8𝑎

𝐿

)︂3
, (102)

𝑆4(𝑗) = 𝑆23(𝑗) =
∑︁

𝑙=0,1,...,∞

𝜈(𝑘2𝑙)− 𝜈(𝑘2𝑗+1)

𝜈(𝑘2𝑗+1)
×

×
2𝑞(𝑙)

𝜋2

(︂
1

2𝑗 + 1− 2𝑙
+

1

2𝑗 + 1 + 2𝑙

)︂2
= 4

𝑎2

𝐿2
×

×

⎛⎝1+ ∑︁
𝑙=1,2,...

2

1+(2𝜋𝑙𝑎/𝐿)2
1

1−(2𝑙/(2𝑗+1))2

⎞⎠, (103)

0 < 𝑆4 <∼ 20(2𝑗 + 1)2
(︁ 𝑎
𝐿

)︁3
, (104)

𝑆5(𝑗1, 𝑗2)|𝑗1 ̸=𝑗2 = 𝑆25(𝑗1, 𝑗2) =

=
2

𝜋2

∑︁
𝑙=0,1,2,...,∞

𝜈(𝑘2𝑙)𝑞(𝑙)×

×
(︂

1

2𝑗1 + 1− 2𝑙
+

1

2𝑗1 + 1 + 2𝑙

)︂
×

×
(︂

1

2𝑗2 + 1− 2𝑙
+

1

2𝑗2 + 1 + 2𝑙

)︂
, (105)

0 < 𝑆5 <∼
6

𝜋2
𝑐0(2𝑗1 + 1)(2𝑗2 + 1)

(︂
4𝑎

𝐿

)︂3
, (106)

𝑆21 =
4

𝜋2

∑︁
𝑗=1,3,5,...,∞

𝜈(𝑘𝑗)− 𝜈(0)

𝜈(0)𝑗2
≃ −

𝑎

𝐿
, (107)

𝑆26(𝑙) =
2

𝜋2

∑︁
𝑗=1,3,5,...,∞

𝜈(𝑘𝑗)

𝑗𝜈(𝑘2𝑙)
×

×
(︂
2

𝑗
−

1

𝑗 − 4𝑙
−

1

𝑗 + 4𝑙

)︂
=

𝜈(0)

2𝜈(𝑘2𝑙)
− 𝑆26(𝑙), (108)

40𝑙2
(︁ 𝑎
𝐿

)︁3
<∼ 𝑆26(𝑙) <∼ 160𝑙2

(︁ 𝑎
𝐿

)︁3
, (109)

𝑆27(𝑗) =
2

𝜋2

∑︁
𝑗0=1,3,5,...,∞

𝜈(𝑘𝑗0 )

𝑗0𝜈(𝑘2𝑗+1)
×

×
(︂
2

𝑗0
−

1

𝑗0 − 4𝑗 − 2
−

1

𝑗0 + 4𝑗 + 2

)︂
=

=
𝜈(0)

2𝜈(𝑘2𝑗+1)
− 𝑆27(𝑗), (110)

(2𝑗 + 1)2
(︁ 𝑎
𝐿

)︁3
<∼ 0.1𝑆27(𝑗) <∼ (4𝑗 + 2)2

(︁ 𝑎
𝐿

)︁3
,

𝑆28(𝑙1, 𝑙2) =
2

𝜋2

∑︁
𝑗=1,3,5,...,∞

𝜈(𝑘𝑗)

𝑗
×

×
(︂

1

𝑗 − 2𝑙1 + 2𝑙2
+

1

𝑗 + 2𝑙1 − 2𝑙2
−

−
1

𝑗 − 2𝑙1 − 2𝑙2
−

1

𝑗 + 2𝑙1 + 2𝑙2

)︂
, (111)

− 320𝑐0𝑙1𝑙2
(︁ 𝑎
𝐿

)︁3
<∼ 𝑆28 < 0, (112)

𝑆29(𝑗1, 𝑗2) =
2

𝜋2

∑︁
𝑗=1,3,5,...,∞

𝜈(𝑘𝑗)

𝑗
×

×
(︂

1

𝑗 − 2𝑗1 + 2𝑗2
+

1

𝑗 + 2𝑗1 − 2𝑗2
−

−
1

𝑗 − 2𝑗1 − 2𝑗2 − 2
−

1

𝑗 + 2𝑗1 + 2𝑗2 + 2

)︂
, (113)
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− 𝑐0(2𝑗1 + 1)(2𝑗2 + 1)
(︁𝑎
𝐿

)︁3
<∼
𝑆29

80
< 0. (114)

The values of all 𝑆𝑗≥2 (except for 𝑆26 and 𝑆27) dependent
on one or two parameters (𝑗, 𝑙, 𝑗1, 𝑙1...) increase in modulus
with each parameter, if the parameter is at most 𝐿/𝑎. If the
parameter exceeds 𝐿/𝑎, then |𝑆𝑗 | almost does not increase. The
values of 𝑆26 and 𝑆27 increase with the parameter according
to (109), (110) for any values of the parameter.

In the above formulae, we use the function

𝑞(𝑙) =

[︃
1/2 𝑙 = 0,

1 𝑙 = 1, 2, ...,∞.
(115)

The following formulae are also useful for the calculation of
sums (𝑝, 𝑙, and 𝑗 are integers):∑︁
𝑗=±1,±3,±5,...

1

(2𝑙 − 𝑗)(2𝑝− 𝑗)
=
𝜋2

4
𝛿𝑝,𝑙,

∑︁
𝑗=1,3,5,...

(︂
1

2𝑙 − 𝑗
+

1

2𝑙 + 𝑗

)︂
×

×
(︂

1

2𝑝− 𝑗
+

1

2𝑝+ 𝑗

)︂
=
𝜋2

4
(𝛿𝑝,𝑙 − 𝛿𝑝,−𝑙),∑︁

𝑝=0,±1,±2,...

1

(2𝑙 + 1− 2𝑝)(2𝑗 + 1− 2𝑝)
=
𝜋2

4
𝛿𝑗,𝑙,

∑︁
𝑝=0,1,2,...

(︂
𝑞(𝑝)

2𝑙 + 1− 2𝑝
+

𝑞(𝑝)

2𝑙 + 1 + 2𝑝

)︂
×

×
(︂

1

2𝑗 + 1− 2𝑝
+

1

2𝑗 + 1 + 2𝑝

)︂
=

=
𝜋2

4
(𝛿𝑗,𝑙 − 𝛿2𝑙+1,−2𝑗−1).

2) Let us find the quantity 𝛿𝐸0 (60). With the use of the
relation 1+ 1

32
+ 1

52
+ ... = 𝜋2

8
, formula (60) can be written in

the form

𝛿𝐸0 =
∑︁

𝑗=1,3,5,...,∞
|𝑓𝑗 |2 ×

×
4𝐾(𝑘𝑗)(𝑛0𝜈(𝑘𝑗) + 𝑛0𝜈0)− (𝑛0𝜈(𝑘𝑗)− 𝑛0𝜈0)2

4𝐾(𝑘𝑗) + 8𝑛0𝜈(𝑘𝑗)
=

=
2𝑛

3/2
0 𝜈0
√
𝛾𝑛

𝐼(ϒ), (116)

𝐼(ϒ) =

∞∫︁
𝑥min

𝑑𝑥

𝜋

1 + Ξ(𝑥)− [ϒ𝑥Ξ(𝑥)]2/8

𝑥2 + Ξ(𝑥)
, (117)

where ϒ = 4𝛾𝑁0𝑁𝑎2/𝐿2, Ξ(𝑥) = (1 + ϒ𝑥2)−1, 𝛾 = 2𝑚𝑐0
~2𝑛 ,

𝑥min = 1

2
√

Γ
, and potential (98) is used. The weak coupling

implies that 𝛾 ≪ 1. We find numerically 𝐼(ϒ <∼ 1, 𝑥min ≪ 1) ≈
≈ 1. For uncharged particles, we have 𝑎 ∼ 𝐿/𝑁 , ϒ ∼ 𝛾. This
leads to estimates 𝐼 ≈ 1 and 𝛿𝐸0 ∼ 2𝑛0𝜈0/

√
𝛾 ∼ 𝐸0/(𝑁

√
𝛾)

for 𝑁−2 ≪ 𝛾 <∼ 1. That is, 𝛿𝐸0 is negligible for the weak cou-
pling (but for 𝛾 ≫ 𝑁−2), which is consistent with the solutions
for point bosons [7, 8, 53]. For 𝛾 <∼ 𝑁−2, the correction 𝛿𝐸0 is
not small: 𝛿𝐸0 ∼ 𝑁𝑛0𝜈0 ∼ 𝐸0.
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НИЖНI ЕНЕРГЕТИЧНI РIВНI
ОДНОВИМIРНОГО СЛАБКО ВЗАЄМОДIЮЧОГО
БОЗЕ-ГАЗУЗНУЛЬОВИМИ МЕЖОВИМИУМОВАМИ
Р е з ю м е
Ми дiагоналiзували вторинно квантований гамiльтонiан
одновимiрного бозе-газу для вiдштовхувального мiжатом-
ного потенцiалу загального вигляду та нульових межових
умов. При малiй константi зв’язку розв’язки для енергiї
основного стану 𝐸0 та закону дисперсiї 𝐸(𝑘) збiгаються з
вiдомими розв’язками для перiодичної системи. При цьому
одночастинкова матриця густини 𝐹1(𝑥, 𝑥′) є близькою до
розв’язку для перiодичної системи, якщо 𝑇 = 0, та помiтно
вiдрiзняється вiд останнього при 𝑇 > 0. Також ми отрима-
ли, що хвильова функцiя ⟨𝜓(𝑥, 𝑡)⟩ ефективного конденсату
близька до константи

√︀
𝑁0/𝐿 всерединi системи та обертає-

ться на нуль на межах (тут 𝑁0 – число атомiв у конденсатi,
𝐿 – розмiр системи). Ми знайшли критерiй застосовностi
методу, згiдно з яким метод працює для скiнченної системи
з малою константою зв’язку (слабка взаємодiя або велика
концентрацiя) та дуже малою температурою.
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