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The stability of the ground magnetization state of a thin magnetic nanowire against a longi-
tudinal spin-polarized current is studied theoretically with the dipole-dipole interaction taken
into account. The critical current, i.e. the minimum current, at which the instability of the
ground state develops, is determined. The dependence of the critical current on the size and
the shape of a transversal wire cross-section is clarified. Theoretical predictions are confirmed
by numerical micromagnetic simulations.
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1. Introduction

Magnetic wires, whose transversal size is small
enough to ensure the magnetization variation only
along the wire, are of high applied interest now.
These one-dimensional magnetic systems are called
nanowires, and they are considered to be conve-
nient elements for nonvolatile data storage devices
of a new type [1]. Sequence of bits of information in
such a wire is coded by a sequence of magnetic do-
mains magnetized along the wire. The magnetic do-
mains are separated by the domain walls of head-
to-head and tail-to-tail configurations [2]. Read-write
processes require the motion of the domain sequence
along the wire [1], what can be achieved by the pas-
sage of pulses of a spin-polarized current through the
wire [1, 3, 4]. Recently, it was shown [5] that one can
significantly increase the domain wall velocity by ap-
plying a spin-polarized current perpendicularly to the
wire. Since the usage of a spin-polarized current is of
high importance in this area, there arises the prob-
lem of stability of the uniform magnetization state
against the current. Recently, we studied the stabil-
ity of the uniformly magnetized nanowires against a
perpendicular spin-polarized current [6]. The stabil-
ity analysis in the case of longitudinal current was
performed somewhat earlier [7]. However, the dipole-
dipole interaction was neglected in Ref. [7]. In this
paper, we present a linear theory of the stability of
the ground state of a long nanowire against the longi-
tudinal spin-polarized current with the dipole-dipole
interaction taken into account. In contrast to the pre-
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vious results [7], we will show that, due to the nonlo-
cal nature of the dipole-dipole interaction, the shape
and the size of a wire transversal cross-section affect
the stability condition. The analytical predictions are
checked by numerical micromagnetic simulations.

2. Model and Linearized Equation of Motion

Let us consider a rectilinear nanowire, whose length 𝐿
much exceeds the characteristic transversal size. The
wire is assumed to be narrow enough to ensure the
magnetization uniformity in the transversal direc-
tion. In other words, we assume that the magnetiza-
tion varies only along the wire. The magnetic medium
is modeled as a discrete cubic lattice of magnetic
moments 𝑀𝜈 , where 𝜈 = 𝑎(𝜈𝑥, 𝜈𝑦, 𝜈𝑧) is a three-
dimensional index, with 𝑎 being the lattice constant
and 𝜈𝑥, 𝜈𝑦, 𝜈𝑧 ∈ Z. It is convenient to introduce the
following notation: 𝒩𝑧 = 𝐿/𝑎 is the total number
of lattice nodes along the 𝑧-axis oriented along the
wire, and 𝒩𝑠 is the number of nodes within the cross-
section area.

Let the spin-polarized current with density 𝑗 = 𝑗𝑧
pass through the wire. The magnetization dynamics
in this system is described by a modified Landau–
Lifshitz–Gilbert equation [4, 8, 9], which can be writ-
ten in the following discrete form:

�̇�𝑛 =

[︂
𝑚𝑛 × 𝜕ℰ

𝜕𝑚𝑛

]︂
+ 𝛼 [𝑚𝑛 × �̇�𝑛]−

− 𝑢
𝑚𝑛+𝑎 −𝑚𝑛

𝑎
+ 𝑢𝛽

𝑚𝑛 ×𝑚𝑛+𝑎

𝑎
. (1)

Here, the index 𝑛 = 𝑎𝜈𝑧 numerates the normalized
magnetic moments 𝑚𝑛 = 𝑀𝑛/|𝑀𝑛| along the wire
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axis, the overdot indicates the derivative with re-
spect to the dimensionless time measured in units
𝜔−1
0 , 𝜔0 = 4𝜋𝛾𝑀𝑠 with 𝛾 being the gyromagnetic ra-

tio, and 𝑀𝑠 being the saturation magnetization. The
quantity ℰ = 𝐸/(4𝜋𝑀2

𝑠 𝑎
3𝒩𝑠) is the dimensionless to-

tal energy of the system. The normalized current is
presented by the quantity 𝑢 = 𝑗𝑃~/(8𝜋|𝑒|𝑀2

𝑠 ), which
is close to the average electron drift velocity. Here, 𝑃
is the value of spin polarization, ~ is the Planck con-
stant, and 𝑒 is the electron charge. Here, 𝛼 is the
Gilbert damping constant, and 𝛽 is the nonadiabatic
spin-transfer parameter.

The problem of action of the spin-polarized con-
ducting electrons on the magnetization states nonuni-
form along the current direction was first discussed
in Ref. [10]. The simple form of Eq. (1) without the
nonadiabatic term was obtained in Ref. [8] within
the ballistic transport model for half-metallic mate-
rials. In this case, the spin-wave instability of uni-
formly magnetized states was predicted for large
currents [8, 11]. Later in Ref. [9], the nonadiabatic
spin-transfer term was introduced. The micromag-
netic analysis of Eq. (1) was provided in Ref. [4]
with corresponding study of the current-driven do-
main wall motion (for a detailed derivation of spin-
torques and the applications, see reviews [7, 12–14]).

In the following, we use the previously developed
method [6,15] based on the Holstein–Primakoff repre-
sentation for spin operators [16] generalized by Tyab-
likov [17]. This method enables one to consider the
dipole-dipole interaction exactly for linear [6, 18] as
well as for weakly nonlinear [15] problems. In line
with the aforementioned method, we introduce the
complex amplitude 𝜓𝑛 of a magnetization deviation
from the ground state 𝑚 = ẑ,

𝜓𝑛 =
𝑚𝑥

𝑛 + 𝑖𝑚𝑦
𝑛√

1 +𝑚𝑧
𝑛

, (2)

where 𝑚𝑥
𝑛 and 𝑚𝑦

𝑛 denote the magnetization com-
ponents perpendicular to the wire. In terms of the
amplitude 𝜓n, the linearized form of (1) reads

(1− 𝑖𝛼)�̇�𝑛 = 𝑖
𝜕ℰ0

𝜕𝜓*
𝑛

− 𝑢(1− 𝑖𝛽)
𝜓𝑛+𝑎 − 𝜓𝑛

𝑎
, (3)

where ℰ0 is the harmonic part of the total energy1,
for details see Appendix A.

1 ℰ0 includes terms not higher than 𝒪(|𝜓𝑛|2).

For the further analysis, it is convenient to pro-
ceed to the wave-vector space, because the energy
ℰ0 takes a relatively simple form in this case [6, 15],
which enables us to proceed analytically. This is an
advantage of the 𝜓-representation (2). We use the
one-dimensional Fourier transform

𝜓𝑛 =
1√
𝒩𝑧

∑︁
𝑘

𝜓𝑘𝑒
𝑖𝑘𝑛, (4a)

𝜓𝑘 =
1√
𝒩𝑧

∑︁
𝑛

𝜓𝑛𝑒
−𝑖𝑘𝑛 (4b)

with the orthogonality condition∑︁
𝑛

𝑒𝑖(𝑘−𝑘′)𝑛 = 𝒩𝑧Δ(𝑘 − 𝑘′), (4c)

where 𝑘 = 2𝜋
𝐿 𝑙 is a two-dimensional discrete wave vec-

tor, 𝑙 ∈ Z, and Δ(𝑘) is the Kronecker delta. Applying
(4) to the linearized equation (3) and using the long-
wave approximation 𝑘 ≪ 2𝜋/𝑎, one obtains

(1− 𝑖𝛼)
˙̂
𝜓𝑘 = 𝑖

𝜕ℰ0

𝜕𝜓*
𝑘

− 𝑢𝑘(𝑖+ 𝛽)𝜓𝑘. (5)

3. Energy of the System

We consider here the case of a soft ferromagnet; there-
fore, only two contributions to the total energy are
taken into account: 𝐸 = 𝐸ex + 𝐸d. Here,

𝐸ex = −𝒮2𝒥
∑︁
𝜈,𝛿

𝑚𝜈 ·𝑚𝜈+𝛿 (6)

is the exchange contribution, where 𝛿 numerates the
nearest neighbors of an atom, 𝒮 denotes the value
of classical spin, and 𝒥 > 0 is the exchange integral
between two nearest atoms. In terms of the Fourier
components 𝜓𝑘, the harmonic part of the normalized
exchange energy reads

ℰ0
ex = ℓ2

∑︁
𝑘

𝑘2|𝜓𝑘|2, (7)

where ℓ =
√︀
𝒮2𝒥 /(2𝜋𝑀2

𝑠 𝑎) is the so-called exchange
length. The value of ℓ determines a typical length-
scale of magnetization inhomogeneities; for typical
magnets, ℓ = 2–10 nm [19]. The derivation of (7)
is analogous to one presented in Appendix A1 of
Ref. [15].

The other term is the dipole-dipole energy

𝐸d =
𝑀2

𝑠 𝑎
6

2

∑︁
𝜈 ̸=𝜇

[︂
(𝑚𝜈 ·𝑚𝜇)

𝑟3𝜈𝜇
−
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− 3
(𝑚𝜈 ·𝑟𝜈𝜇) (𝑚𝜇 ·𝑟𝜈𝜇)

𝑟5𝜈𝜇

]︂
, (8)

where we introduce the notation 𝑟𝜈𝜇 =
= (𝑥𝜈𝜇, 𝑦𝜈𝜇, 𝑧𝜈𝜇) = 𝜇− 𝜈.

Since the magnetization depends only on the 𝑧-
coordinate, one can write the harmonic part of the
normalized dipole-dipole energy in the form

ℰ0
d =

1

2

∑︁
𝑘

{︀
[𝑔(𝑘) + 2𝑔(0)] |𝜓𝑘|2 −

− 3𝑓(𝑘)𝜓𝑘𝜓−𝑘

}︀
+ c.c. (9a)

(see Appendix B for details). All information about
the shape of a wire cross-section and its size is incor-
porated into the functions

𝑔(𝑘) =
𝑎3

8𝜋𝒩𝑠
×

×
∑︁
𝑛

∑︁
𝜇𝑥,𝜇𝑦𝜈𝑥,𝜈𝑦

2𝑛2 − 𝑥2𝜈𝜇 − 𝑦2𝜈𝜇(︀
𝑥2𝜈𝜇 + 𝑦2𝜈𝜇 + 𝑛2

)︀5/2 𝑒𝑖𝑘𝑛, (9b)

𝑓(𝑘) =
𝑎3

8𝜋𝒩𝑠
×

×
∑︁
𝑛

∑︁
𝜇𝑥,𝜇𝑦𝜈𝑥,𝜈𝑦

(𝑥𝜈𝜇 − 𝑖𝑦𝜈𝜇)
2(︀

𝑥2𝜈𝜇 + 𝑦2𝜈𝜇 + 𝑛2
)︀5/2 𝑒𝑖𝑘𝑛. (9c)

Here, we use the notation 𝑥𝜈𝜇 = 𝑎(𝜇𝑥−𝜈𝑥) and 𝑦𝜈𝜇 =
= 𝑎(𝜇𝑦 − 𝜈𝑦) for the sake of simplicity.

Let us consider a nanowire in the form of a
tube with inner and outer radii 𝜌 and 𝑅, respec-
tively. Applying the transition from summation to
integration with the singularity extraction (see Ap-
pendix B in Ref. [6]), one obtains

𝑓(𝑘)
⃒⃒⃒
tube

= 0,

𝑔(𝑘)|tube =
1

𝑅2 − 𝜌2

[︂
𝑅2I1(𝑅𝑘)K1(𝑅𝑘)−

− 2𝑅𝜌I1(𝜌𝑘)K1(𝑅𝑘) + 𝜌2I1(𝜌𝑘)K1(𝜌𝑘)

]︂
− 1

3
,

(10)

where I1(𝑥) and K1(𝑥) are the modified Bessel func-
tions of the first and second kinds, respectively [20].
In the limit case of cylindrical wire (𝜌 → 0), one ob-
tains

𝑔(𝑘)|cyl = I1(𝑅𝑘)K1(𝑅𝑘)−
1

3
. (11)

Finally, the harmonic part of the dipole-dipole energy
of a cylindrical nanowire reads

ℰ0
d

⃒⃒
cyl

=
∑︁
𝑘

I1(𝑅𝑘)K1(𝑅𝑘)|𝜓𝑘|2. (12)

It should be noted that, in the case of a nanowire with
square cross-section, the dipole-dipole energy has a
similar form [6]

ℰ0
d

⃒⃒
sqr

≈
∑︁
𝑘

I1
(︀
ℎ𝑘/

√
𝜋
)︀
K1

(︀
ℎ𝑘/

√
𝜋
)︀
|𝜓𝑘|2, (13)

where ℎ is the side of the square cross-section.

3.1. Effective Anisotropy Approach

Here, we discuss a possibility to model the nanowire
dipole-dipole energy by an easy axis anisotropy with
the axis oriented along the wire:

𝐸an = −𝐾
2

∑︁
𝜈

(𝑚𝑧
𝜈)

2, 𝐾 > 0. (14)

In the wave-vector space, the harmonic part of the
normalized energy (14) reads

ℰ0
an = 𝜅

∑︁
𝑘

|𝜓𝑘|2, (15)

where 𝜅 = 𝐾/(4𝜋𝑀2
𝑠 𝑎

3). Comparing (15) and (9a),
one concludes that the anisotropy constant for a
round nanowire is effectively 𝜅 = 𝑔(𝑘)+2𝑔(0). Within
the long-wave approximation 𝑘𝑅 ≪ 1 or, in other
words, assuming that the characteristic size of a mag-
netization nonuniformity exceeds considerably the
transversal size of the wire, we obtain 𝜅 ≈ 3𝑔(0). In
the case of a tubular or cylinder shaped nanowire,
expression (10) yields the anisotropy constant 𝜅 ≈
≈ 1/2. A few remarks should be made: (i) In the
case of a tubular wire with thin wall (𝜌 ≈ 𝑅), the
simple form of anisotropy (14) is insufficient, and an
additional easy-surface anisotropy term should be in-
troduced. However, this type of anisotropy cannot be
considered within the one-dimensional model which is
used here, and this discussion is beyond the scope of
this paper. (ii) Accordingly to (13) for a wire with
square cross-section, the effective anisotropy has the
same value 𝜅 ≈ 1/2.

4. Linear Instability Analysis

We now substitute the energy expression ℰ0 = ℰ0
ex+

+ ℰ0
d , where the exchange ℰ0

ex and dipole-dipole ℰ0
d

contributions are determined by (7) and (9a), respec-
tively, into Eq. (5). Equation (5) and its complex
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Fig. 1. Stability region for a wire with square cross-section
with ℎ/ℓ = 1.13 (corresponds to ℎ = 6 nm for permalloy). Solid
line shows the critical current 𝑢𝑐 obtained from (19) and
(20). The transition to an instability obtained with micromag-
netic simulations is shown by verticals bars: at the top point
and higher, the instability is developed, at the bottom point
and lower, the state is stable
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Fig. 2. Dependence of the shape parameter 𝑈 on the shape
and the size of a wire cross-section. Inset a) corresponds to
the wires of round (𝜉 = 𝑅) and square (𝜉 = ℎ/

√
𝜋) cross-

sections. Inset b) corresponds to the tubular wire with different
outer radii: solid line – 𝑅/ℓ = 0.1, dashed line – 𝑅/ℓ = 1, dot-
dashed line – 𝑅/ℓ = 5

conjugated form compose a set of two linear equa-
tions for the functions 𝜓𝑘 and 𝜓*

−𝑘. The correspond-
ing solutions are

𝜓𝑘 = Ψ+𝑒
𝑧+(𝑘)𝑡, 𝜓*

−𝑘 = Ψ−𝑒
𝑧−(𝑘)𝑡, (16a)

where Ψ± are constants, and the rate functions 𝑧±(𝑘)
are determined as

(1 + 𝛼2)𝑧± = −𝛼Ω− 𝑖𝑢𝑘(1 + 𝛼𝛽)±

±
√︁

[𝑖Ω+ 𝑢𝑘(𝛼− 𝛽)]
2
+ (1 + 𝛼2)𝜛2, (16b)

where we introduced the notation

Ω = ℓ2𝑘2 + 𝑔(𝑘) + 2𝑔(0), (16c)

𝜛 =
3

2

⃒⃒⃒
𝑓(𝑘) + 𝑓(−𝑘)

⃒⃒⃒
. (16d)

The instability condition for the system can be writ-
ten as

∃𝑘 : ℜ𝑧±(𝑘) > 0. (17)

In what follows, we consider the case 𝜛 = 0, which
corresponds to nanowires with symmetric cross-secti-
ons: cylindrical rods, tubular and square nanowires.
In this case, the rate function has more simple form

𝑧±(𝑘) =
𝛾±(𝑘)± 𝑖𝜔±(𝑘)

1 + 𝛼2
, (18a)

where

𝛾±(𝑘) = −𝛼
[︂
Ω(𝑘)± 𝑢𝑘

(︂
1− 𝛽

𝛼

)︂]︂
, (18b)

𝜔±(𝑘) = Ω(𝑘)∓ 𝑢𝑘(1 + 𝛼𝛽). (18c)

The last term in (18c) represents the Doppler shift
[7, 21] induced by the spin current.

The instability condition (17) can be written now
as 𝛾± > 0 or, equivalently,

|𝑢| > 𝑢𝑐 =
𝑈

|1− 𝛽/𝛼|
, 𝑈 = min

𝑘>0

Ω(𝑘)

𝑘
. (19)

The law 𝑢𝑐 ∝ |1−𝛽/𝛼|−1 was already obtained [7] for
anisotropic nanowires, where the dipole-dipole con-
tribution was neglected. In contrast to the previous
results, expression (19) involves the shape and the
transversal size of a wire which are incorporated into
the shape parameter 𝑈 .

As an example, we consider a nanowire with square
cross-section with side ℎ. In this case,

Ω(𝑘) = ℓ2𝑘2 + I1
(︀
ℎ𝑘/

√
𝜋
)︀
K1

(︀
ℎ𝑘/

√
𝜋
)︀
. (20)

The corresponding instability area determined by
(19) is shown in Fig. 1.

The noticeable dependence of the shape parameter
𝑈 on the shape and the size of the wire cross-section
is demonstrated in Fig. 2.

To check the obtained stability condition (19), we
perform full scale micromagnetic simulations [22]. We
simulate the magnetization dynamics induced by the
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spin-current passing along a square nanowire with
ℎ = 6 nm and 𝐿 = 1𝜇m. The periodic boundary con-
ditions are implemented along the wire. We choose
the following material parameters of permalloy: the
saturation magnetization 𝑀𝑠 = 8.6 × 105 A/m, and
the exchange length ℓ = 5.3 nm (this corresponds to
the exchange constant 𝐴 = 1.3 × 10−11 J/m). The
anisotropy is neglected. The characteristic time scale
is determined by the uniform ferromagnetic resonance
frequency 𝜔0 = 1.9 × 1011 rad/s (30.3 GHz). The
value of damping constant 𝛼 = 0.01 is close to the
natural one. For permalloy, the nonadiabatic spin-
transfer parameter is 𝛽 = 0.04 [4]. However, we vary
it in the range 0 ≤ 𝛽/𝛼 ≤ 5 in order to check the
instability condition (19), see Fig. 1. The discretiza-
tion mesh is a cubic one: Δ𝑥 = Δ𝑦 = Δ𝑥 = 3
nm. The initial state is a slightly noised ground state
𝑚ini = �̃�/|�̃�|, where �̃� = (�̃�𝑥, �̃�𝑦, 1) with trans-
verse components |�̃�𝑥| < 10−4 and |�̃�𝑦| < 10−4, be-
ing determined in a random way. For a certain current
value 𝑢, the magnetization dynamics is simulated dur-
ing the long time Δ𝑡 = 100 ns (∼102𝜔−1

0 𝛼−1). The
judgement about the stability is based on the time
dependence of the total energy 𝐸(𝑡): if 𝐸(𝑡) exponen-
tially decays, then the ground state of the wire is con-
sidered to be stable for the given current 𝑢, and if the
dependence 𝐸(𝑡) start to rise, then the decision about
instability is made. Results of the described stability
analysis are shown in Fig. 1 by vertical bars: at the
top point of the bar and higher, the instability is de-
veloped; at the bottom point and lower, the state is
stable. One can see a nice agreement of the numerical
results with the theoretical prediction (19).

In summary, we show that the dipole-dipole inter-
action noticeably changes the stability condition of
the nanowire ground state with respect to the spin-
current. The shape and the size of the wire cross-
section affect the instability condition due to the non-
local nature of the dipole-dipole interaction.

The author is grateful to Prof. Yurii Gaididei and
Prof. Denis Sheka for fruitful discussions. This work
was supported by grant of NAS of Ukraine for young
scientists (contract No. HM-85-2014).

APPENDIX A
Equation of motion in terms of amplitude 𝜓

Considering 𝑚𝑛 = 𝑚𝑛(𝜓,𝜓*), we project Eq. (1) onto the
transversal axes 𝑥 and 𝑦. Solving the obtained set of equations

for �̇� and �̇�*, one obtains

(1 + 𝛼2)�̇�𝑛 = 𝑖
𝜕ℰ
𝜕𝜓*

𝑛

(1 + 𝑖𝛼Ψ+) −

− 𝑢
𝜓𝑛+𝑎 − 𝜓𝑛

𝑎
[1 + 𝛼𝛽 + 𝑖(𝛼− 𝛽)Ψ+] +

+
𝜓2
𝑛

|𝜓𝑛|2
Ψ−

[︂
𝛼
𝜕ℰ
𝜕𝜓𝑛

+ 𝑖𝑢(𝛼− 𝛽)
𝜓*
𝑛+𝑎 − 𝜓*

𝑛

𝑎

]︂
,

Ψ± =
1

2

(︂
2− |𝜓𝑛|2

2
±

2

2− |𝜓𝑛|2

)︂
.

(A1)

For details, see Appendix A of Ref. [6]. The linearization of
(A1) with respect to 𝜓𝑛 results in (3).

APPENDIX B
Dipole-dipole interaction for 1D case

As a direct consequence of the dependence of the magnetization
on the longitudinal coordinate 𝑧 only, the dipole-dipole energy
(8) can be presented in the form

𝐸d =
𝑀2

𝑠 𝑎
6

2

∑︁
𝜈𝑧 ,𝜇𝑧

[︃ ∑︁
𝜍=𝑥,𝑦,𝑧

𝒜𝜍
𝜈𝑧𝜇𝑧

𝑚𝜍
𝜈𝑧
𝑚𝜍

𝜇𝑧
+

+ ℬ𝜈𝑧𝜇𝑧𝑚
𝑥
𝜈𝑧
𝑚𝑦

𝜇𝑧

]︃
, (B1a)

where the summation over the transversal dimensions is en-
closed in the coefficients

𝒜𝜍
𝜈𝑧𝜇𝑧

=
∑︁

𝜇𝑥,𝜇𝑦
𝜈𝑥,𝜈𝑦
𝜈 ̸=𝜇

𝑟2𝜈𝜇 − 3𝜍2𝜈𝜇

𝑟5𝜈𝜇

,

ℬ𝜈𝑥𝜇𝑥 = −6
∑︁

𝜇𝑥,𝜇𝑦
𝜈𝑥,𝜈𝑦
𝜈 ̸=𝜇

𝑦𝜈𝜇𝑧𝜈𝜇

𝑟5𝜈𝜇

.

(B1b)

Substituting now the magnetization components

𝑚𝑧
𝑛 = 1− |𝜓𝑛|2

𝑚𝑥
𝑛 ≈

𝜓𝑛 + 𝜓*
𝑛√

2
, 𝑚𝑦

𝑛 ≈
𝜓𝑛 − 𝜓*

𝑛

𝑖
√
2

(B2)

into (B1) and applying the Fourier transformation (4), one ob-
tains the harmonic part of the normalized dipole-dipole energy
in form (9).
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СТIЙКIСТЬ МАГНIТНИХ
НАНОДРОТIВ ПО ВIДНОШЕННЮ
ДО СПIН-ПОЛЯРИЗОВАНОГО СТРУМУ

Р е з ю м е

Теоретично дослiджено стiйкiсть основного стану ма-
гнiтних нанодротiв по вiдношенню поздовжнього спiн-
поляризованого струму з урахуванням диполь-дипольної
взаємодiї. Визначено значення критичного струму – мiнi-
мального струму, при якому розвивається нестiйкiсть. Про-
демонстровано залежнiсть критичного струму вiд розмiру
та форми поперечного перерiзу дроту. Теоретичнi передба-
чення пiдтверджено чисельними мiкромагнiтними моделю-
ваннями.
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