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We have shown that the discrepancy between the PSI [1, 2] and CODATA [3] results of high-
precision experimental measurements of the proton charge radius can be explained on the basis
of the quantum electrodynamics effect, namely through the precise calculation of the contri-
bution of the retardation effects to the total energy splitting. We find that the contribution
of these effects is ∼0.3 meV, and this value is very close to the additional term as large as
0.31 meV, which would be required to match the results of PSI measurements with the CO-
DATA value of charge proton radius 𝑟𝑝 = 0.8768(69) fm.
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1. Introduction

In the latest experimental investigation (performed
at Paul Scherrer Institute (PSI)) of the proton struc-
ture from the measurement of the Lamb shift (2𝑆−2𝑃
transition frequencies) of muonic hydrogen [1, 2] (𝜇𝑝
atom – a proton orbited by a negative muon), the pro-
ton charge radius 𝑟𝑝 = 0.84087(39) fm was extracted
with the precision higher by an order of magnitude
than the CODATA value 0.8768(69) fm [3] (based on
H spectroscopy and elastic electron scattering) and at
7𝜎 variance with the respect to it. If one takes into ac-
count that, for the muonic hydrogen Lamb shift, the
theoretical uncertainty is equal to 0.004 meV, and the
experimental uncertainty is 0.003 meV, it must be ad-
mitted that this discrepancy between the CODATA
and PSI results, which is at the level 0.3 meV, implies
that either the Rydberg constant has to be shifted or
the calculation of the quantum electrodynamics ef-
fects in atomic hydrogen or muonic hydrogen atoms
are insufficient.
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As well known, the light muonic atoms have two
main features as compared with the electronic hydro-
genlike atoms, both of which are connected with the
fact that a muon is about 200 times heavier than an
electron. First – the contribution of the radiative cor-
rections is greatly enhanced, and second – the leading
proton size 𝑟𝑝 gives the second largest contribution to
the energy shift after the polarization corrections.

The theory relating the Lamb shift to 𝑟𝑝 yields [4–6]

Δ𝐸th
L = (206.0336(15) + Δfinite size +

+Δ𝐸TPE) meV, (1)

where the first term on the right-hand side accounts
for radiative, relativistic, and recoil effects, the sec-
ond term arises from the proton structure and de-
scribes the leading finite-size effects, and the third
term is determined by two photon exchange effects,
including the proton polarizability. According to [7–
9], Δ𝐸TPE = 0.0332(20) meV. As well known, the
contribution of the finite-size proton effect Δfinite size

to the total energy splitting Δ𝐸L = 2𝑃1/2 − 2𝑆1/2

(Lamb shift) is 1.8 percent of the total Δ𝐸L in a
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“muonic hydrogen” atom, two orders of magnitude
more than in a hydrogen atom H. The atomic energy
levels of H or 𝜇𝑝 are affected by the finite size of the
proton charge distribution by

Δfinite size =
2𝜋𝑍𝛼

3
𝑟2𝑝|Ψ(0)|2, (2)

where |Ψ(0)| is the atomic wave function at the ori-
gin, 𝛼 is the fine structure constant, 𝑍 = 1 – the
proton charge, and 𝑟𝑝 is the root mean square pro-
ton charge radius given in femtometers and defined
as 𝑟2𝑝 =

∫︀
𝑑3r 𝑟2𝜌𝑝(r), with 𝜌𝑝 being the normalized

proton charge distribution.
The proton size and the proton structure are im-

portant, because a lepton (electron or muon) in the
𝑆-state has a nonzero probability to be inside the
proton, which means that the attractive force be-
tween the proton and a lepton is reduced, because the
electric field inside the charge distribution is smaller
than the corresponding field produced by a point
charge. For the 𝑆-states, |Ψ(0)|2 is proportional to
𝑚3

𝑟 (𝑚𝑟 is the reduced mass). Since the muon mass
𝑚𝜇 is 207 times more than the electron mass 𝑚𝑒,
the 𝑚𝜇

𝑟 ≈ 186𝑚𝑒
𝑟, which leads to the sharp enhance-

ment of the contribution of the finite-size proton ef-
fect Δfinite size to the total energy difference Δ𝐸𝐿 in
a “muonic hydrogen” atom in comparison with a hy-
drogen atom. In addition, the Lamb shift in 𝜇𝑝 differs
from H in that the electron vacuum polarization gives
the most significant contribution, because the Comp-
ton wavelength of the electron (which determines the
spatial distribution of the vacuum polarization charge
density) is of the order of the muon Bohr radius. This
leads to a higher sensitivity to the proton finite size
of 𝜇𝑝 in comparison with a hydrogen atom.

For a 𝜇𝑝 atom, the leading finite-size effect
Δfinite size = −5.2275(10)𝑟2𝑝 meV is approximately
given by Eq. (2) with a correction given in [5]. In
this case, the comparison of Δ𝐸th

L (Eq. (1)) with that
obtained from the measurement of 2𝑆 − 2𝑃 transi-
tion frequencies in a “muonic hydrogen” Δ𝐸exp

L =
= 202.3706(23) meV [1, 2] yields 𝑟𝑝 = 0.84087(39)
fm. If one assume some quantum electrodynamics
contributions in 𝜇𝑝 in Eq. (1) were wrong or miss-
ing, an additional term as large as 0.31 meV would
be required to match the results of above-mentioned
measurement with the CODATA value of 𝑟𝑝 =
= 0.8768(69) fm. It should be noted that 0.31 meV
is 64 times the claimed uncertainty of Eq. (1).

The purpose of this work is to consider the contri-
bution of retardation effects to the total energy split-
ting Δ𝐸L = 2𝑃1/2 − 2𝑆1/2, which might play the es-
sential role in the above-mentioned problem. Usually,
these effects for systems with two charged bodies are
investigated in the frame of a nonrelativistic approach
or by using the fact that the total relativistic Hamil-
tonian of the system can be given in the form of an
expansion in 𝛼2 up to the first correction term

𝑉 (r) =
𝛼

𝑟
− 𝑒2

2𝑟

[︂
𝛼1𝛼2 +

(𝛼1 · r)(𝛼2 · r)
𝑟2

]︂
, (3)

where 𝛼1, 𝛼2 are the commuting sets of Dirac ma-
trices, r = r1 − r2, and the subscripts 1 or 2 distin-
guish the quantities related to the first and second
particles. In this expression, the first term describes
the electrostatic Coulomb interaction (exchange by
longitudinal photons), and the second part takes the
magnetic spin-spin interactions and retardation cor-
rections due to the finite speed of the interaction into
account (exchange by transversal photons). However,
such approximation for the relativistic interaction be-
tween two particles is good only under the assump-
tion that the retardation effects in the spectrum of
an atom are small. In the case where these effects are
not small, we have to find another way.

We will consider the retardation effects in two
ways. The expression for the energy shift in the first-
order perturbation theory is as follows:

Δ𝐸𝑛𝑙𝑚 =

∫︁
dr𝜓*

𝑛𝑙𝑚(r)𝑉 (r)𝜓𝑛𝑙𝑚(r), (4)

where 𝛿𝑉 (r) is the correction, which the vacuum po-
larization inserts to the Coulomb potential 𝑉C(𝑟) =
= −𝛼/𝑟:

𝛿𝑉 (𝑟) =

∫︁
𝑑q

(2𝜋)3
𝑒−𝑖q·r𝛿𝑉 (q),

𝛿𝑉 (q) =
4𝜋𝛼

q 2
Π(−𝑞2).

(5)

Instead of the approximation of the nonrelativistic
expression for the scalar term

Π(q2) =
1

𝜋

∞∫︁
𝑡0

𝑑𝑡
ImΠ(𝑡)

𝑡− q2 − 𝑖0+
q 2

𝑡
,
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which is widely used in the works calculating the
Lamb shift (see, e.g., [4]), we will use the exact rela-
tivistic dispersion relation for the scalar term:

Π(𝑞2) =
1

𝜋

∞∫︁
𝑡0

𝑑𝑡
ImΠ(𝑡)

𝑡− 𝑞2 − 𝑖0+
𝑞2

𝑡
. (6)

Here, 𝑞2 = (𝑞0)2 − q2, 𝜔 = 𝑞0, and 𝑡0 is the lowest
particle-production threshold. Second improvement–
instead of the second term in (3), we will use the po-
tential describing the retardation of a massive pho-
ton propagator or, in other words, we will calculate
the effective interaction potential on the frame of the
Breit approach [10] using the so-called “dressed” one-
photon exchange diagram for the eVP contribution
(see Figure).

The paper is organized as follows. First, we con-
sider the massive photon propagator dressed with
vacuum polarization in an arbitrary gauge, and then
we find it in the Coulomb gauge. We apply the Breit-
type approach to calculate a one-photon retarda-
tion contribution. For this, we need to find the non-
relativistic reduction of the scalar two-particle prop-
agator. Then the effective potential will be built and
investigated. In the non-relativistic limit, it can be
presented in the form

≃ 𝐺NR(p
2;𝐸)𝑉NR(p,p

′)𝐺NR(p
′2;𝐸),

where 𝐺NR(p
2;𝐸) is the non-relativistic Green func-

tion. This gives us a possibility to calculate the con-
tribution of a retardation of the vacuum polarization
to the Lamb shift of hydrogen atoms.

2. Photon Propagator

The photon propagator in an arbitrary gauge has the
form

Δ𝜇𝜈(𝑞) = − 1

𝑞2
(︀
𝑔𝜇𝜈 − 𝜒𝜇𝑞𝜈 − 𝜒𝜈𝑞𝜇

)︀
, (7)

where 𝑞𝜇 = {𝑞0, q} – four-momentum of a photon, 𝜒𝜈

is any four-vector, which will be used for the choice
of a gauge. We use the flat Minkowski metric with
diag 𝑔𝜇𝜈 = (1,−1,−1,−1).

The electromagnetic gauge invariance constrains
the vacuum polarization (VP) to the well-known form

Π𝜇𝜈(𝑞) = (𝑔𝜇𝜈𝑞2 − 𝑞𝜇𝑞𝜈)Π(𝑞2), (8)

Photons exchange diagrams of eVP contributions

with the scalar term satisfying the once-subtracted
relativistic dispersion relation

Π(𝑞2) =
1

𝜋

∞∫︁
𝑡0

𝑑𝑡
ImΠ(𝑡)

𝑡− 𝑞2 − 𝑖0+
𝑞2

𝑡
.

The propagator dressed with vacuum polarization
is found as

Δ̃𝜇𝜈(𝑞) = Δ𝜇𝛼(𝑞)Π𝛼𝛽(𝑞)Δ
𝛽𝜈(𝑞) =

=
1

𝑞4
(𝑔𝜇𝛼 − 𝜒𝛼𝑞𝜇 − 𝜒𝜇𝑞𝛼)

(︀
𝑔𝛼𝛽𝑞

2 − 𝑞𝛼𝑞𝛽
)︀
×

×
(︀
𝑔𝛽𝜈 − 𝜒𝛽𝑞𝜈 − 𝜒𝜈𝑞𝛽

)︀
Π(𝑞2) =

1

𝑞2

[︂
𝑔𝜇𝜈 − 𝑞𝜇𝜒𝜈 −

− 𝑞𝜈𝜒𝜇 + 𝜒2𝑞𝜇𝑞𝜈 − (1− 𝑞 · 𝜒)2

𝑞2
𝑞𝜇𝑞𝜈

]︂
Π(𝑞2). (9)

Hence,

Δ̃𝜇𝜈(𝑞) =
1

𝜋

∞∫︁
𝑡0

𝑑𝑡

𝑡

ImΠ(𝑡)

𝑡− 𝑞2 − 𝑖0+
×

×
[︂
𝑔𝜇𝜈−𝑞𝜇𝜒𝜈−𝑞𝜈𝜒𝜇+

𝑞2𝜒2−(1− 𝑞 · 𝜒)2

𝑞2
𝑞𝜇𝑞𝜈

]︂
. (10)

In the Coulomb gauge, 𝜒 is chosen as

𝜒𝜇 =
1

2q2
(𝜔, −q) , (11)

where 𝜔 = 𝑞0, and q2 = 𝜔2−𝑞2. Then the propagator
does not mix the spatial and temporal components,
Δ0𝑖 = 0, and the non-vanishing components are

Δ00(𝑞) =
1

q2
, Δ𝑖𝑗(𝑞) =

1

𝜔2 − q2

(︂
𝛿𝑖𝑗 − 𝑞𝑖𝑞𝑗

q2

)︂
. (12)

For 𝜒 in the Coulomb gauge, we find

𝑞2𝜒2 − (1− 𝑞 · 𝜒)2 = 0, (13)
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and, hence, the tensor structure remains the same as
for the non-dressed propagator. However, the differ-
ence consists in that 𝑞2 in the denominator is replaced
with (𝑞2 − 𝑡), where 𝑡 is integrated over with some
weight.

Let us introduce the massive propagator

Δ𝜇𝜈(𝑞; 𝑡) = − 1

𝑞2 − 𝑡

(︀
𝑔𝜇𝜈 − 𝜒𝜇𝑞𝜈 − 𝜒𝜈𝑞𝜇

)︀
. (14)

Then the dressed propagator is written as

Δ̃𝜇𝜈(𝑞) =
1

𝜋

∞∫︁
𝑡0

𝑑𝑡
ImΠ(𝑡)

𝑡
Δ𝜇𝜈(𝑞; 𝑡). (15)

In the Coulomb gauge, the non-vanishing compo-
nents of the massive propagator are

Δ00(𝑞; 𝑡) =
1

𝑞2 − 𝑡

𝑞2

q2
=

1

q2 + 𝑡
+

+
𝜔2𝑡

q2(q2 + 𝑡)(𝜔2 − q2 − 𝑡)
,

Δ𝑖𝑗(𝑞; 𝑡) =
1

𝑞2 − 𝑡

(︂
𝛿𝑖𝑗 − 𝑞𝑖𝑞𝑗

q2

)︂
=

=
1

𝜔2 − q2 − 𝑡

(︂
𝛿𝑖𝑗 − 𝑞𝑖𝑞𝑗

q2

)︂
.

(16)

In the frame of the Breit approach, only the time-like
components Δ00 of the propagator play the essential
role. The second term in expression (16) for Δ00(𝑞; 𝑡)
describes the contributions of a retardation of the
vacuum polarization to the Lamb shift of hydrogen
atoms, and it will be used in the future calculations.

3. Two-Particle Propagator

To attain the goal, we need to calculate the two-
particle (lepton and proton) propagator 𝐺(ℓ2; 𝑠) and
to find its non-relativistic reduction.

The lepton (with mass 𝑚𝑎) and proton (with mass
𝑚𝑏) momenta are written as

𝑘 = 𝑥𝑎𝑃 − ℓ, 𝑝 = 𝑥𝑏𝑃 + ℓ, (17)

where 𝑃 = 𝑝 + 𝑘 and 𝑙 are is the total and relative
momenta, respectively, of two particles. Hence, the
momentum fractions are defined as

𝑥𝑎 =
𝑠+𝑚2

𝑎 −𝑚2
𝑏

2𝑠
, 𝑥𝑏 =

𝑠+𝑚2
𝑏 −𝑚2

𝑎

2𝑠
, (18)

and we obtain 𝑥𝑎+𝑥𝑏 = 1. Furthermore, 𝑃 2 = 𝑠, and
the momentum transfer is

𝑞 = 𝑘′ − 𝑘 = 𝑝− 𝑝′ = ℓ− ℓ′. (19)

In the center-of-mass system, 𝑃 = (
√
𝑠0). We obtain

obviously k = −l = −p.
The non-relativistic reduction of a scalar two-

particle propagator should proceed as follows. First,
we observe that the scalar two-particle propagator
𝐺(ℓ2; 𝑠) calculated in Appendix is

𝐺(ℓ2; 𝑠) =
1

2𝜋𝑖

∞∫︁
−∞

𝑑ℓ0 ×

× 1[︀
(𝑥𝑎𝑃 − ℓ)2 −𝑚2

𝑎 + 𝑖𝜀
]︀ [︀

(𝑥𝑏𝑃 + ℓ)2 −𝑚2
𝑏 + 𝑖𝜀

]︀ =

=
1

𝜆(𝑠)/𝑠− ℓ2 + 𝑖𝜀
×

×
(︂

𝑥𝑎
4(𝑚2

𝑎 + ℓ2)1/2
+

𝑥𝑏
4(𝑚2

𝑏 + ℓ2)1/2

)︂
, (20)

where

𝜆(𝑠) =
1

4

[︀
𝑠− (𝑚𝑎 +𝑚𝑏)

2
]︀ [︀
𝑠− (𝑚𝑎 −𝑚𝑏)

2
]︀
. (21)

Everywhere, we substitute
√
𝑠 = (𝑚𝑎+𝑚𝑏)+𝐸, with

𝐸 ≪ 𝑚𝑎, 𝑚𝑏. In the non-relativistic limit, we have
(𝑚2

𝑎,𝑏 + ℓ2)1/2 ≃ 𝑚𝑎,𝑏:

𝜆(𝑠)

𝑠
= 2𝐸

𝑚𝑎𝑚𝑏

𝑚𝑎 +𝑚𝑏
+𝑂(𝐸2), (22a)

𝑥𝑎 =
𝑚𝑎

𝑚𝑎 +𝑚𝑏
− 𝐸

𝑚𝑎 −𝑚𝑏

(𝑚𝑎 +𝑚𝑏)2
+𝑂(𝐸2), (22b)

𝑥𝑏 =
𝑚𝑏

𝑚𝑎 +𝑚𝑏
− 𝐸

𝑚𝑏 −𝑚𝑎

(𝑚𝑎 +𝑚𝑏)2
+𝑂(𝐸2). (22c)

Recalling that ℓ2 = p2, we finally obtain the non-
relativistic form:

𝐺(ℓ2; 𝑠) ≃ 𝐺NR(p
2;𝐸) =

1

4𝑚𝑎𝑚𝑏

(︀
𝐸 − p2

2𝑚𝑟

)︀ , (23)

where 𝑚𝑟 = 𝑚𝑎𝑚𝑏/(𝑚𝑎 + 𝑚𝑏) is the reduced
mass. For the fermion-fermion system, we obtain 2𝑚
from the numerator of each propagator, i.e., the fac-
tor 4𝑚𝑎𝑚𝑏 in the denominator is cancelled.
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4. Effective Potential

Our task is to consider the “dressed” one-photon ex-
change diagram for the eVP contributions

𝐼(p,p′) =

∞∫︁
−∞

𝑑ℓ0
2𝜋𝑖

𝑑ℓ′0
2𝜋𝑖

×

× 1[︀
(𝑥𝑎𝑃 − ℓ)2 −𝑚2

𝑎 + 𝑖𝜀
]︀ [︀
(𝑥𝑏𝑃 + ℓ)2 −𝑚2

𝑏 + 𝑖𝜀
]︀ ×

× 1[︀
(𝑥𝑎𝑃 − ℓ′)2 −𝑚2

𝑎 + 𝑖𝜀
]︀ [︀
(𝑥𝑏𝑃 + ℓ′)2 −𝑚2

𝑏 + 𝑖𝜀
]︀ ×

×𝑉 (ℓ0 − ℓ′0, p, p
′). (24)

According to the Breit approach, we now consider the
possibility to present it in the non-relativistic limit in
the form

𝐼(p,p′) ≃ 𝐺NR(p
2;𝐸)𝑉NR(p,p

′)𝐺NR(p
′2;𝐸). (25)

In our approach, we will use the potential

𝑉 (ℓ0 − ℓ′0,p,p
′) = (ℓ0 − ℓ′0)

2. (26)

Then, using expression (16) for Δ00(𝑞; 𝑡) and inte-
grating (see Appendix), we obtain

𝐼(p,p′) =
1

16

(︂
1

𝜆(𝑠)/𝑠− ℓ 2 + 𝑖𝜀
+

+
1

𝜆(𝑠)/𝑠− ℓ ′2 + 𝑖𝜀

)︂(︂
𝑥𝑎
𝜔𝑎

+
𝑥𝑏
𝜔𝑏

)︂(︂
𝑥𝑎
𝜔′
𝑎

+
𝑥𝑏
𝜔′
𝑏

)︂
−

− 1

8𝑠

(︂
1

𝜔𝑎
− 1

𝜔𝑏

)︂(︂
1

𝜔′
𝑎

− 1

𝜔′
𝑏

)︂
, (27)

where 𝜔𝑖 = (𝑚2
𝑖 + ℓ 2)1/2, 𝜔′

𝑖 = (𝑚2
𝑖 + ℓ ′2)1/2.

Therefore, the potential is

𝑉NR(p,p
′) = 𝐺−1(p2, 𝑠)𝐼(p,p′)𝐺−1(p′2, 𝑠) =

= 4𝑚𝑟𝐸 − p2 − p′2 +

(︀
p2 + p′2)︀2
2𝑚𝑎𝑚𝑏

+

+
p2p′2

2

(︂
1

𝑚2
𝑎

+
1

𝑚2
𝑏

)︂
+𝑂(1/𝑚4) = 4𝑚𝑟𝐸−p2−p′2+

+
p2p′2

2𝑚2
𝑟

+
p4 + p′4

2𝑚𝑎𝑚𝑏
+𝑂(1/𝑚4). (28)

Omitting the terms suppressed by the masses, we
arrive at the following potential describing the retar-
dation of the massive photon propagator:

𝑉 (VPret)(q;p2,p′2) = −4𝜋𝛼
𝜔2𝑡

q2(q2 + 𝑡)2
NR→

NR→ −4𝜋𝛼
𝑡

q2(q2 + 𝑡)2
(︀
4𝑚𝑟𝐸 − p2 − p′ 2)︀. (29)

5. Calculation of the Lamb Shift

The energy shift in the first-order perturbation the-
ory is calculated according to expression (4). In the
momentum space, we have

Δ𝐸𝑛𝑙𝑚 =

∫︁
dr

∫︁
dpdp′

(2𝜋)3
dq

(2𝜋)3
𝑒𝑖(p−p′+q)·r ×

×𝑉 (q;p2,p′2)𝜙*
𝑛𝑙𝑚(p′)𝜙𝑛𝑙𝑚(p), (30)

where the momentum-space wave function is intro-
duced via

𝜓𝑛𝑙𝑚(r) =
1

(2𝜋)3/2

∫︁
dp 𝑒𝑖p·r 𝜙𝑛𝑙𝑚(p). (31)

Substituting the retardation potential

𝑉 (VPret)(q;p2,p ′2) =

= − 1

𝜋

∞∫︁
𝑡0

d𝑡 ImΠ(𝑡)
4𝜋𝑍𝛼

q2(q2 + 𝑡)2

(︀
p2 − p′2)︀2

4𝑚2
𝑟

(32)

into the above formula for the energy shift, we obtain

Δ𝐸(VPret) = −𝑍𝛼
𝜋

∞∫︁
𝑡0

d𝑡 ImΠ(𝑡)

∫︁
dr𝑊 (𝑟; 𝑡)×

×
{︂
𝜓*(r)

∇4

2𝑚2
𝑟

𝜓(r)− 2

[︂
∇2

2𝑚𝑟
𝜓*(r)

]︂
∇2

2𝑚𝑟
𝜓(r)

}︂
(33)

with

𝑊 (𝑟; 𝑡) =

∫︁
dq

(2𝜋)3
𝑒𝑖q·r

4𝜋

q2(q2 + 𝑡)2
=

=
1

𝑡

[︂
1

𝑟𝑡

(︁
1− 𝑒−𝑟

√
𝑡
)︁
− 1

2
√
𝑡
𝑒−𝑟

√
𝑡

]︂
. (34)

We focus on the term in the curly brackets. Using
the Schrödinger equation(︂
∇2

2𝑚𝑟
+ 𝐸 +

𝑍𝛼

𝑟

)︂
𝜓(r) = 0 (35)

together with the useful identities

∇1

𝑟
= − r

𝑟3
, ∇2 1

𝑟
= −4𝜋𝛿(r),

r ·∇𝜓(r) = 𝑟
𝜕

𝜕𝑟
𝜓(r),

(36)
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we obtain that the term in the curly brackets reads

{...} = 2

{︂
− 𝜓*(r)

[︂
∇2

2𝑚𝑟

(︂
𝐸 +

𝑍𝛼

𝑟

)︂
𝜓(r)

]︂
−

−
(︂
𝐸 +

𝑍𝛼

𝑟

)︂2
|𝜓(r)|2

}︂
=

= 2

{︂
4𝜋𝑍𝛼

2𝑚𝑟
𝛿(r) |𝜓(r)|2 − 𝑍𝛼

𝑚𝑟
𝜓*(r)

(︂
∇1

𝑟

)︂
·∇𝜓(r)

}︂
=

= 2

{︂
4𝜋𝑍𝛼

2𝑚𝑟
𝛿(r) |𝜓(r)|2 + 𝑍𝛼

𝑚𝑟𝑟2
𝜓*(r)

𝜕

𝜕𝑟
𝜓(r)

}︂
. (37)

The two terms in the latter expression will be consid-
ered separately, i.e.,

Δ𝐸(VPret) = Δ𝐸
(VPret)
1 +Δ𝐸

(VPret)
2 ,

Δ𝐸
(VPret)
1 = −4(𝑍𝛼)2

𝑚𝑟
𝜓2
𝑛(0)

∞∫︁
𝑡0

d𝑡 ImΠ(𝑡)𝑊 (0; 𝑡),
(38)

Δ𝐸
(VPret)
2 = −2(𝑍𝛼)2

𝜋𝑚𝑟

∞∫︁
𝑡0

d𝑡 ImΠ(𝑡)×

×
∞∫︁
0

d𝑟𝑊 (𝑟; 𝑡)𝑅𝑛𝑙(𝑟)𝑅
′
𝑛𝑙(𝑟), (39)

where 𝑅(𝑟) is the radial wave function, and 𝜓2
𝑛(0) =

= (𝑍𝛼𝑚𝑟)
3/𝜋𝑛3. Furthermore, we easily establish

that

𝑊 (0; 𝑡) =
1

2𝑡3/2
, (40)

∞∫︁
4𝑚2

𝑒

d𝑡
ImΠ(1)(𝑡)

2𝑡3/2
= − 3𝜋𝛼

64𝑚𝑒
. (41)

Hence,

Δ𝐸
(VPret)
1 (2𝑆) =

3𝛼(𝑍𝛼)5𝑚2
𝑟

128𝑚𝑒
=

=
3𝛼(𝑍𝛼)4𝑚𝑟

64
𝜅 ≃ 200 𝜇eV, (42)

where 𝜅 = 𝑍𝛼𝑚𝑟/2𝑚𝑒.
To calculate the second contribution, we need the

derivatives of the radial wave functions

𝑅 ′
20(𝑟) = − 1√

2 𝑎5/2

(︁
1− 𝑟

4𝑎

)︁
𝑒−𝑟/2𝑎, (43a)

𝑅 ′
21(𝑟) =

1

2
√
6 𝑎5/2

(︁
1− 𝑟

2𝑎

)︁
𝑒−𝑟/2𝑎. (43b)

We then find
∞∫︁
0

d𝑟𝑊 (𝑟; 𝑡)𝑅20(𝑟)𝑅
′
20(𝑟) =

=
6 + 14𝑎𝑡1/2 + 9𝑎2𝑡

16𝑎3𝑡3/2(1 + 𝑎𝑡1/2)3
− 1

2𝑎4𝑡2
log

(︀
1+ 𝑎𝑡1/2

)︀
, (44a)

∞∫︁
0

d𝑟𝑊 (𝑟; 𝑡)𝑅21(𝑟)𝑅
′
21(𝑟) =

=
1

48𝑎𝑡1/2(1 + 𝑎𝑡1/2)3
. (44b)

After the integration over 𝑡, we obtain

Δ𝐸
(VPret)
2 (2𝑃 − 2𝑆) ≃ 100 𝜇eV. (45)

The total result is

Δ𝐸(VPret)(2𝑃 − 2𝑆) = Δ𝐸
(VPret)
1 (2𝑆)+

+Δ𝐸
(VPret)
2 (2𝑃 − 2𝑆) ≃ 300 𝜇eV. (46)

Another way to calculate this result is to use the
partial integration:

Δ𝐸(VPret) = −𝑍𝛼
𝜋

∞∫︁
𝑡0

d𝑡 ImΠ(𝑡)

∫︁
dr𝑊 (𝑟; 𝑡)×

×
{︂
𝜓*(r)

∇4

2𝑚2
𝑟

𝜓(r)− 2

[︂
∇2

2𝑚𝑟
𝜓*(r)

]︂
∇2

2𝑚𝑟
𝜓(r)

}︂
,

=
(𝑍𝛼)2

𝜋𝑚𝑟

∞∫︁
𝑡0

d𝑡 ImΠ(𝑡)

∫︁
dr |𝜓(r)|2 1

𝑟2
𝜕

𝜕𝑟
𝑊 (𝑟; 𝑡) (47)

Δ�̃�
(VPret)
𝑛𝑙𝑚 = −𝑍𝛼

∫︁
dr |𝜓𝑛𝑙𝑚(r)|2 (−4𝑍𝛼𝑚𝑟)

𝑟
×

×
[︂
1

𝑟𝑡

(︁
1− 𝑒−𝑟

√
𝑡
)︁
− 1

2
√
𝑡
𝑒−𝑟

√
𝑡

]︂
. (48)

The term in the square brackets follows from the 𝑞-
integration.

Recalling the external dispersive integral over 𝑡, we
conclude that the retardation of VP results in the
following central and local potential

𝑉 (VPret)(𝑟) = 4(𝑍𝛼)2𝑚𝑟
1

𝜋

∞∫︁
𝑡0

d𝑡 ImΠ(𝑡)
1

𝑟𝑡
×

×
[︂
1

𝑟𝑡

(︁
1− 𝑒−𝑟

√
𝑡
)︁
− 1

2
√
𝑡
𝑒−𝑟

√
𝑡

]︂
. (49)
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To compute the 2𝑃 − 2𝑆 splitting, we consider∫︁
𝑑r
(︁
|𝜓210|2 − |𝜓200|2

)︁[︂ 1

𝑀2𝑟2
(︀
1− 𝑒−𝑀𝑟

)︀
−

− 1

2𝑀𝑟
𝑒−𝑀𝑟

]︂
=
𝑎𝑀

12

1− 2𝑎𝑀

(1 + 𝑎𝑀)4
, (50)

where 𝑎 = (𝑍𝛼𝑚𝑟)
−1 is the Bohr radius.

Thus, we have again the same result for the Lamb
shift

Δ𝐸(VPret)(2𝑃 − 2𝑆) =

= 𝑍𝛼
1

3𝜋

∞∫︁
𝑡0

𝑑𝑡
ImΠ(𝑡)√

𝑡

1− 2𝑎
√
𝑡

(1 + 𝑎
√
𝑡)4

≃ 300 𝜇eV. (51)

6. Conclusion

We have shown that the discrepancy between the PSI
[2] and CODATA [3] results of the high-precision ex-
perimental determination of the proton charge ra-
dius, which has triggered a lively discussion adress-
ing not only the accuracy of these experiments, but
also the bound-state quantum electrodynamics, pro-
ton structure, Rydberg constant, and even a possibil-
ity of a new physics, can be explained on the basis
of the quantum electrodynamics effect, namely the
precise calculation of the contribution of the retarda-
tion effects to the total energy splitting. We find that
the contribution of these effects is ∼0.3 meV. This
value is very close to 0.31 meV, which would be re-
quired to match the results of PSI measurements
with the CODATA value of charge proton radius
𝑟𝑝 = 0.8768(69) fm.

We have to note that our results, which are
based on the one-photon exchange, is not gauge
invariant. One should consider the two-photon di-
agrams, which are indeed gauge invariant, to ob-
tain the complete contribution, (𝑍𝛼)4(𝑚2/𝑀) and
(𝑍𝛼)4𝑚(𝑚/𝑀)2. This will be done in our future
work, but obviously that the account for these terms
does not change drastically the results obtained in the
present work.

One of the authors (S.V.) is grateful to Prof.
Marc Vanderhaeghen for the support and the kind
hospitality at the Institut für Kernphysik, Johannes
Gutenberg-Universität Mainz, Germany, where this
work was done.

APPENDIX. Integrals

The integral

𝐼(p,p′) =

=

∞∫︁
−∞

𝑑ℓ0

2𝜋𝑖

𝑑ℓ′0
2𝜋𝑖

1[︀
(𝑥𝑎𝑃 − ℓ)2 −𝑚2

𝑎 + 𝑖𝜀
]︀[︀
(𝑥𝑏𝑃 + ℓ)2 −𝑚2

𝑏 + 𝑖𝜀
]︀×

×
1[︀

(𝑥𝑎𝑃 − ℓ′)2 −𝑚2
𝑎 + 𝑖𝜀

]︀[︀
(𝑥𝑏𝑃 + ℓ′)2 −𝑚2

𝑏 + 𝑖𝜀
]︀×

× (ℓ0 − ℓ′0)
2 (A1)

can be easy rewritten as

𝐼(p,p′) = 𝐺2(ℓ
2; 𝑠)𝐺(ℓ ′2; 𝑠)− 2𝐺1(ℓ

2; 𝑠)𝐺1(ℓ
′2; 𝑠)+

+𝐺(ℓ2; 𝑠)𝐺2(ℓ
′2; 𝑠),

where

𝐺(ℓ 2; 𝑠) =
1

2𝜋𝑖
×

×
∞∫︁

−∞

𝑑ℓ0
1[︀

(𝑥𝑎𝑃 − ℓ)2 −𝑚2
𝑎 + 𝑖𝜀

]︀ [︀
(𝑥𝑏𝑃 + ℓ)2 −𝑚2

𝑏 + 𝑖𝜀
]︀ =

=
1

2𝜋𝑖

∞∫︁
−∞

𝑑ℓ0
1[︀

(𝑥𝑎𝑃0 − ℓ0 − 𝜔𝑎 + 𝑖𝜀)(𝑥𝑎𝑃0 − ℓ0 + 𝜔𝑎 − 𝑖𝜀)
]︀ ×

×
1[︀

(𝑥𝑏𝑃0 + ℓ0 − 𝜔𝑏 + 𝑖𝜀)(𝑥𝑏𝑃0 + ℓ0 + 𝜔𝑏 − 𝑖𝜀)
]︀ , (A2)

𝜔𝑖 = (𝑚2
𝑖 + ℓ2)1/2.

The poles in the lower half-plane are

ℓ
(𝑎)
0 = 𝑥𝑎𝑃0 + 𝜔𝑎 − 𝑖𝜀, (A3)

ℓ
(𝑏)
0 = −𝑥𝑏𝑃0 + 𝜔𝑏 − 𝑖𝜀. (A4)

Noting the extra minus sign from going over the lower half-
plane contour, we obtain

𝐺(ℓ 2; 𝑠) = −
{︂

1

2𝜔𝑎[(𝑃0 + 𝜔𝑎)2 − 𝜔2
𝑏 + 𝑖𝜀]

+

+
1

2𝜔𝑏[(𝑃0 − 𝜔𝑏)2 − 𝜔2
𝑎 + 𝑖𝜀]

}︂
= −

{︂
1

4𝜔𝑎(𝑥𝑎𝑠+ 𝜔𝑎
√
𝑠+ 𝑖𝜀)

+

+
1

4𝜔𝑏(𝑥𝑏𝑠− 𝜔𝑏
√
𝑠+ 𝑖𝜀)

}︂
. (A5)

Finally, using the fact that

𝑥2
𝑎𝑠− 𝜔2

𝑎 = 𝑥2
𝑏𝑠− 𝜔2

𝑏 = 𝜆(𝑠)/𝑠− ℓ2, (A6)

we find

𝐺(ℓ 2; 𝑠) = −
1

𝜆(𝑠)/𝑠− ℓ 2 + 𝑖𝜀
×

×
(︂
𝑥𝑎𝑠− 𝜔𝑎

√
𝑠

4𝜔𝑎𝑠
+

𝑥𝑏𝑠+ 𝜔𝑏
√
𝑠

4𝜔𝑏𝑠

)︂
=

= −
1

𝜆(𝑠)/𝑠− ℓ2 + 𝑖𝜀

(︂
𝑥𝑎

4𝜔𝑎
+

𝑥𝑏

4𝜔𝑏

)︂
. (A7)
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The next step is as follows:

𝐺1(ℓ
2; 𝑠) =

1

2𝜋𝑖

∞∫︁
−∞

𝑑ℓ0 ℓ0 ×

×
1[︀

(𝑥𝑎𝑃 − ℓ)2 −𝑚2
𝑎 + 𝑖𝜀

]︀ [︀
(𝑥𝑏𝑃 + ℓ)2 −𝑚2

𝑏 + 𝑖𝜀
]︀ =

=
1

2𝜋𝑖

1

2
√
𝑠

∞∫︁
−∞

𝑑ℓ0
1[︀

(𝑥𝑎𝑃0−ℓ0−𝜔𝑎+𝑖𝜀)(𝑥𝑎𝑃0−ℓ0+𝜔𝑎 − 𝑖𝜀)
]︀ −

−
1

2𝜋𝑖

1

2
√
𝑠

∞∫︁
−∞

𝑑ℓ0
1[︀

(𝑥𝑏𝑃0+ℓ0−𝜔𝑏+𝑖𝜀)(𝑥𝑏𝑃0+ℓ0+𝜔𝑏−𝑖𝜀)
]︀ ,

𝜔𝑖 = (𝑚2
𝑖 + ℓ 2)1/2. (A8)

The poles in the lower half-plane are

ℓ
(𝑎)
0 = 𝑥𝑎𝑃0 + 𝜔𝑎 − 𝑖𝜀 (A9)

in the first integral and

ℓ
(𝑏)
0 = −𝑥𝑏𝑃0 + 𝜔𝑏 − 𝑖𝜀 (A10)

in the second integral. Noting the extra minus sign from going
over the lower half-plane contour, we obtain

𝐺1(ℓ
2; 𝑠) =

1

4
√
𝑠

{︂
1

𝜔𝑎
−

1

𝜔𝑏

}︂
. (A11)

Then

𝐺2(ℓ
2; 𝑠) =

1

2𝜋𝑖

∞∫︁
−∞

𝑑ℓ0 ℓ0
2 ×

×
1[︀

(𝑥𝑎𝑃 − ℓ)2 −𝑚2
𝑎 + 𝑖𝜀

]︀[︀
(𝑥𝑏𝑃 + ℓ)2 −𝑚2

𝑏 + 𝑖𝜀
]︀ =

=
1

2𝜋𝑖

1

2
√
𝑠

∞∫︁
−∞

𝑑ℓ0ℓ0
1[︀

(𝑥𝑎𝑃0−ℓ0−𝜔𝑎+𝑖𝜀)(𝑥𝑎𝑃0−ℓ0+𝜔𝑎−𝑖𝜀)
]︀ −

−
1

2𝜋𝑖

1

2
√
𝑠

∞∫︁
−∞

𝑑ℓ0ℓ0
1[︀

(𝑥𝑏𝑃0+ℓ0−𝜔𝑏+𝑖𝜀)(𝑥𝑏𝑃0+ℓ0+𝜔𝑏−𝑖𝜀)
]︀ ,

𝜔𝑖 = (𝑚2
𝑖 + ℓ2)1/2. (A12)

The poles in the lower half-plane are

ℓ
(𝑎)
0 = 𝑥𝑎𝑃0 + 𝜔𝑎 − 𝑖𝜀 (A13)

in the first integral and

ℓ
(𝑏)
0 = −𝑥𝑏𝑃0 + 𝜔𝑏 − 𝑖𝜀 (A14)

in the second integral. Noting the extra minus sign from going
over the lower half-plane contour, we obtain

𝐺2(ℓ
2; 𝑠) =

1

4

{︂
𝑥𝑏

𝜔𝑏
+

𝑥𝑎

𝜔𝑎

}︂
. (A15)
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ВНЕСОК ЕФЕКТIВ ЗАПIЗНЮВАННЯ ДО ПОВНОЇ
ЕНЕРГIЇ РОЗЩЕПЛЕННЯ ВОДНЕПОДIБНИХ АТОМIВ

Р е з ю м е

Ми показали, що розбiжнiсть результатiв PSI та CODATA
з високоточного експериментального вимiру зарядового ра-
дiуса протона може бути пояснена в рамках квантової еле-
ктродинамiки, а саме завдяки врахуванню внеску ефектiв
запiзнювання до повної енергiї розщеплення. Розрахований
нами внесок становить ∼0,3 меВ, що є дуже близьким до
значення 0,31 меВ, на яке вiдрiзняються результати вимi-
рювання зарядового радiуса протона PSI та CODATA.
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