В.А. КОВАЛЬЧУК, ¹ О.Ю. КОРЧИН^{1,2}

 ¹ Національний Науковий Центр "Харківський фізико-технічний інститут", НАН України (Вул. Академічна, 1, Харків 61108; e-mail: koval@kipt.kharkov.ua)
 ² Харківський національний університет ім. В.Н. Каразіна (Пл. Свободи, 4, Харків 61022; e-mail: korchin@kipt.kharkov.ua)

ВНЕСКИ ВЕКТОРНИХ РЕЗОНАНСІВ У *СР*-АСИМЕТРІЮ РОЗПАДУ НЕЙТРАЛЬНОГО *Б*-МЕЗОНА НА МЮОН-АНТИМЮОННУ ПАРУ ТА НЕЙТРАЛЬНИЙ *К**-МЕЗОН

Обчислено внески від процесів $\bar{B}_{d}^{0} \to \bar{K}^{*0}(\to K^{-}\pi^{+})V$ з векторними мезонами $V = \rho(770), \omega(782), \phi(1020), J/\psi, \psi(2S), ..., які розпадаються на <math>\mu^{+}\mu^{-}$ пару у CP-асиметрію розпаду $\bar{B}_{d}^{0} \to \bar{K}^{*0}(\to K^{-}\pi^{+})\mu^{+}\mu^{-},$ індукованого нейтральним струмом, який змінює аромат мезонів. При цьому для опису перехода $b \to s\mu^{+}\mu^{-}$ використовується найбільш загальна форма ефективного гамільтоніана слабкої взасмодії. Зроблено передбачення для CP-асиметрії розпаду $\bar{B}_{d}^{0} \to \bar{K}^{*0}(\to K^{-}\pi^{+})\mu^{+}\mu^{-}$ для стандартної моделі, а також для двох сценаріїв моделі нової фізики. Ці результати порівнюються з експериментальними даними колаборації LHCb.

Ключові слова: В-мезони, *СР*-симетрія, векторні мезони, розпад, вектор-мезон домінантність.

1. Вступ

УДК 539.12

Дослідження нейтральних струмів з зміною ароматів (HC3A) кварків у переходах $b \to s$ та $b \to d$ становлять важливий тест для стандартної моделі (СМ) та можливих її розширень (див., наприклад, [1]). Серед процесів розпаду, зумовлених HC3A, перехід $b \rightarrow s\ell^+\ell^-$ ($\ell = e, \mu$) викликає значний інтерес. У межах СМ цей перехід виникає завдяки однепетлевим та ящикоподібним електрослабким діаграмам, з урахуванням квантовохромодинамічних (КХД) внесків, коли віртуальні фотон, Z-бозон та $W^+ W^-$ -пара перетворюються у лептон-антилептонну пару. Структура амплітуди процесу $b \to s \, \ell^+ \ell^-$ чутлива до розширень CM, як у калібровочному, так у ферміонному і хігсівському секторах теорії. З цих причин процесам B^0_s \to $\mu^+\,\mu^-,~B$ \to $K\ell^+\ell^-$ та B \to $K^*\ell^+\ell^-$ приділяється значна увага, експериментальне та теоретичне дослідження їх може привести до спостереження сигналів нової фізики (НФ) за межами СМ [1]. Так, прояви ефектів НФ у розпаді $B \to K^* (\to K\pi) \ell^+ \ell^-$ обговорювалися багатьма авторами (див., наприклад, [2–35]).

У цій роботі вивчається CP-асиметрія процесу розпаду $\bar{B}^0_d \to \bar{K}^{*0} \, \mu^+ \, \mu^-$ при найбільш загально-

му вигляді ефективного гамільтоніана слабкої взаємодії переходу $b \to s\mu^+\mu^-$. Нагадаємо, що у межах СМ *CP*-асиметрія цього розпаду, який індукований процесом $b \to s\mu^+\mu^-$, передбачається на рівні 10⁻³ [12, 13]. Тому спостереження значної величини *CP*-асиметрії цього розпаду буде свідчити про виявлення сигналів НФ.

Загалом амплітуда процесу розпаду $\bar{B}_d^0 \to \bar{K}^{*0} + \mu^+\mu^-$ складається з внесків від малих (MB) та великих відстаней (BB). Перші виражаються у членах коефіцієнтів Вільсона C_i , обчислених у межах теорії збурень КХД до відповідного порядку по $\alpha_s(\mu)$. Вони несуть інформацію про процеси, які відбуваються на енергетичних масштабах $\sim m_W, m_t$ (тут $\alpha_s(\mu)$ – ефективна константа взаємодії КХД на масштабі μ). На масштабах порядку маси *b*-кварка m_b їх значення встановлюють за допомогою методів ренормалізаційної групи.

Ефекти ВВ, які описують процеси адронізації, виражаються через матричні елементи операторів переходів $b \to s$ між початковим B і кінцевим K^* станом. Звичайно, їх записують у вигляді перехідних формфакторів [36,37]. Поряд з ними існують також інші внески від ВВ, які виникають завдяки процесам розпаду $\bar{B}_d^0 \to \bar{K}^{*0}V \to \bar{K}^{*0}\mu^+\mu^-$ де $V = \rho(770), \omega(782), \phi(1020), J/\psi, \psi(2S)...-векторні$ мезони [38,39].

ISSN 2071-0194. Укр. фіз. журн. 2014. Т. 59, № 9

[©] В.А. КОВАЛЬЧУК, О.Ю. КОРЧИН, 2014

⁸⁵⁶

У цій роботі ми обчислили CP-асиметрію процесу розпаду $\bar{B}_d^0 \to \bar{K}^{*0} \mu^+ \mu^-$ враховуючи те, що внески від MB в амплітуду цього розпаду описуються найбільш загальною формою ефективного гамільтоніана слабкої взаємодії, а ефекти BB враховувались завдяки включенням внесків від векторних $\rho(770), \,\omega(782), \,\phi(1020), \, J/\psi, \,\psi(2S)$ мезонів у розпад $\bar{B}_d^0 \to \bar{K}^{*0} (\to K^- \pi^+) \mu^+ \mu^-$. Інформація про амплітуди процесу $\bar{B}_d^0 \to \bar{K}^{*0} V$, де $V = \rho(770),$ $\omega(782), \,\phi(1020), \, J/\psi, \,\psi(2S)$ взята з експериментальних даних, якщо вони існують, а якщо ні, тоді з теоретичних передбачень.

2. СР-асиметрія

та амплітуди розпаду $ar{B}^0_d o ar{K}^{*0} \mu^+ \mu^-$

2.1. Диференціальна ймовірність розпаду

Диференціальну імовірність розпаду $\bar{B}^0_d \to \bar{K}^{*0} + \mu^+ \mu^-$ можна записати як

$$\frac{d\Gamma}{dq^2} = \frac{1}{2} \left(3J_{1s} - J_{2s} \right) + \frac{1}{4} \left(3J_{1c} - J_{2c} \right),\tag{1}$$

де q^2 – це квадрат інваріантної маси пари мюонів, а функції J_{1s} , J_{1c} , J_{2s} , J_{2c} визначаються такими формулами:

$$\begin{split} J_{2s} &= \frac{\beta_{\mu}^{2}}{4} \left(|A_{\parallel L}|^{2} + |A_{\perp L}|^{2} + |A_{\parallel R}|^{2} + |A_{\perp R}|^{2} - \right. \\ &- 4 \left(|A_{t\parallel}^{L} + A_{0\perp}^{L}|^{2} + |A_{t\perp}^{L} + A_{0\parallel}^{L}|^{2} + \right. \\ &+ |A_{t\parallel}^{R} - A_{0\perp}^{R}|^{2} + |A_{t\perp}^{R} - A_{0\parallel}^{R}|^{2} \right) \right), \\ J_{2c} &= -\beta_{\mu}^{2} \left(|A_{0L}|^{2} + |A_{0R}|^{2} - 4 \left(|A_{t0}^{L} - A_{\parallel \perp}^{L}|^{2} + \right. \\ &+ |A_{t0}^{R} + A_{\parallel \perp}^{R}|^{2} \right) \right), \end{split}$$

де $\beta_{\mu} \equiv \sqrt{1 - 4m_{\mu}^2/q^2}$ та m_{μ} – маса мюона. Функпії $J_{1s}, J_{1c}, J_{2s}, J_{2c}$ залежать від амплітуд розпаду $\bar{B}_d^0 \to \bar{K}^{*0}\mu^+\mu^-$, а саме: $A_{0L(R)}, A_{\parallel L(R)}, A_{\perp L(R)}, A_t, A_S^{L(R)}, A_{t0}^{L(R)}, A_{t\parallel}^{L(R)}, A_{t\perp}^{L(R)}, A_{0\parallel}^{L(R)}, A_{0\perp}^{L(R)}$ та $A_{\parallel\perp}^{L(R)}$. Явні вирази останніх залежать від ефективного гамільтоніана слабкої взаємодії процесу переходу $b \to s \mu^+\mu^-$. У найбільш загальному випадку цей гамільтоніан може залежати від скалярних, псевдоскалярних, векторних, аксіально векторних та тензорних операторів переходу $b \to s\mu^+\mu^-$. У цьому випадку нерезонансні амплітуди розпаду $\bar{B}_d^0 \to \bar{K}^{*0}\mu^+\mu^-$ у межах наївної факторизації мають вигляд:

$$\begin{split} A_{S}^{L(R)} &= -N \left((C_{S} - C_{S}') \mp (C_{P} - C_{P}') \right) \sqrt{\lambda} A_{0}(q^{2}), \\ A_{t} &= -2 N \sqrt{\frac{\lambda}{q^{2}}} \left(C_{10}^{\text{eff}} - C_{10}'^{\text{eff}} \right) A_{0}(q^{2}), \\ A_{0L(R)}^{\text{NR}} &= -N \frac{C_{0}(q^{2})}{2 \, m_{K^{*}} \sqrt{q^{2}}} \left(C_{9}^{\text{eff}} - C_{9}'^{\text{eff}} \mp \right. \\ &\mp \left(C_{10}^{\text{eff}} - C_{10}'^{\text{eff}} \right) + 2 \, \overline{m}_{b} \kappa_{0}(q^{2}) (C_{7}^{\text{eff}} - C_{7}'^{\text{eff}}) \right), \\ A_{\parallel L(R)}^{\text{NR}} &= N \sqrt{2} C_{\parallel}(q^{2}) \left(C_{9}^{\text{eff}} - C_{9}'^{\text{eff}} \mp \right. \\ &\mp \left(C_{10}^{\text{eff}} - C_{10}'^{\text{eff}} \right) + 2 \, \frac{\overline{m}_{b}}{q^{2}} \kappa_{\parallel}(q^{2}) (C_{7}^{\text{eff}} - C_{7}'^{\text{eff}}) \right), \\ A_{\perp L(R)}^{\text{NR}} &= -N \sqrt{2\lambda} C_{\perp}(q^{2}) \left(C_{9}^{\text{eff}} + C_{9}'^{\text{eff}} \mp \right. \\ &\mp \left(C_{10}^{\text{eff}} + C_{10}'^{\text{eff}} \right) + 2 \, \frac{\overline{m}_{b}}{q^{2}} \kappa_{\perp}(q^{2}) (C_{7}^{\text{eff}} + C_{7}'^{\text{eff}}) \right), \\ A_{t0}^{L(R)} &= \frac{i N}{2 m_{K^{*}}} \left(C_{T} - C_{T}' \mp (C_{T5} - C_{T5}') \right) \left((m_{B}^{2} - q^{2} + 3 \, m_{K^{*}}^{2}) T_{2}(q^{2}) - \frac{\lambda}{m_{B}^{2} - m_{K^{*}}^{2}} T_{3}(q^{2}) \right), \\ A_{t\parallel}^{L(R)} &= -i N \left(C_{T} - C_{T}' \mp (C_{T5} - C_{T5}') \right) \times \\ &\times \left(m_{B}^{2} - m_{K^{*}}^{2} \right) \sqrt{\frac{2}{q^{2}}} T_{2}(q^{2}), \end{split}$$

$$\begin{aligned} A_{t\perp}^{L(R)} &= iN \left(C_T + C_T' \mp (C_{T5} + C_{T5}') \right) \sqrt{\frac{2\lambda}{q^2}} T_1(q^2), \\ A_{0\parallel}^{L(R)} &= -iN \left(C_T - C_T' \mp (C_{T5} - C_{T5}') \right) \sqrt{\frac{2\lambda}{q^2}} T_1(q^2), \\ A_{0\perp}^{L(R)} &= iN \left(C_T + C_T' \mp (C_{T5} + C_{T5}') \right) \times \\ &\times (m_B^2 - m_{K^*}^2) \sqrt{\frac{2}{q^2}} T_2(q^2), \\ A_{\parallel\perp}^{L(R)} &= \frac{iN}{2m_{K^*}} \left(C_T + C_T' \mp (C_{T5} + C_{T5}') \right) \left((m_B^2 - q^2 + 3m_{K^*}^2) T_2(q^2) - \frac{\lambda}{m_B^2 - m_{K^*}^2} T_3(q^2) \right). \end{aligned}$$

Тут \overline{m}_b – ефективна $\overline{\text{MS}}$ -маса *b*-кварка на масштабі $\mu_b. C_S, C'_S, C_P, C'_P, C_7^{\text{eff}}, C_7^{\text{eff}}, C_9^{\text{eff}}, C_{10}^{\text{eff}}, C_{10}^{\text{eff}}, C_{10}^{\text{eff}}, C_{10}^{\text{eff}}, C_{10}^{\text{reff}}, C_{10$

$$\widetilde{C}_T = \frac{1}{2} \left(C_T + C'_T + C_{T5} - C'_{T5} \right),$$

$$\widetilde{C}_{T5} = \frac{1}{2} \left(-C_T + C'_T - C_{T5} - C'_{T5} \right).$$

У межах СМ ці коефіцієнти набувають певні значення, а саме: $C_S, C'_S, C_P, C'_P, C_T, C'_T, C_{T5}, C'_{75}, C'_{9}^{\text{eff}}$ та C'_{10}^{eff} дорівнюють нулю, а $C_7^{\text{eff}}, C'_{77}^{\text{eff}}, C_9^{\text{eff}}$ та C_{10}^{eff} у наближенні наступному за наступним до головного порядку (ННГП) на масштабі $\mu_b = 4, 8$ ГеВ [18] є

$$C_7^{\text{eff}} = -0,2923, \quad \overline{m}_b C_7^{\text{eff}} = \overline{m}_s C_7^{\text{eff}},$$

 $C_9^{\text{eff}} = 4,0749 + Y(q^2), \quad C_{10}^{\text{eff}} = -4,3085,$

Таблиця 1. Значення параметрів, за яких виконуються обчислення спостережуваних [42]

$V_{tb}V_{ts}^* = (-4,04 + \mathrm{i}0,07) \cdot 10^{-2}$	$\mu_b = 4.8 \ \Gamma eB$
$V_{ub}V_{us}^* = (2,8 - i7,4) \cdot 10^{-4}$	$\alpha_{\rm em}(\mu_b) = 1/133$
$G_{\rm F} = 1,166378 \cdot 10^{-5} \ {\rm \Gamma eB^{-2}}$	$m_{\mu} = 0,105658$ FeB
$m_c = 1,67 \text{ FeB}$	$m_B=5,\!27958$ ГеВ
$\overline{m}_b(\mu_b) = 4.08 \Gamma \text{eB}$	$\tau_B = 1,519$ пс
$m_b = 4{,}78~{\rm \Gamma eB}$	$m_{K^*}=0,\!89594~\mathrm{\Gamma eB}$

де \overline{m}_s — ефективна $\overline{\mathrm{MS}}$ -мас
аs-кварка на масштабі $\mu_b=4.8$ Ге
В та

$$\begin{split} Y(q^2) &= h(q^2, m_c) \left(\frac{4}{3}C_1 + C_2 + 6C_3 + 60C_5\right) - \\ &- \frac{1}{2}h(q^2, m_b) \left(7\,C_3 + \frac{4}{3}\,C_4 + 76\,C_5 + \frac{64}{3}\,C_6\right) - \\ &- \frac{1}{2}h(q^2, 0) \left(C_3 + \frac{4}{3}C_4 + 16\,C_5 + \frac{64}{3}\,C_6\right) - \\ &- \frac{V_{ub}V_{us}^*}{V_{tb}V_{ts}^*} \left(\frac{4}{3}C_1 + C_2\right) \left(h(q^2, 0) - h(q^2, m_c)\right) + \\ &+ \frac{4}{3}\,C_3 + \frac{64}{9}\,C_5 + \frac{64}{27}\,C_6, \\ h(q^2, m_q) &= -\frac{4}{9} \left(\ln\frac{m_q^2}{\mu_b^2} - \frac{2}{3} - z\right) - \\ &- \frac{4}{9}(2 + z)\sqrt{|z - 1|} \begin{cases} \arctan\frac{1}{\sqrt{z - 1}}, & z > 1, \\ \ln\frac{1 + \sqrt{1 - z}}{\sqrt{z}} - \frac{i\pi}{2}, & z \le 1 \end{cases} \\ h(q^2, 0) &= -\frac{4}{9}\ln\frac{q^2}{\mu_b^2} + \frac{8}{27} + i\frac{4\pi}{9}. \end{split}$$

Тут V_{ij} – елементи матриці Кабіббо–Кобаяши– Маскави (ККМ) [40, 41], $z = 4m_q^2/q^2$ та m_c і m_b – полюсні маси c- і b-кварків, відповідно. У СМ у ННГП наближенні на масштабі $\mu_b = 4,8$ ГеВ коефіцієнти Вільсона C_1 – C_6 [18] є:

$$C_1 = -0.2632, \quad C_2 = 1.0111, \quad C_3 = -0.0055,$$

 $C_4 = -0.0806, \quad C_5 = 0.0004, \quad C_6 = 0.0009.$

Крім того, $\lambda \equiv (m_B^2 - q^2)^2 - 2(m_B^2 + q^2)m_{K^*}^2 + m_{K^*}^4$, де m_{K^*} – маса векторного K^{*0} -мезона та m_B – маса B_d^0 -мезона і

$$N = V_{tb} V_{ts}^* \frac{G_{\rm F} \alpha_{\rm em}}{32\pi^2 \sqrt{3\pi}} \sqrt{\beta_{\mu} \frac{q^2 \sqrt{\lambda}}{m_B^3}},$$

де $G_{\rm F}$ – константа Фермі, $\alpha_{\rm em}$ – ефективна інтенсивність електромагнітної взаємодії на масштабі μ_b . Параметри моделі наведені у табл. 1. $A_0(q^2)$, $A_1(q^2)$, $A_2(q^2)$, $V(q^2)$, $T_1(q^2)$, $T_2(q^2)$, $T_3(q^2)$ – перехідні формфактори $B \to K^*$ та

$$C_0(q^2) = (m_B^2 - q^2 - m_{K^*}^2)(m_B + m_{K^*})A_1(q^2) - \lambda \frac{A_2(q^2)}{m_B + m_{K^*}},$$

ISSN 2071-0194. Укр. фіз. журн. 2014. Т. 59, № 9

$$\begin{split} C_{\parallel}(q^2) &= (m_B + m_{K^*})A_1(q^2), \\ C_{\perp}(q^2) &= \frac{V(q^2)}{m_B + m_{K^*}}, \\ \kappa_0(q^2) &= C_0^{-1}(q^2) \left((m_B^2 - q^2 + 3m_{K^*}^2)T_2(q^2) - \right. \\ &- \lambda \frac{T_3(q^2)}{m_B^2 - m_{K^*}^2} \right), \\ \kappa_{\parallel}(q^2) &= (m_B - m_{K^*}) \frac{T_2(q^2)}{A_1(q^2)}, \\ \kappa_{\perp}(q^2) &= (m_B + m_{K^*}) \frac{T_1(q^2)}{V(q^2)}. \end{split}$$

При численному обчисленні CP-асиметрії розпаду $B_d^0 \to K^{*0} \mu^+ \mu^-$, використовувалися перехідні формфактори [43].

Диференціальна імовірність *CP*-спряженого процесу розпаду $B_d^0 \to K^{*0} (\to K^+ \pi^-) \mu^+ \mu^-$ має такий вигляд:

$$\frac{d\,\bar{\Gamma}}{d\,q^2} = \frac{1}{2}\left(3\,\bar{J}_{1s} - \bar{J}_{2s}\right) + \frac{1}{4}\left(3\,\bar{J}_{1c} - \bar{J}_{2c}\right),\,$$

а функції \bar{J}_i дорівнюють J_i з заміною усіх значень фаз слабкої взаємодії на протилежні значення. Для дослідження порушення CP-інваріантності у розпаді $B_d^0 \to K^{*0} \mu^+ \mu^-$ доцільно виміряти CPасиметрію:

$$A_{\rm CP} = \left(\frac{d\Gamma}{dq^2} - \frac{d\bar{\Gamma}}{dq^2}\right) \middle/ \left(\frac{d\Gamma}{dq^2} + \frac{d\bar{\Gamma}}{dq^2}\right),$$

або q^2 -інтегровану величину

 $\langle J\rangle \equiv \int\limits_{q^2_{\rm min}}^{q^2_{\rm max}} dq^2 J(q^2). \label{eq:stars}$

2.2. Поперечні амплітуди з урахуванням внеску векторних резонансів

Зараз, ми додамо внески *BB* до нерезонансної амплітуди процесу розпаду $\bar{B}^0_d \to \bar{K}^{*0} \mu^+ \mu^-$, які виникають від розпаду $\bar{B}^0_d \to \bar{K}^{*0}V$, де $V = \rho^0$, ω , ϕ , $J/\psi(1S)$, $\psi(2S)$,... мезони, з наступним розпадом $V \to \mu^+\mu^-$ (див. рисунок).

ISSN 2071-0194. Укр. фіз. журн. 2014. Т. 59, № 9

Нерезонансний і резонансний внески в амплітуду розпаду

Використовуємо модель домінантності векторних мезонів (ДВМ), яка походить від лагранжіана

$$\mathcal{L}_{\gamma V} = -\frac{e}{2} F^{\mu\nu} \sum_{V} \frac{f_V Q_V}{m_V} V_{\mu\nu}, \qquad (2)$$

де $V_{\mu\nu} \equiv \partial_{\mu}V_{\nu} - \partial_{\nu}V_{\mu}$ та $F^{\mu\nu} \equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$ – тензор електромагнітного поля, m_V – маса векторного V-мезона; Q_V – ефективний електричний заряд кварків у векторному мезоні:

$$Q_{\rho} = \frac{1}{\sqrt{2}}, \quad Q_{\omega} = \frac{1}{3\sqrt{2}}, \quad Q_{\phi} = -\frac{1}{3}$$

 $Q_{J/\psi} = Q_{\psi(2S)} = \dots = \frac{2}{3}.$

Константа розпаду f_V нейтрального векторного мезона може бути знайдена з ширини розпаду $V \to e^+e^-$, використовуючи формулу

$$\Gamma_{V \to e^+e^-} = \frac{4\pi\alpha^2}{3\,m_V} f_V^2 Q_V^2.$$

Лагранжіан (2) явно градієнто інваріантний, та приводить до $V\gamma^*$ вершини

$$\langle \gamma(q); \mu | V(q); \nu \rangle = -\frac{ef_V Q_V}{m_V} (q^2 g^{\mu\nu} - q^\mu q^\nu),$$

де q – чотирьохімпульс віртуального фотона (векторного мезона) і $g^{\mu\nu}$ – метричний тензор.

Параметри векторних резонансів наведені в табл. 2.

Використовуючи концепцію ДВМ, отримуємо повну амплітуду процесу розпаду, яка складається з нерезонансної та резонансної частин

$$A_{0L(R)} = A_{0L(R)}^{NR} + \frac{4\pi^2 m_B^3 |N|}{m_{K^*} \sqrt{q^2}} \sum_V C_V D_V^{-1}(q^2) \times \\ \times \left(\left(m_B^2 - q^2 - m_{K^*}^2 \right) S_1^V + \lambda \frac{S_2^V}{2m_B^2} \right), \tag{3}$$

$$A_{\parallel L(R)} = A_{\parallel L(R)}^{\rm NR} - 8\sqrt{2\pi^2 m_B^3} |N| \times \\ \times \sum_V C_V D_V^{-1}(q^2) S_1^V,$$
(4)

$$A_{\perp L(R)} = A_{\perp L(R)}^{\rm NR} + 4\sqrt{2\lambda}\pi^2 m_B |N| \times \\ \times \sum_V C_V D_V^{-1}(q^2) S_3^V,$$
(5)
ge

$$D_V(q^2) = q^2 - m_V^2 + im_V \Gamma_V(q^2)$$

звичайна функція Брейта–Вігнера для форми резонансу V-мезона з енергетично-залежною шириною $\Gamma_V(q^2)$. В рівняннях (3)–(5), S_i^V (i = 1, 2, 3) – інваріантні амплітуди розпаду $B_d^0 \to K^{*0}V$, їх значення наведені у табл. З. Ці амплітуди детально обговорюються у [39]. Залежність ширини легких векторних ρ , ω та ϕ -мезонів від q^2 візьмемо з [38], з урахуванням сучасних даних [42] по відносній ширині різних каналів розпаду векторних мезонів, тоді як для $c\bar{c}$ -резонансів J/ψ , $\psi(2S)$, … будемо вважати її сталою.

Для того щоб обчислити внесок резонансу у амплітуду розпаду $\bar{B}^0_d \to \bar{K}^{*0} \mu^+ \mu^-$, необхідно знати

Таблиця 2. Маса, повна ширина, ширина розпаду на пару лептонів та константа f_V векторного мезона [42] (експериментальні невизначеності не наведені)

V	m_V , MeB	Γ_V , MeB	$\Gamma_{V \rightarrow e^+e^-},{\rm KeB}$	f_V , MeB
ρ^0	775,49	149,1	7,04	221,2
ω	782,65	8,49	$0,\!60$	194,7
ϕ	1019,455	4,26	1,27	$228,\!6$
J/ψ	3096,916	0,0929	5,55	416,4
$\psi(2S)$	3686,109	0,304	2,35	$295,\! 6$
$\psi(3770)$	3772,92	27,3	0,265	100,4
$\psi(4040)$	4039	80	0,86	187,2
$\psi(4160)$	4153	103	0,83	186,5
$\psi(4415)$	4421	62	0,58	160,8

Таблиця 3. Відносні ширини [42] та інваріантні амплітуди процесів розпаду $B_d^0 \to K^{*0} \rho^0, B_d^0 \to K^{*0} \omega, B_d^0 \to K^{*0} \phi,$ $B_d^0 \to K^{*0} J/\psi, B_d^0 \to K^{*0} \psi(2S)$

V	$ ho^0$	ω	ϕ	J/ψ	$\psi(2S)$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$3,4 \\ 1,40 \\ 2,64 \\ 2,76 \\ 2,81 \\ -0,37 \\ 2,80$	$2,0 \\ 0,93 \\ 1,82 \\ 1,77 \\ 2,11 \\ -1,17 \\ 2,10$	9,82,655,195,272,40 $-0,842,39$	$1340 \\ 33,70 \\ 42,56 \\ 115,45 \\ -2,86 \\ 0,90 \\ 3,01$	$610 \\ 28,79 \\ 52,53 \\ 152,66 \\ -2,8 \\ 1,62 \\ 2,8 \\ 2,8 \\ 1,62 \\ 2,8 $

амплітуди процесів розпаду $\bar{B}^0_d \to \bar{K}^{*0}\rho, \ \bar{B}^0_d \to \bar{K}^{*0}\omega, \ \bar{B}^0_d \to \bar{K}^{*0}\phi, \ \bar{B}^0_d \to \bar{K}^{*0}J/\psi, \ \bar{B}^0_d \to \bar{K}^{*0}\psi(2S), \dots$. У цьому зв'язку ми відзначимо, що амплітуда розпаду *В*-мезона на два векторних мезона експериментально визначається відносною шириною та чотирма поляризаційними параметрами: двома частками поляризації та двома відносними фазами, а також загальною фазоо δ^V_0 .

Інформацію відносно амплітуд процесів $\bar{B}_d^0 \rightarrow \bar{K}^{*0}\phi, \bar{B}_d^0 \rightarrow \bar{K}^{*0}J/\psi, \bar{B}_d^0 \rightarrow \bar{K}^{*0}\psi(2S)$ можна отримати з експериментальних даних [42]. Ми використовуємо ці амплітуди для обчислення інваріантних амплітуд S_i^V (див. [39]). На жаль, поки що не виконаний повний кутовий аналіз процесів $\bar{B}_d^0 \rightarrow \bar{K}^{*0}\rho$ та $\bar{B}_d^0 \rightarrow \bar{K}^{*0}\omega$. Тому для легких векторних ρ - та ω -мезонів ми можемо використовувати експериментальні дані тільки для відносної ширини та частки поздовжньої поляризації, що стосується паралельної та поперечної поляризації векторного мезона, ми їх оцінюємо використовуючи співвідношення наївного факторизаційного аналізу

$$\bar{\mathcal{A}}_0: \bar{\mathcal{A}}_-: \bar{\mathcal{A}}_+ = 1: \frac{\Lambda_{\text{QCD}}}{m_b}: \left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)^2$$

де $\bar{\mathcal{A}}_h$ (h = 0, -, +) – спіральні амплітуди відповідного розпаду \bar{B} -мезона та $\Lambda_{\rm QCD}$ – енергетичний масштаб КХД. В ролі відносних фаз ми використовуємо передбачення [44]. Для фази δ_0^V вибрано нульове значення для усіх каналів розпаду $\bar{B}_d^0 \to \bar{K}^{*0}V$.

У той самий час для більш важких векторних *cc*-мезонів, таких як $\psi(3770)$ та інших, відсутні як теоретичні передбачення відносно амплітуд розпаду $\bar{B}_d^0 \to \bar{K}^{*0}\psi(3770), ...,$ так і експериментальні спостереження, тому ми не включаємо внески від цих процесів в амплітуди.

3. Результати обчислень CP-асиметрії розпаду $ar{B}^0_d o ar{K}^{*0} \mu^+ \mu^-$

Для порівняння CP-асиметрії розпаду $\bar{B}_d^0 \to \bar{K}^{*0} + \mu^+ \mu^-$ з експериментальними даними LHCb [45] ми обчислили інтегральні значення $\langle A_{\rm CP} \rangle$ вибрав межі інтервалів, як у роботі [45]. Обчислення були зроблені для CM, як без врахування внеску векторних ρ^0 , ω , ϕ , $J/\psi(1S)$ та $\psi(2S)$ мезонів в CP-асиметрії цього розпаду, так і з врахуванням цих внесків, $A_{\rm CP}^{\rm NR,SM}$ та $A_{\rm CP}^{\rm SM}$, відповідно.

Також було зроблено обчислення CP-асиметрії розпаду $\bar{B}^0_d \to \bar{K}^{*0} \mu^+ \mu^-$ для двох сценаріїв НФ

ISSN 2071-0194. Укр. фіз. журн. 2014. Т. 59, № 9

q^2 , ΓeB^2	$\langle A_{\rm CP}^{\rm NR,SM} \rangle$	$\langle A_{\rm CP}^{\rm SM} \rangle$	$\langle A_{\rm CP}^{{\rm NR},({\rm a})} \rangle$	$\langle A_{\rm CP}^{\rm (a)} \rangle$	$\langle A_{\rm CP}^{\rm NR,(b)} \rangle$	$\langle A_{\rm CP}^{\rm (b)} \rangle$	$A_{\rm CP}^{\rm exp}$ [45]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 0,0011\\ 0,0016\\ 0,0033\\ 0,0037\\ 0,0032\\ 0,0015\\ 0,0011\\ \end{array}$	0,0016 0,0024 0,0042 0,0041 0,0033 0,0012 0,0011	$\begin{array}{c} 0,0018\\ 0,0024\\ 0,0039\\ 0,0041\\ 0,0056\\ 0,0077\\ 0,0076\end{array}$	$\begin{array}{c} 0,0084\\ 0,0037\\ 0,0034\\ 0,0040\\ 0,0046\\ 0,0077\\ 0,0075\\ \end{array}$	$\begin{array}{c} 0,0008\\ 0,0013\\ 0,0060\\ 0,0088\\ 0,036\\ 0,089\\ 0,091\\ \end{array}$	$\begin{array}{c} 0,0030\\ 0,0005\\ -0,0011\\ 0,0032\\ 0,021\\ 0,077\\ 0,083\end{array}$	$\begin{array}{c} -0,196 \pm 0,095 \\ -0,098 \pm 0,154 \\ -0,021 \pm 0,075 \\ -0,054 \pm 0,098 \\ -0,201 \pm 0,104 \\ 0,089 \pm 0,101 \end{array}$
$1,00 < q^2 < 6,00$	0,0033	0,0041	0,0039	0,0023	0,0056	-0,0033	$-0,058 \pm 0,064$

Tаблиця 4. Значення CP-асиметрії $A_{\rm CP}$ для CM, та при двох сценаріях НФ

за межами СМ. В першій моделі (a) поряд з операторами СМ присутні також тензорні оператори. Нагадаємо, що згідно з аналізом [29], коефіцієнти Вільсона тензорних операторів задовольняють нерівності $|\tilde{C}_T|^2 + |\tilde{C}_{T5}|^2 \leq 0.5$. Для значень коефіцієнтів Вільсона тензорних операторів $C_T = C_{T5} = C'_T = C'_{T5} = 0.5$ і, які задовольняють наведену вище нерівність, величина CP-асиметрії позначена нижче, як $A_{\rm CP}^{\rm NR,(a)}$ – без врахування внеску від векторних мезонів та $A_{\rm CP}^{(a)} - 3$ урахування внеску від цих мезонів. Для другого сценарію (b) НФ [30] ($\delta C_7, \delta C_9, \delta C_{10}, \delta C'_{10}$) = (1,5+0,3i, -8++2i,8-2i,-1,5+2i), де $\delta C_i = C_i^{\rm eff} - C_i^{\rm SMeff}$, а інші коефіцієнти Вільсона набувають такі ж значення, як у СМ. Відповідні результати позначені нижче як $A_{\rm CP}^{\rm NR,(b)}$ – без врахування внеску від векторних мезонів та $A_{\rm CP}^{\rm emberry}$ – без врахування внеску від векторних мезонів. Такі ж значення, як у СМ. Відповідні результати позначені нижче як $A_{\rm CP}^{\rm NR,(b)}$ – без врахування внеску від векторних мезонів та $A_{\rm CP}^{\rm (b)}$ – без врахування внеску від векторних мезонів та $A_{\rm CP}^{\rm (b)}$ – без врахування внеску від векторних мезонів та $A_{\rm CP}^{\rm (b)}$ – без врахування внеску від векторних мезонів та $A_{\rm CP}^{\rm (b)}$ – без врахування внеску від векторних мезонів та $A_{\rm CP}^{\rm (b)}$ – без врахування внеску від векторних мезонів та $A_{\rm CP}^{\rm (b)}$ – без врахування внеску від векторних мезонів та $A_{\rm CP}^{\rm (b)}$ – без врахування внеску від векторних мезонів та $A_{\rm CP}^{\rm (b)}$ – без врахування внеску від векторних мезонів та $A_{\rm CP}^{\rm (b)}$ – без врахування внеску від векторних мезонів та $A_{\rm CP}^{\rm (b)}$ – без врахування внеску від векторних мезонів та $A_{\rm CP}^{\rm (b)}$ – без врахування внеску від векторних мезонів та $A_{\rm CP}^{\rm (b)}$ – без врахування внеску від векторних мезонів та $A_{\rm CP}^{\rm (b)}$ – без врахування внеску від векторних мезонів та $A_{\rm CP}^{\rm (b)}$ – без врахування внеску від векторних мезонів та $A_{\rm CP}^{\rm (b)}$

Результати обчислення наведено у табл. 4. Як можна бачити з цієї таблиці, по-перше, в рамках СМ *CP*-асиметрія є достатньо малою, на рівні 0,001–0,004 залежно від інтервалу q^2 . Хоча при цьому внесок векторних резонансів може досягати 50% (див. колонки 2 і 3), асиметрія залишається дуже малою. По-друге, у сценарії (*a*) НФ за межами СМ *CP*-асиметрія дещо збільшується до 0,002–0,008, і резонансний внесок може бути значним, особливо в області малих інваріантних мас (колонки 4 і 5). По-третє, сценарій (*b*) НФ є очевидно істотною модифікацією СМ, тому не дивно, що *CP*-асиметрія збільшується більш ніж на порядок і може досягати 0,09 в інтервалі великих інваріантних мас лептонної пари (колонки 6 і 7).

Нарешті, якщо порівняти теорію з експериментальними даними колаборації LHCb (остання колонка табл. 4), то потрібно відзначити, що похибки експерименту поки що є дуже значними, що не дає можливості відібрати адекватну теоретичну модель. Можна сподіватися, що майбутні експерименти на LHC дозволять виміряти *CP*-асиметрію у процесі $\bar{B}_d^0 \to \bar{K}^{*0} (\to K^- \pi^+) \mu^+ \mu^-$ зі значно кращою точністю.

4. Висновки

В роботі проаналізовано внески від процесів $\bar{B}^0_d \to \bar{K}^{*0}(\to K^-\pi^+)V$ з векторними мезонами $V = \rho(770), \omega(782), \phi(1020), J/\psi, \psi(2S), ..., які роз$ $падаються на <math>\mu^+\mu^-$ пару, у *CP*-асиметрію розпаду $\bar{B}^0_d \to \bar{K}^{*0}(\to K^-\pi^+)\mu^+\mu^-$, індукованого нейтральним струмом, який змінює аромат мезонів. У цьому аналізі для опису переходу $b \to s\mu^+\mu^$ використано найбільш загальну форму ефективного гамільтоніана слабкої взаємодії, який включає скалярні, псевдоскалярні, векторні, аксіально векторні та тензорні оператори.

Одержано вирази для амплітуд розпаду $\bar{B}_d^0 \to \bar{K}^{*0} (\to K^- \pi^+) \mu^+ \mu^-$ з урахуванням нерезонансних амплітуд, які залежать від коефіцієнтів Вільсона ефективного гамільтоніана, та резонансних амплітуд, пов'язаних з проміжними векторними мезонами.

Зроблено передбачення для CP-асиметрії розпаду $\bar{B}^0_d \to \bar{K}^{*0} (\to K^- \pi^+) \mu^+ \mu^-$ в межах СМ, та для двох моделей НФ за межами СМ. Внески резонансів у CP-асиметрію в деяких інтервалах інваріантної маси лептонів є достатньо значними, як у СМ, так і в моделях НФ. Відзначимо також, що CPасиметрія чутлива до вибору моделі НФ, і може досягати значень порядку 10^{-1} , тоді як у СМ ця величина значно менша, на рівні 10^{-3} . Ці результати порівнюються з експериментальними даними колаборації LHCb.

Дослідження, виконані в роботі, можуть бути корисними для експериментів на LHC.

Робота частково підтримана Національною Академією Наук України (проект ЦО-15-1/2014).

- 1. M. Antonelli et al., Phys. Rep. 494, 197 (2010).
- D. Melikhov, N. Nikitin, and S. Simula, Phys. Lett. B 442, 381 (1998).
- S. Fukae, C.S. Kim, and T. Yoshikawa, Phys. Rev. D 61, 074015 (2000).
- T.M. Aliev, C.S. Kim, and Y.G. Kim, Phys. Rev. D 62, 014026 (2000).
- C.S. Kim, Y.G. Kim, C.-D. Lu, and T. Morozumi, Phys. Rev. D 62, 034013 (2000).
- T.M. Aliev, A. Ozpineci, M. Savci, and C. Yuce, Phys. Rev. D 66, 115006 (2002).
- 7. F. Krüger and J. Matias, Phys. Rev. D **71**, 094009 (2005).
- A.S. Cornell, N. Gaur, and S.K. Singh, arXiv:hepph/0505136.
- E. Lunghi and J. Matias, J. High Energy Phys. 04, 058 (2007).
- W.-S. Hou, A. Hovhannisyan, and N. Mahajan, Phys. Rev. D 77, 014016 (2008).
- 11. C.S. Kim and T. Yoshikawa, arXiv:hep-ph/0711.3880.
- C. Bobeth, G. Hiller, and G. Piranishvili, J. High Energy Phys. 07, 106 (2008).
- W. Altmannshofer, P. Ball, A. Bharucha, A.J. Buras, D.M. Straub, and M. Wick, J. High Energy Phys. 01, 019 (2009).
- A.K. Alok, A. Dighe, D. Ghosh, D. London, J. Matias, M. Nagashima, and A. Szynkman, J. High Energy Phys. 02, 053 (2010).
- 15. A. Bharucha and W. Reece, Eur. Phys. J. C 69, 623 (2010).
- U. Egede, T. Hurth, J. Matias, M. Ramon, and W. Reece, J. High Energy Phys. 10, 056 (2010).
- E. Lunghi and A. Soni, J. High Energy Phys. 11, 121 (2010).
- S. Descotes-Genon, D. Ghosh, J. Matias, and M. Ramon, J. High Energy Phys. 06, 099 (2011).
- C. Bobeth, G. Hiller, and D. van Dyk, J. High Energy Phys. 07, 067 (2011).
- A.K. Alok, A. Datta, A. Dighe, M. Duraisamy, D. Ghosh, D. London, and S.U. Sankar, J. High Energy Phys. 11, 121 (2011).
- A.K. Alok, A. Datta, A. Dighe, M. Duraisamy, D. Ghosh, and D. London, J. High Energy Phys. 11, 122 (2011).
- D. Becirevic and E. Schneider, Nucl. Phys. B 854, 321 (2012).
- 23. A. Ahmed, I. Ahmed, M.J. Aslam, M. Junaid, M.A. Paracha, and A. Rehman, Phys. Rev. D 85, 034018 (2012).
- W. Altmannshofer, P. Paradisi, and D. M. Straub, J. High Energy Phys. 04, 008 (2012).
- 25. J. Matias, F. Mescia, M. Ramon, and J. Virto, J. High Energy Phys. 04, 104 (2012).

- S. Descotes-Genon, J. Matias, M. Ramon, and J. Virto, J. High Energy Phys. 01, 048 (2013).
- D. Becirevic and A. Tayduganov, Nucl. Phys. B 868, 368 (2013).
- S. Jäger and J.M. Camalich, J. High Energy Phys. 05, 043 (2013).
- C. Bobeth, G. Hiller, and D. van Dyk, Phys. Rev. D 87, 034016 (2013).
- S. Descotes-Genon, T. Hurth, J. Matias, and J. Virto, J. High Energy Phys. 05, 137 (2013).
- S. Descotes-Genon, J. Matias, and J. Virto, Phys. Rev. D 88, 074002 (2013).
- F. Beaujean, C. Bobeth, and D. van Dyk, arXiv:hepph/1310.2478.
- R.R. Horgan, Z. Liu, S. Meinel, and M. Wingate, arXiv:hep-ph/1310.3887.
- 34. T. Hurth and F. Mahmoudi, J. High Energy Phys. 04, 097 (2014).
- 35. J. Matias and N. Serra, arXiv:hep-ph/1402.6855v1.
- A. Ali, P. Ball, L.T. Handoko, and G. Hiller, Phys. Rev. D 61, 074024 (2000).
- 37. A. Ali, E. Lunghi, C. Greub, and G. Hiller, Phys. Rev. D 66, 034002 (2002).
- A.Yu. Korchin and V.A. Kovalchuk, Phys. Rev. D 82, 034013 (2010).
- A.Yu. Korchin and V.A. Kovalchuk, Eur. Phys. J. C 72, 2155 (2012).
- 40. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
- M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
- 42. J. Beringer et al., Phys. Rev. D 86, 010001 (2012).
- 43. P. Ball and R. Zwicky, Phys. Rev. D **71**, 014029 (2005).
- 44. M. Beneke, J. Rohrer, and D. Yang, Nucl. Phys. B 774, 64 (2007).
- 45. R. Aaij *et al.*, Phys. Rev. Lett. **110**, 031801 (2013).

Одержано 03.06.14

В.А. Ковальчук, А.Ю. Корчин

ВКЛАД ВЕКТОРНЫХ РЕЗОНАНСОВ В *СР*-АСИММЕТРИЮ РАСПАДА НЕЙТРАЛЬНОГО *В*-МЕЗОНА НА МЮОН-АНТИМЮОННУЮ ПАРУ И НЕЙТРАЛЬНЫЙ *К**-МЕЗОН

Резюме

Вычислены вклады от процессов $\bar{B}^0_d \to \bar{K}^{*0}(\to K^-\pi^+)V$ с векторными мезонами $V = \rho(770), \omega(782), \phi(1020), J/\psi, \psi(2S), ..., которые распадаются на пару <math>\mu^+\mu^-$ в CP-асимметрию распада $\bar{B}^0_d \to \bar{K}^{*0}(\to K^-\pi^+)\mu^+\mu^-$, индуцированного нейтральным током, изменяющим аромат мезонов. При этом для описания перехода $b \to s\mu^+\mu^-$ используется наиболее общая форма эффективного гамильтониана слабого взаимодействия. Сделаны предсказания для CP-асимметрии распада $\bar{B}^0_d \to \bar{K}^{*0}(\to K^-\pi^+)\mu^+\mu^-$ в стандартной модели, а также для двух сценариев модели новой физики. Эти результаты сравниваются с экспериментальными данными коллаборации LHCb.

ISSN 2071-0194. Укр. фіз. журн. 2014. Т. 59, № 9

V.A. Kovalchuk, A.Yu. Korchin

CONTRIBUTION OF VECTOR RESONANCES TO THE CP-ASYMMETRY OF THE NEUTRAL \bar{B} -MESON DECAY INTO A MUON-ANTIMUON PAIR AND A NEUTRAL \bar{K}^* MESON

Summary

Contributions of the processes $\bar{B}^0_d \to \bar{K}^{*0} (\to K^- \pi^+) V$ with vector mesons $V = \rho(770), \ \omega(782), \ \phi(1020), \ J/\psi, \ \psi(2S)$, and

others decaying into the $\mu^+\mu^-$ pair to the CP-asymmetry in the decay $\bar{B}^0_d \to \bar{K}^{*0} (\to K^-\pi^+)\mu^+\mu^-$ induced by the flavor-changing neutral currents are calculated. For the description of the transition $b \to s\mu^+\mu^-$, the most general form of the effective weak-interaction Hamiltonian is applied. Predictions are made for the CP-asymmetry of the decay $\bar{B}^0_d \to \bar{K}^{*0} (\to K^-\pi^+)\mu^+\mu^-$ in the framework of the standard model, as well for two scenarios of new physics. The obtained results are compared with experimental data of the LHCb Collaboration.