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The spectral parameters of an electron in the multishell semiconductor cylindrical nanotube
with a donor impurity at its axis have been studied in the framework of the effective mass and
rectangular potential models, by using the modified Bethe variational method. The electron-
impurity binding energies and the oscillator strengths of intra-band optical quantum transi-
tions have been analyzed as functions of the geometrical parameters of a combined nanotube
composed of semiconductors GaAs and Al0.4Ga0.6As.
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1. Introduction

Semiconductor nanoheterosystems have been stud-
ied both theoretically and experimentally for more
than 20 years. Nowadays, experimental capabilities
already allow scientists to create ensembles of simple
(with one quantum well for the electron) and com-
bined multishell semiconductor nanotubes with dif-
ferent geometrical shapes [1–4].

A possibility of different quasiparticle localiza-
tions in multishell nanotubes allows the latter to be
used as basic elements in modern nanodevices (tun-
nel nanodiodes, nanotransistors, nanosensors, and so
forth). The efficiency of such nanodevices should con-
siderably exceed that of available devices functioning
on the basis of simple quantum wires. In particular,
the probable localization of charge carriers in the in-
ternal wire substantially reduces the intensity of sur-
face scattering and interaction with other dissipative
subsystems. For such nanosystems with the cylindri-
cal or hexagonal symmetry, the theory of exciton and
phonon spectra has already been developed, as well
as the theory of electron-phonon and exciton-phonon
interaction, which agrees well with both experimental
results and the general physical reasoning [5–7].

It is clear that the presence of impurities in nan-
otubes will considerably affect the physical properties
of the latter and, in turn, the physical characteristics
of nanodevices created on their basis. At present, the
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possibility of the controlled doping of semiconductor
nanosystems with impurities is experimentally imple-
mented only for spherical quantum dots obtained by
using the methods of colloid chemistry. In particu-
lar, the authors of works [8, 9] studied the influence
of the impurity localization on the intensity of elec-
tron quantum transitions in spherical quantum dots
created on the basis of semiconductors ZnSe, CdS,
and ZnS. It is clear that the rapid progress of experi-
mental technologies dealing with the epitaxial growth
of nanosystems will make it also possible to control-
lably introduce impurities into combined semiconduc-
tor nanotubes GaAs/Al𝑥Ga1−𝑥As [4].

The research of the binding energy of an electron
with an impurity in cylindrical quantum wires or sim-
ple nanotubes faces the considerable mathematical
difficulties associated with the fact that the spherical
symmetry of the Coulomb interaction potential bet-
ween the electron and the impurity and the nonsphe-
rical symmetry of the system have to be put in agree-
ment with each other. Therefore, while studying
the impurity-renormalized electron spectrum, the
authors use the Ritz variational method in the over-
whelming majority of works [10–16]. However, this
method allows only the ground state of an electron
to be described rather exactly and simply. The choice
of a variational function for excited states is am-
biguous and cumbersome [15]. Much more informa-
tive is the method of effective potential, which was
used earlier for the theoretical study of the excito-
nic spectrum in simple and combined semiconductor
nanotubes [7, 17].
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Fig. 1. Geometrical scheme and energy diagram of a multi-
shell nanotube

As far as we know, the issues concerning the in-
teraction of the electron with the donor impurity in
a combined multishell semiconductor nanotube have
not been studied at all. Therefore, this work aimed at
developing one of the possible theoretical approaches
to study the energy spectrum of an electron in the
combined cylindrical semiconductor nanotube with a
donor impurity at its axis. As an example, the depen-
dences of the electron-impurity binding energy and
the oscillator strengths of intraband quantum transi-
tions on the geometrical parameters of the nanosys-
tems will be analyzed on the basis of semiconductors
GaAs and Al0.4Ga0.6As.

2. Theory of the Energy
Spectrum and Wave Functions of an Electron
in the Multishell Cylindrical Semiconductor
Nanotube with a Donor Impurity at its Axis

In this paper, we study the combined cylindrical se-
miconductor nanotube consisting of a quantum wire

with radius 𝜌0 (medium 0, GaAs), a thin semicon-
ductor layer-barrier with thickness Δ (medium 1,
Al0.4Ga0.6As), and a nanotube with thickness ℎ (me-
dium 2, GaAs), all embedded in the environment
(medium 3, Al0.4Ga0.6As). The geometrical scheme
and the energy diagram of this nanotube are shown
in Fig. 1.

For the symmetry reasons, the further calculations
are convenient to be carried out in a cylindrical coor-
dinate system (𝜌, 𝜙, 𝑧) with the axis 𝑂𝑧 directed along
the nanotube axis. The donor impurity is located at
the coordinate origin and creates an additional at-
tractive Coulomb potential shown by a dashed curve
in Fig. 1.

The spectral parameters of the electron interacting
with the impurity were calculated in the framework
of the effective mass model. Despite its relative sim-
plicity, this model adequately describes the energy
spectra of electrons, holes, or excitons in nanosystems
with various symmetries. The results obtained in this
model completely agree with experimental measure-
ments even for nanosystems a few nanometers in di-
mensions [5, 7, 18, 19].

Hence, the dielectric permittivities and the effec-
tive masses and potential energies of the electron are
considered to be known for every region in the com-
bined nanotube,

𝜀(𝜌) =
{︁ 𝜀0,
𝜀1,

𝜇(𝜌) =
{︁ 𝜇0,
𝜇1,

𝑈(𝜌) =

{︂
0, 0 ≤ 𝜌 ≤ 𝜌0, 𝜌1 ≤ 𝜌 ≤ 𝜌2,
𝑈0, 𝜌0 ≤ 𝜌 ≤ 𝜌1, 𝜌 > 𝜌2.

(1)

In order to find the energy spectrum and the wave
functions for the electron interacting with the impu-
rity, we have to solve the stationary Schrödinger equa-
tion

�̂�(𝜌, 𝜙, 𝑧)Ψ(𝜌, 𝜙, 𝑧) = 𝐸Ψ(𝜌, 𝜙, 𝑧) (2)

with the Hamiltonian

�̂�(𝜌, 𝜙, 𝑧) = �̂�0(𝜌, 𝜙)−
~2

2𝜇(𝜌)

𝜕2

𝜕 𝑧2
+ 𝑉 (𝜌, 𝑧). (3)

Here,

�̂�0(𝜌, 𝜙) = −~2

2
∇𝜌,𝜙

1

𝜇(𝜌)
∇𝜌,𝜙 + 𝑈(𝜌) (4)

is the Hamiltonian that describes the electron motion
in the plane perpendicular to the nanotube axis when
the impurity is absent, the second term on the right-
hand side of Eq. (3) determines the kinetic energy of
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the electron along the axis 𝑂𝑧, and

𝑉 (𝜌, 𝑧) = − 𝑒2

𝜀(𝜌)
√︀
𝜌2 + 𝑧2

(5)

is the potential energy of interaction between the elec-
tron and the impurity.

Note that the Schrödinger equation with Hamilto-
nian (4) can be solved exactly. Since the correspond-
ing theoretical calculation method was described in
our works [5,6] in detail, we omit all analytical calcu-
lations and consider that the energy spectrum 𝐸

(0)
𝑛𝜌 𝑚

and the wave functions

𝜙(0)
𝑛𝜌 𝑚 (𝜌, 𝜙) = 𝑅𝑛𝜌𝑚(𝜌) exp(𝑖𝑚𝜙 ) (6)

of an electron in the impurity-free nanosystem are
known. In expression (6), 𝑅𝑛𝜌𝑚(𝜌) are the radial wave
functions, which are, in the general case, superposi-
tions of the Bessel and Neumann functions of the in-
teger order; and 𝑛𝜌 = 1, 2, 3, ... and 𝑚 = 0,±1,±2
are the radial and magnetic quantum numbers, re-
spectively.

The Schrödinger equation (2) with Hamiltonian (3)
cannot be solved exactly due to the complicated de-
pendences of the interaction potential energy (5) on
the variables 𝜌 and 𝑧 and the dielectric permittivity
on the variable 𝜌. The approximate solution of the
problem can be sought as follows.

The data in Table demonstrate that the values of
𝜀0 and 𝜀1 are so close to each other that the com-
bined cylindrical nanotube can be regarded as ho-
mogeneous with the constant average dielectric per-
mittivity 𝜀 = (𝜀0 + 𝜀1)/2. The potential energy of
interaction between the electron and the impurity is
averaged, by using the electron wave functions (6),

𝑉𝑛𝜌 𝑚 (𝑧) =
𝑒2

𝜀

∫︁∫︁ ⃒⃒⃒
𝜙
(0)
𝑛 𝜌𝑚 (𝜌, 𝜙)

⃒⃒⃒2
√︀
𝜌2 + 𝑧2

𝜌 𝑑𝜌 𝑑𝜙. (7)

Note that potential (7) not only describes the
Coulomb interaction between the electron and the im-
purity along the axis 𝑂𝑧, but also “effectively” takes
it into account in the perpendicular plane.

Now, in the internal wire (medium 0) or nanotube
(medium 2) volume, Hamiltonian (3) averaged over
functions (6) looks like

�̂�(𝑧) = − ~2

2𝜇0

𝜕2

𝜕 𝑧2
− 𝑉𝑛𝜌 𝑚(𝑧) + 𝐸(0)

𝑛𝜌 𝑚. (8)

Surely, the Schrödinger equation with Hamiltonian
(8) for the 𝑧-component cannot be solved exactly. In
order to obtain its approximate solution, let us apply
the modified Bethe variational method [20]. In Hamil-
tonian (8), let us add and subtract the potential

𝑉 (𝑧) = −𝑒
2

𝜀

1

(𝛽 + |𝑧|)
(9)

with the variational parameter 𝛽. On the one hand,
this potential has the main properties of the effec-
tive interaction potential between the electron and
the impurity (7); therefore, being summed up with
the kinetic energy of the 𝑧-component, it gives the
bound state energy 𝐸𝑛𝑧

. On the other hand, its dif-
ference with potential (7) is a small enough quantity
in the sense of perturbation theory,

Δ𝑉𝑛𝜌 𝑚(𝑧) =
𝑒2

𝜀

(︂
1

𝛽 + |𝑧|
− 𝑉𝑛𝜌 𝑚 (𝑧)

)︂
. (10)

The Schrödinger equation for the 𝑧-component,

�̂�𝑧 Ψ𝑛𝑧
(𝑧) = 𝐸𝑛𝑧

Ψ𝑛𝑧
(𝑧), (11)

with the Hamiltonian

�̂�𝑧 = − ~2

2𝜇0

𝜕2

𝜕𝑧2
− 𝑒2

𝜀

1

(𝛽 + |𝑧|)
(12)

can be solved exactly [21], and the corresponding
wave function has the form

Ψ𝑛𝑧
(𝛽, 𝑧)=𝐴 exp(−𝜒 (𝑧 + 𝛽))×

×𝑈

(︂
− 𝜈

2𝜒
; 0; 2𝜒(𝑧 + 𝛽)

)︂
. (13)

Here,

𝜈 =
2𝜇0

~2
𝑒2

𝜀
, 𝜒2 =

2𝜇0

~2
𝐸𝑛𝑧

, (14)

𝐴 is the normalizing factor, and 𝑈 the confluent hy-
pergeometric function.

Parameters of nanosystem components

𝜇0 𝑈0, MeV 𝜀 𝑎, Å

GaAs 0.063𝑚0 297 12.9 5.65
Al0.4Ga0.6As 0.0962𝑚0 11.764
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Since Eq. (11) with Hamiltonian (12) is symmetric
with respect to the transformation 𝑧 → −𝑧, its solu-
tions must be either even or odd. This requirement
brings us to two boundary conditions,

𝜕Ψ𝑛𝑧
(𝑧)

𝜕 𝑧

⃒⃒⃒⃒
𝑧=0

= 0, Ψ𝑛𝑧 (0) = 0, (15)

whence the energy spectrum 𝐸𝑛𝑧
(𝛽) can be deter-

mined unambiguously. Now, the electron energy as a
function of the variational parameter 𝛽 is given by
the expression
𝐸𝑛𝜌 𝑚𝑛𝑧 (𝛽) = 𝐸(0)

𝑛𝜌 𝑚 +Δ𝐸𝑛𝜌 𝑚𝑛𝑧 (𝛽), (16)

and the wave functions are
Ψ𝑛𝜌 𝑚𝑛𝑧

(𝛽, r) = Ψ𝑛𝑧
(𝛽, 𝑧) 𝜙(0)

𝑛𝜌 𝑚 (𝜌, 𝜙) =

= |𝑛𝜌𝑚𝑛𝑧⟩. (17)
The impurity-electron binding energy Δ𝐸𝑛𝜌𝑚𝑛𝑧 (𝛽)

in Eq. (16) consists of the bound state energy 𝐸𝑛𝑧 (𝛽)
along the axis 𝑂𝑧 and the correction 𝛿𝐸𝑛𝜌 𝑚𝑛𝑧

(𝛽),
Δ𝐸𝑛𝜌 𝑚𝑛𝑧

(𝛽) = 𝐸𝑛𝑧
(𝛽) + 𝛿𝐸𝑛𝜌 𝑚𝑛𝑧

(𝛽). (18)

The latter is calculated as a diagonal matrix element
of the perturbation operator (10) with wave func-
tions (13),

𝛿𝐸𝑛𝜌 𝑚𝑛𝑧
(𝛽) =

𝑒2

𝜀
⟨𝑛𝑧|

(︂
1

𝛽 + |𝑧|
− 𝑉𝑛𝜌 𝑚 (𝑧)

)︂
|𝑛𝑧⟩. (19)

Having found 𝛽 corresponding to the minimum
Δ𝐸𝑛𝜌 𝑚𝑛𝑧

(𝛽) of functional (18), we obtain final ex-
pressions for the energy spectrum (16) and the wave
functions (17) of an electron in the combined cylindri-
cal semiconductor nanotube with a donor impurity.

The obtained electron wave functions (17) also
make it possible to estimate the oscillator strengths
for intra-band optical quantum transitions according
to the known formula [22, 23]

𝐹
𝑛′
𝜌𝑚

′ 𝑛′
𝑧

𝑛𝜌𝑚𝑛𝑧 ∼ (𝐸𝑛′
𝜌 𝑚′ 𝑛′

𝑧
− 𝐸𝑛𝜌𝑚𝑛𝑧

)
⃒⃒⃒
𝑀

𝑛′
𝜌𝑚

′𝑛′
𝑧

𝑛𝜌𝑚𝑛𝑧

⃒⃒⃒2
, (20)

where

𝑀
𝑛′
𝜌𝑚

′𝑛′
𝑧

𝑛𝜌𝑚𝑛𝑧 =

∫︁
𝜓*
𝑛𝜌 𝑚𝑛𝑧

(𝛽, r) 𝑒𝜌×

× cos𝜙𝜓𝑛′
𝜌 𝑚′ 𝑛′

𝑧
(𝛽′, r) 𝑑r (21)

is the dipole moment of the transition.
Note that, by using the explicit form for the wave

functions (6) in formula (21), it is easy to find the cor-
responding selection rules. According to them, only
those transitions between the electron energy levels
are permitted, for which the difference between the
magnetic quantum numbers equals ±1 (Δ𝑚 = ±1).

3. Analysis and Discussion of Results

The calculation of the electron spectrum and the
analysis of its properties were carried out numerically
for a combined multishell cylindrical nanotube on
the basis of semiconductors GaAs and Al0.4Ga0.6As
with the material parameters quoted in Table (𝑚0 is
the electron mass in vacuum). In what follows, only
those transitions between electron levels are consid-
ered, for which 𝑛𝜌 = 𝑛𝑧 = 1 and Δ𝑚 = ±1, because,
as researches show, just those transitions dominate.
Therefore, the subscripts 𝑛𝜌 and 𝑛𝑧 are omitted below
for convenience.

In Fig. 2, a and b, the dependences of the electron-
impurity binding energy Δ𝐸𝑚 on the radius 𝜌0 of
the internal GaAs wire are depicted for two values
of nanotube thickness: ℎ1 = 4 nm (panel a) and
ℎ2 = 6.5 nm (panel b), and at the fixed layer-barrier
thickness Δ = 4 nm. Just those Δ- and ℎ- values
are typical of experimentally created semiconductor
nanotubes [4]. One can see that the electron bind-
ing energy nonmonotonously depends on the internal
wire radius 𝜌0 in all states, with the corresponding
minimum and maximum values. Such a behavior of
Δ𝐸𝑚 can easily be understood from simple physical
reasonings.

For this purpose, it is expedient to consider the
probability density distribution to find the electron
in the ground state in the nanosystem for three 𝜌0-
values – 𝜌0 = 0 (panel c), 𝜌0 ≈ 5 𝑎GaAs (panel d), and
𝜌0 ≈ 9 𝑎GaAs (panel e) – corresponding to points 1,
2, and 3, respectively, in panel a. One can see that, if
𝜌0 = 0 (panel c), the quantum wire is absent, and the
electron is localized in the nanotube volume with the
thickness ℎ1 = 4 nm, being characterized by the bind-
ing energy Δ𝐸1 ≈ −14 meV (point 1 in panel a). In
the presence of an internal wire, the absolute value
of binding energy first decreases, because the effec-
tive distance between the electron and the impu-
rity grows. The minimum value of the binding en-
ergy with |Δ𝐸1| ≈ 10 meV is reached at 𝜌0 ≈ 5 𝑎GaAs

(point 2). As is seen from panel d, this is the 𝜌0-value,
at which the wave function of the electron starts to
penetrate into the volume of the internal wire, the
effective distance between the electron and the impu-
rity decreases, and the absolute value of Δ𝐸1 grows
with the radius 𝜌0. The maximum value of binding
energy, |Δ𝐸1| ≈ 21 meV, is reached at 𝜌0 ≈ 9 𝑎GaAs

(point 3 in panel a). Panel e demonstrates that, at
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Fig. 2. Dependences of the energy of binding of the electron with the impurity, Δ𝐸𝑚, on the radius of the internal GaAs wire,
𝜌0, for two values of nanotube thickness, ℎ1 = 4 nm (a) and ℎ2 = 6.5 nm (b), and at the fixed layer-barrier thickness Δ = 4 nm;
probability density distributions for the location of the electron in the ground state in the nanosystem with various 𝜌0 = 0 (c),
5𝑎GaAs (d), and 𝜌0 = 9𝑎GaAs (e)
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this moment, the electron becomes localized inside
the internal wire with a probability close to 1, and
the effective distance between the electron and the
impurity is minimum. As the internal wire radius in-
creases further, the absolute value of binding energy
only decreases and saturates at large enough 𝜌’s.

In a similar way, the change of the electron lo-
calization in the volume of the quantum wire and
the nanotube that are coupled with each other by
means of tunneling can explain the nonmonotonic
dependence of the binding energies of the electron
in its excited states. By comparing panels a and b,
one can see that an increase of the nanotube thick-
ness ℎ gives rise to a shift of all binding energy max-
ima and minima toward larger internal wire radii, 𝜌0,
whereas the distance between them diminishes on the
energy scale.

In Fig. 3, the dependences of the electron ener-
gies 𝐸𝑚 (𝑚 = 0, 1, 2) (panel a) and the oscillator
strengths of intra-band optical quantum transitions,
𝐹𝑚′

𝑚 , (1 → 0 and 2 → 1) (panel b) on the internal
GaAs wire radius 𝜌0 are plotted for the fixed layer-
barrier (Δ = 4 nm) and nanotube (ℎ = 4 nm) thick-
nesses. As is seen from panel a, the dependence of
each electron energy 𝐸𝑚 on 𝜌0 falls down nonmono-
tonically, which, as was described above, can be ex-
plained by different localizations of the quasiparticle
in the combined nanotube. Note also that, owing to
a reduction of the binding energy by absolute value
in the interval of radii 0 ≤ 𝜌0 ≤ 5 𝑎GaAs, the en-
ergy of the electron ground state first increases a lit-
tle as 𝜌0 grows, reaches a maximum, and only then
decreases.

A possibility for the electron in different states to
be localized in either the internal wire (𝜌0) or the nan-
otube (ℎ) volume results in a complicated and non-
monotonic dependence of the oscillator strengths of
intra-band quantum transitions on 𝜌0 (Fig. 3, b). In
particular, the corresponding dependences demon-
strate a minimum of 𝐹𝑚′

𝑚 for both types of transi-
tions (in a vicinity of 𝜌0 ≈ 10𝑎GaAs for transition
1 → 0). The minimum in the dependence 𝐹 1

0 (𝜌0) at
𝜌0 ≈ 10𝑎GaAs is a result of the weak overlapping be-
tween the wave functions of the electron in the states
with 𝑚 = 0 and 𝑚 = 1, which is well illustrated in
the inset of panel a. If the internal wire radius is small
(𝜌0 < 6 𝑎GaAs) or large (𝜌0 > 15 𝑎GaAs), the overlap-
ping of the wave functions of the electron in the states
with 𝑚 = 0 and 𝑚 = 1 is substantial, and, therefore,

the magnitude of 𝐹 1
0 also turns out considerable. The

analogous reasoning makes it possible to explain the
complicated behavior of the oscillator strength for the
electron quantum transition between the states with
𝑚 = 2 and 𝑚 = 1.

Note also that, as is seen from Fig. 3, b, the oscil-
lator strength 𝐹 2

1 of the quantum transition substan-
tially exceeds the oscillator strength 𝐹 2

1 within the
whole interval of the values of radius 𝜌0, except for a
small vicinity of the point 𝜌0 ≈ 16 𝑎GaAs.

4. Conclusions

A theoretical approach has been proposed to study
the spectral parameters of the electron in a combined
cylindrical semiconductor nanotube with a donor im-
purity at its axis in the framework of the effective
mass and rectangular potential models. The energies
of binding of the electron with the impurity and the
oscillator strengths of intra-band quantum transitions
were shown to depend nonmonotonically and in a
complicated way on the radius of the internal wire 𝜌0,
reaching the corresponding minimum and maximum
values. Such a behavior of the spectral parameters of
the electron is completely governed by a complicated
character of the probability density distribution for
the location of the quasiparticle interacting with the
impurity over the volume of the multishell semicon-
ductor nanotube.
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О.М.Маханець, А.I. Кучак, В.I. Гуцул

СПЕКТРАЛЬНI ПАРАМЕТРИ
ЕЛЕКТРОНА В БАГАТОШАРОВIЙ
ЦИЛIНДРИЧНIЙ НАПIВПРОВIДНИКОВIЙ
НАНОТРУБЦI З ДОНОРНОЮ ДОМIШКОЮ
НА АКСIАЛЬНIЙ ОСI

Р е з ю м е

У моделi ефективних мас та прямокутних потенцiалiв iз
залученням модифiкованого варiацiйного методу Бете до-
слiджено спектральнi параметри електрона в багатошаро-
вiй цилiндричнiй напiвпровiдниковiй нанотрубцi з донор-
ною домiшкою на аксiальнiй осi. Проаналiзовано залежно-
стi енергiй зв’язку електрона з домiшкою та сил осциля-
торiв внутрiшньозонних оптичних квантових переходiв вiд
геометричних параметрiв складної нанотрубки на основi
напiвпровiдникiв GaAs та Al0,4Ga0,6As.
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