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Single particle tracking data are usually analyzed in terms of the mean square displacement
(MSD) which exhibits, in the case of Brownian particles undergoing the anomalous diffusion,
a time dependence that is slower (subdiffusion) or faster (superdiffusion) than a linear one.
The particle velocity autocorrelation function (VAF), which is directly related to the underlying
dynamics of the host medium that brings about the anomalous diffusion, can then be obtained
as the second time derivative of MSD. We examine the possibility to obtain the mean velocity
autocorrelation function (MVAF) directly from the particle trace data and analyze its relation
to the true VAF for an instantaneous velocity. So long as the sampling time interval is much
shorter than the correlation time, MVAF gives an accurate estimate of VAF. Data analysis
procedures are illustrated, by using the data generated within a simple stochastic model of
superdiffusion.
K e yw o r d s: Brownian motion, anomalous diffusion, single particle tracking, mean square
displacement, velocity autocorrelation function.

1. Introduction

Recent advances in single particle tracking techniques
using optical video-microscopy have made it possi-
ble to examine the particle dynamics on millisecond
timescales with submicrometer position errors [1–8],
where deviations from the normal diffusive (Brow-
nian) dynamics are often expected. In the simplest
realization of Brownian motion, the small particles
embedded in a fluid are subject to a random mo-
tion as a result of their random collisions with the
surrounding particles. In the classical description of
Brownian motion, developed more than a century ago
[9–11], the mean displacement of a particle undergo-
ing the Brownian motion in a Newtonian fluid is zero,
whereas the mean square displacement (MSD) ⟨Δr2⟩
increases linearly with time,

⟨Δr2(𝑡)⟩ = 6𝐷𝑡, (1)

where Δr is the particle displacement vector over a
time interval 𝑡, angle brackets denote the average over
many such intervals, and 𝐷 is the translational dif-
fusion coefficient. This is the case of “normal” dif-
fusion. Brownian particles in complex systems may,
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however, exhibit a quite different dynamics, reflect-
ing the local properties of the host medium that may
be inhomogeneous, exhibit a nonlinear friction, elastic
properties, etc. Then, monitoring the thermal motion
of probe particles reveals the local properties of the
host medium, which is the basis of microrheology. In
general, the MSD time dependence will then deviate
from a linear one. Approximating the time depen-
dence with a power law,

⟨Δr2(𝑡)⟩ ∝ 𝑡𝛼, (2)

the exponent 𝛼 equals 1 in the case of normal dif-
fusion, whereas 𝛼 ̸= 1 corresponds to the superdif-
fusive (𝛼 > 1) or subdiffusive (𝛼 < 1) behavior. For
instance, colloidal particles in F-actin networks, de-
pending on their size, may exhibit a subdiffusive be-
havior with 0 < 𝛼 < 1 [12]. Colloidal dispersions in
surfactant lyotropic liquid crystals [13], in crowned
polymer solutions [14], and in transient polymer net-
works [15], as well as proteins and lipids in cellular
membranes [16], also exhibit the subdiffusion behav-
ior with 𝛼 < 1. If the Brownian motion occurs in a
system with additional degrees of freedom that ex-
hibit a relatively slow dynamics (such as the relax-
ation dynamics in polymers), then this dynamics may
couple to the Brownian dynamics, introducing a cer-
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tain correlation into the motion of particles. For in-
stance, the dynamics of colloidal particles in polymer
networks or in a DNA polymer solution within cell cy-
toplasm may couple to the Rouse relaxation dynamics
of the polymer and exhibit, as a result, the subdiffu-
sive behavior with 𝛼 < 1 [17, 18]. Superdiffusion with
𝛼 > 1 was observed in other kinds of polymer sys-
tems, the so-called “living polymers” [19], in disper-
sions of polymer-like micelles [20–22], and in concen-
trated suspensions of swimming bacteria [23]. Even
in water, the interaction with hydrodynamic modes
leads to “hydrodynamic memory” effects manifested
in long negative “tails” in the particle velocity au-
tocorrelation function [24]. So, even in normal liq-
uids, the Brownian motion is, in fact, subdiffusive at
short times. Quite recently, the anomalous sub- and
superdiffusions were observed in colloidal dispersions
in nematic liquid crystals [25], where they occur due
to a coupling of the particle motion with the nematic
liquid crystal director dynamics [25, 26].

In the following, we discuss different data anal-
ysis procedures and their merits, using the model
data for the superdiffusion to illustrate different ap-
proaches. We will derive the relation between the av-
erage velocity correlation function and the true in-
stantaneous velocity correlation function and show
that the former gives an accurate estimate of the lat-
ter, as long as the sampling time interval is much
shorter than the correlation time.

2. Particle Trajectory Analysis

Single particle tracking using optical microscopy in-
volves taking a series of digital images of a particle
at uniformly distributed time intervals. Then the po-
sition of the particle in each image frame is deter-
mined. The resulting particle tracking data are a set
of coordinates (𝑥𝑖, 𝑦𝑖) that represent a particle trajec-
tory at discrete instants of time 𝑡𝑖 = 𝑡0 + 𝑖Δ𝑡, where
Δ𝑡 is the sampling interval. Without any loss of gen-
erality, the time origin 𝑡0 may be taken as zero. The
amount of information contained in these data, i.e.,
the degree, to which the experimentally determined
particle trajectory represents the real trajectory be-
ing a continuous function of time, is limited by er-
rors (𝛿𝑥𝑖, 𝛿𝑦𝑖) in the position determination and the
attainable time resolution Δ𝑡. Traditionally, the par-
ticle trace data are analyzed in terms of MSD vs.
time. For a trajectory with, say, 𝑥-coordinate data
𝑥𝑖 = 𝑥(𝑖Δ𝑡), 𝑖 = 0, ..., 𝑁 , MSD along 𝑥 at the vary-

ing time lag 𝑡𝑛 = 𝑛Δ𝑡 is evaluated as follows:

⟨Δ𝑥2(𝑡𝑛)⟩ =
1

𝑁 − 𝑛+ 1

𝑁−𝑛+1∑︁
𝑖=1

(𝑥𝑖+𝑛−1 − 𝑥𝑖−1)
2. (3)

One problem within this approach is that the aver-
age in Eq. (3) is taken on overlapping and, therefore,
correlated data segments. The degree of overlapping
quickly increases with 𝑛, so that Eq. (3) gives a good
approximation to MSD only at relatively short time
lags 𝑡𝑛 = 𝑛Δ𝑡. Next, the presence of position errors
𝛿𝑥𝑖 in the trace data distorts MSD, especially at short
times, where MSD is small. In the simplest case of to-
tally random 𝛿𝑥𝑖, the position errors add a constant
“background” to MSD [27], distorting MSD at short
times, where the anomalous effects are sought.

Apart from nonlinear MSD, the anomalous diffu-
sion can be analyzed in terms of the particle ve-
locity autocorrelation function 𝐶𝑣(𝑡). Assuming that
𝑣 = 𝑣(𝑡) is the instantaneous particle velocity in, say,
𝑥-direction, it is given by

𝐶𝑣(𝑡) = ⟨𝑣(𝑡0)𝑣(𝑡0 + 𝑡)⟩, (4)

where the angular brackets mean the time average
over 𝑡0. The function 𝐶𝑣(𝑡) cannot be evaluated from
the trace data, since the instantaneous particle veloc-
ity cannot be tracked. Meanwhile, 𝐶𝑣(𝑡) is related to
MSD [28, 29]:

𝐶𝑣(𝑡) =
1

2

𝑑2⟨Δ𝑥2(𝑡)⟩
𝑑𝑡2

. (5)

Thus, the normal diffusion with ⟨Δ𝑥2(𝑡)⟩ ∝ 𝑡 corre-
sponds to 𝐶𝑣(𝑡) = 0, whereas 𝐶𝑣(𝑡) ̸= 0 in the case
of anomalous diffusion. Specifically, 𝐶𝑣(𝑡) < 0 corre-
sponds to the subdiffusion, and 𝐶𝑣(𝑡) > 0 to the su-
perdiffusion. The function 𝐶𝑣(𝑡) directly reflects the
underlying dynamics of the host medium that brings
about the anomalous diffusion such as liquid crystal
director field fluctuations in the case of a colloidal
suspension in a liquid crystal [25, 26]. Thus, it is the
velocity correlation function rather than MSD that is
the central property in the analysis of the anomalous
diffusion and its models. However, taking the deriva-
tive of the (noisy) MSD data multiplies the noise and,
therefore, must be accompanied by a heavy smooth-
ing, which makes the resulting estimate of 𝐶𝑣(𝑡), ob-
tained in this way, unreliable. Additionally, the (un-
known) distortions of the estimated MSD, resulting
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from overlapping and correlated segments in the av-
erage of (3), will be reflected in 𝐶𝑣(𝑡).

While it is not possible to evaluate the instanta-
neous particle velocity autocorrelation function from
the trace data, as the instantaneous velocity cannot
be tracked in an experiment, one can still compute
the average velocity over a time interval Δ𝑡 or any
integer multiple thereof 𝑛Δ𝑡,

𝑣𝑖 =
𝑥𝑖+𝑛 − 𝑥𝑖

𝑛Δ𝑡
, (6)

and evaluate the average velocity autocorrelation
function

𝐶𝑣(𝑡𝑘) = ⟨𝑣𝑖𝑣𝑖+𝑘⟩, (7)

where 𝑡𝑘 = 𝑘Δ𝑡, and the angular brackets denote
the average over different 𝑖’s, as was demonstrated in
Ref. [25]. It is however not obvious, to which extent
𝐶𝑣(𝑡) resembles the true 𝐶𝑣(𝑡).

2.1. Mean Square Displacement

Data analyses procedures will be illustrated on data
for the anomalous diffusion obtained within a sim-
ple stochastic model. The model can be described
as a Markov chain with one-step memory. Successive
displacements Δ𝑥𝑖 in equally spaced time inter-
vals, Δ𝑡 each, are drawn from a normal distribution
𝑁(𝜇, 𝜎) with the mean 𝜇 and the standard deviation
𝜎. Assuming that, at long time lags 𝑡, the diffusion
is linear, i.e., ⟨Δ𝑥2(𝑡)⟩ = 2𝐷𝑡, the standard devia-
tion is 𝜎 =

√
2𝐷Δ𝑡. Each step is biased such that it

is more probable to occur in the same direction as
the previous step (one-step memory), resulting in the
superdiffusion. Specifically, the mean 𝜇 for the step 𝑖
is chosen with the same sign as the displacement in
the previous step 𝑖−1, 𝜇𝑖 = |𝜇| sign(Δ𝑥𝑖−1), with |𝜇|
determining the superdiffusion “strength.” Figure 1
shows a sample model trace data with 50,000 points,
obtained with Δ𝑡 = 1 ms, 𝐷 = 5×10−14 m2 s−1, and
|𝜇| = 2.5 nm.

Alternatively, we simulated position determination
errors 𝛿𝑥𝑖, adding to each 𝑥𝑖 a random number drawn
from a normal distribution 𝑁(0, 𝜎err) with 𝜎err =
= 10 nm.

In Fig. 2, a, we show the initial part of MSD ver-
sus 𝑡, evaluated from data traces such as in Fig. 1
and computed with (dashed line) and without (solid
line) position errors. It is seen that the position de-
termination errors with 𝜎err = 10 nm add a constant

0 1x10
4

2x10
4

3x10
4

4x10
4

5x10
4

0.0

5.0x10
3

1.0x10
4

1.5x10
4

 

 

x
, 

n
m

t, ms

Fig. 1. Sample model trace consisting of 50,000 points
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Fig. 2. MSD of simulated data traces

“background” that equals 2𝜎2
err = 200 nm2 to MSD

[27]. Figure 2, b presents the same data on a log-log
scale.

It is seen in Fig. 2, b (solid line) that the simulated
data exhibit the superdiffusion with ⟨Δ𝑥2(𝑡)⟩ ∝ 𝑡2

at short times, which then goes over into the nor-
mal diffusion ⟨Δ𝑥2(𝑡)⟩ ∝ 𝑡 at time lags longer than
about 150 ms. MSD for the data computed with ad-
ditional position errors (dashed line) shows a spurious
“plateau” at short times, which is a result of the added
background. At first sight, the plateau could be inter-
preted as the subdiffusion, although, in fact, it is the
superdiffusion, as explaned above. It is thus seen that
position errors significantly distort ⟨Δ𝑥2(𝑡)⟩ at short
times and, unless accounted for, may lead to incorrect
conclusions about its shape.
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Fig. 3. Triangle function with unit area that serves as the
instrumental resolution function in determining the velocity
autocorrelation function from particle trace data. 𝑇 is the time
interval between data samples
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Fig. 4. Velocity autocorrelation functions obtained from the
data trace of Fig. 1 (without position errors) with different
averaging time intervals, as indicated
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Fig. 5. Comparison of the velocity autocorrelation functions
obtained from a datasets with and without position errors (𝑇 =

2 ms) and b a dataset with position errors, with different 𝑇

Below, we proceed to discuss the velocity autocor-
relation function and its evaluation from the trace
data.

2.2. Velocity autocorrelation function

Let 𝑣 = 𝑣(𝑡) be the instantaneous particle velocity in,
say, the 𝑥-direction. We are ultimately interested in
its autocorrelation function, Eq. (4). Using a short-
hand pentagon notation 𝑓 ⋆𝑔 for the cross-correlation
of functions 𝑓(𝑡) and 𝑔(𝑡) [30], Eq. (4) is rewritten as

𝐶𝑣(𝑡) = 𝑣 ⋆ 𝑣, (8)

since the autocorrelation of a function is the cross-
correlation of that function with itself.

The average velocity 𝑣 over a time interval 𝑇 cen-
tered at 𝑡 evidently is

𝑣(𝑡) =
1

𝑇

𝑡+𝑇/2∫︁
𝑡−𝑇/2

𝑣(𝑡′) 𝑑𝑡′. (9)

Let Π(𝑡) be a rectangle function,

Π(𝑡) =

{︃
1 for −𝑇/2 ≤ 𝑡 ≤ 𝑇/2;

0 otherwise.
(10)

Then, evidently, Eq. (9) can be recast as the convo-
lution of 𝑣(𝑡) with Π(𝑡),

𝑣(𝑡) =
1

𝑇

∞∫︁
−∞

Π(𝜏)𝑣(𝑡− 𝜏) 𝑑𝜏 =
1

𝑇
Π⊗ 𝑣, (11)

where ⊗ is a shorthand notation for the convolution
product of two functions. The autocorrelation func-
tion of 𝑣(𝑡) is then

𝐶𝑣(𝑡) = 𝑣 ⋆ 𝑣 =
1

𝑇 2
(Π⊗ 𝑣) ⋆ (Π⊗ 𝑣), (12)

where we substituted 𝑣 from Eq. (11). Observing that
Π(𝑡) is an even function, the convolution and the cor-
relation with it are identical, Π ⊗ 𝑣 = Π ⋆ 𝑣. Making
use, furthermore, of the identity (𝑓 ⋆ 𝑔) ⋆ (𝑓 ⋆ 𝑔) =
= (𝑓 ⋆ 𝑓) ⋆ (𝑔 ⋆ 𝑔) (see Appendix for its derivation),
Eq. (12) is rewritten as

𝐶𝑣(𝑡) =
1

𝑇 2
(Π ⋆ 𝑣) ⋆ (Π ⋆ 𝑣) =

=
1

𝑇 2
(Π ⋆Π) ⋆ (𝑣 ⋆ 𝑣) = Λ(𝑡) ⋆ 𝐶𝑣(𝑡), (13)
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where Λ(𝑡) is a triangle function

Λ(𝑡) =
1

𝑇 2
Π ⋆Π (14)

of the width 2𝑇 , height 1/𝑇 , and unit area, see Fig. 3.
The autocorrelation function is an even function of

time (time reversal symmetry, [31]). Since the corre-
lation and the convolution with an even function are
identical, Eq. (13) can finally be rewritten as follows:

𝐶𝑣(𝑡) = Λ(𝑡)⊗ 𝐶𝑣(𝑡). (15)

Thus, the average velocity autocorrelation function
𝐶𝑣(𝑡), which can be evaluated from experimental par-
ticle trace data, equals the true instantaneous velocity
autocorrelation function 𝐶𝑣(𝑡) convolved with an “in-
strumental resolution function” Λ(𝑡), whose width at
half-maximum equals the averaging time interval 𝑇 ,
which can be any integer multiple of the time interval
Δ𝑡 between data samples.

In Fig. 4, we compare 𝐶𝑣(𝑡) computed from the
data trace of Fig. 1 (without position errors) with
different averaging intervals 𝑇 .

The correlation time 𝜏corr of the functions in Fig. 4,
which equals the integral of the normalized correla-
tion function, is approximately 𝜏corr = 100 ms. It is
seen that the curves with 𝑇 = 2 ms and 10 ms are al-
most indistinguishable. Indeed, as long as 𝑇 ≪ 𝜏corr,
i.e., the width of the instrumental function (Eq. (14),
Fig. 3) is much less than the width of the correla-
tion function, the convolution of Eq. (15) does not
appreciably change the shape of 𝐶𝑣(𝑡). Thus, 𝐶𝑣(𝑡)
closely resembles the underlying instantaneous veloc-
ity correlation 𝐶𝑣(𝑡). On the contrary, the curve for
𝑇 = 100 ms, i.e., 𝑇 ≈ 𝜏corr, is visibly distorted.

Next, we compare 𝐶𝑣(𝑡) obtained with the short
averaging time 𝑇 = 2 ms from datasets with and
without position errors, Fig. 5, a. Even though the
position errors add some noise to 𝐶𝑣(𝑡), the shapes
of the curves, apart from the noise, are the same and
close to 𝐶𝑣(𝑡), as discussed above. In Fig. 5, b, we
compare 𝐶𝑣(𝑡) from the dataset with the position er-
rors for different averaging times 𝑇 .

It is seen that, at 𝑇 = 10 ms, the noise has practi-
cally disappeared, while the corresponding correla-
tion function is still close to the true 𝐶𝑣(𝑡), since
𝑇 ≪ 𝜏corr. Thus, by analyzing the real experimen-
tal data for the anomalous diffusion, which inevitably
contain the position errors, one can find an optimum
averaging interval such that the noise is sufficiently

suppressed, while the shape of the correlation func-
tion is not appreciably altered.

3. Conclusions

We have discussed various aspects of the analysis
of single particle tracing data, specifically in sys-
tems that exhibit the anomalous diffusion at short
times. Traditionally, the experimental traces are ana-
lyzed in terms of a mean square displacement, which
is however distorted at short times, i.e., where anoma-
lous effects are expected, because of the position er-
rors in trace data. Alternatively, one can evaluate
the average velocity autocorrelation function from the
trace data. We show that the so obtained correlation
function equals the true instantaneous velocity cor-
relation function convolved with an “instrumental”
function, whose width equals the averaging time in-
terval. Thus, we can find an optimal averaging inter-
val to suppress the noise in the resulting correlation
function without altering its shape.

APPENDIX

Let ℱ and ℱ−1 denote the forward and inverse Fourier trans-
forms with the usual definition [30],

ℱ{𝑓(𝑡)} = 𝐹 (𝜈) =

∞∫︁
−∞

𝑓(𝑡) 𝑒−2𝜋𝑖𝜈𝑡 𝑑𝑡,

ℱ−1{𝐹 (𝜈)} = 𝑓(𝑡) =

∞∫︁
−∞

𝐹 (𝜈) 𝑒2𝜋𝑖𝜈𝑡 𝑑𝜈.

(A.1)

Let 𝑓 ⋆𝑔 denote the cross-correlation of functions 𝑓(𝑡) and 𝑔(𝑡),

𝑓 ⋆ 𝑔 =

∞∫︁
−∞

𝑓*(𝜏)𝑔(𝑡+ 𝜏) 𝑑𝜏, (A.2)

where 𝑓* denotes the complex conjugate of 𝑓 . Then, the cross-
correlation theorem [30] states that

ℱ{𝑓 ⋆ 𝑔} = (ℱ{𝑓(𝑡)})*ℱ{𝑔(𝑡)}, (A.3)

where * again denotes the complex conjugation.
Consider now the Fourier transform of the function (𝑓 ⋆ 𝑔)⋆

⋆(𝑓 ⋆ 𝑔). With the help of Eq. (A.3) and some straightforward
algebra, one obtains

ℱ{(𝑓 ⋆ 𝑔) ⋆ (𝑓 ⋆ 𝑔)} = (ℱ{(𝑓 ⋆ 𝑔)})* ℱ{(𝑓 ⋆ 𝑔)} =

= ((ℱ{𝑓})*ℱ{𝑔})*(ℱ{𝑓})*ℱ{𝑔} =

= ℱ{𝑓}(ℱ{𝑓})*(ℱ{𝑔})*ℱ{𝑔} =

= ((ℱ{𝑓})*ℱ{𝑓})*(ℱ{𝑔})*ℱ{𝑔} =

= (ℱ{𝑓 ⋆ 𝑓})*ℱ{𝑔 ⋆ 𝑔} = ℱ{(𝑓 ⋆ 𝑓) ⋆ (𝑔 ⋆ 𝑔)}. (A.4)
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Thus, ℱ{(𝑓 ⋆ 𝑔)⋆ (𝑓 ⋆ 𝑔)} = ℱ{(𝑓 ⋆ 𝑓)⋆ (𝑔 ⋆ 𝑔)}. Performing the
inverse Fourier transformation and noting that ℱ−1{ℱ{ℎ}} =

= ℎ, one finally gets

(𝑓 ⋆ 𝑔) ⋆ (𝑓 ⋆ 𝑔) = (𝑓 ⋆ 𝑓) ⋆ (𝑔 ⋆ 𝑔). (A.5)
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АНОМАЛЬНА ДИФУЗIЯ:
АНАЛIЗ ТРАЄКТОРIЇ КОЛОЇДНОЇ ЧАСТИНКИ

Р е з ю м е

В ходi аналiзу даних з дифузiї колоїдних частинок, за-
звичай, розраховується середнє значення квадрата змiще-
ння частинки, що, у випадку аномальної дифузiї броунiв-
ської частинки, зростає з часом повiльнiше (субдифузiя)
або швидше (супердифузiя) в порiвняннi з лiнiйною за-
лежнiстю. Автокореляцiйна функцiя швидкостi частинки,
яка є безпосередньо зв’язаною з динамiкою середовища,
що приводить до аномальної дифузiї, може бути отримана
як друга похiдна по часу вiд середнього квадрата змiщен-
ня. Ми показуємо, що автокореляцiйна функцiя середньої
швидкостi, отримана безпосередньо з траєкторiї частинки,
дає достатньо точну оцiнку автокореляцiйної функцiї мит-
тєвої швидкостi частинки, якщо часовий iнтервал дискрети-
зацiї даних є набагато коротшим за час кореляцiї. Чисель-
ний аналiз проiлюстровано на даних, отриманих iз простої
стохастичної моделi для супердифузiї.
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