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INTERACTION OF SCALAR PARTICLES
VIA A TACHYON FIELD: SCATTERING PROBLEMPACS 11.80.-m; 03.70.+k

The interaction of scalar particles via a tachyon field is considered in the scope of partially re-
duced field theory. The differential and total cross-sections of elastic scattering of two different
particles interacting via a mediating field of imaginary mass are calculated.
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1. Introduction

The concept of tachyons – particles that move faster
than light – is known for more than half a cen-
tury [1, 2]. Several possible descriptions for tachyons
are available in Quantum Field Theory [3–5]. Each
description has some defect, such as an uncertain
number of tachyons, noninvariance and/or vacuum
nonstability, scattering matrix nonunitarity, etc. All
these facts give rise to a doubt whether it is possi-
ble to generate or detect free quanta of the tachyon
field and to the reason to have doubt in their exis-
tence in the Nature (it must be in agreement with
experiments).

However there exists a possibility of the existence
of “hidden” tachyons as virtual particles. The vir-
tual tachyons can be detected in interactions between
tardons – slower-than-light particles. In particular in
work [6], the peaks in the differential cross section of
a meson-nucleon scattering are interpreted in terms
of tachyonic resonances. Owing to the peculiarities of
the superluminal particle kinematics, quantum [7] or
classical [8] tachyons can participate in exchanges. In
both cases, the fundamental essence of these particles
is the tachyon field. But the problems of its quanti-
zation are still unsolved.

We reject the idea of tachyons as particles, con-
sider only a classical (nonquantized) tachyon field,
and limit its role to be the interaction mediator be-
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tween usual (quantized) fields. Gravity had a similar
role in theoretical physics, by acquiring a more pro-
found quantum interpretation only recently owing to
the development of string theory. On the other hand,
the existence and the necessity of the effective de-
scription of the states with negative mass square in
string theory [9] led to the appearance of nonlinear
classical models of the scalar tachyon field [10] and
their applications to cosmology [11,12]. Such fields do
not have a stable vacuum and cannot be secondarily
quantized. Near the unstable vacuum, such fields lin-
earize to the standard Klein–Gordon field with imag-
inary mass.

For the sake of simplicity, we consider two com-
plex scalar matter fields interacting via a real scalar
tachyon field – the field with imaginary mass 𝑚′ = 𝑖𝜇.
This model can be conveniently described in the
terms of partially reduced field theory (PRFT) [13–
15]. Namely, the degrees of freedom of the tachyon
interaction field are excluded from the Lagrangian on
the classical level, and the interaction is described
in terms of the symmetric Green function of this
field. This function appears in the nonlocal term of
the reduced Lagrangian. Such Green function is rel-
ativistically invariant, and the causality is not vio-
lated. Thus, the Poincaré-invariance is naturally pro-
vided in the partially reduced Yukawa model, and
the quantization problems for the tachyon field do
not arise. The time nonlocality in the Lagrangian
complicates the hamiltonization and quantization of
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the model; it could be done perturbatively according
to [14].

The main part of the paper is concerned with the
elastic scattering of two particles in terms of the con-
sidered model, in which the tachyon exchange takes
place. In Section 4, the amplitudes of such processes
are found, and the differential and total cross sec-
tions are calculated in Section 5. These results are
compared with the ones obtained in the case of the
interaction via the Yukawa real mass field 𝑚′. For
this goal, Section 3 presents some results that were
obtained in previous works and are necessary for the
solution of the scattering problem. Section 2 gives a
short review of the history of tachyon theory.

2. Historical Review
of the Problem of Tachyon Existence

The nonexistence of superluminal particles was
widely accepted till 1960 when Ya.P. Terletskii in [16]
has shown that the existence of such particles does
not contradict the fundamental principles of physics.

He was the first who noticed that the causality prin-
ciple is macroscopic (and thus statistical) and can be
violated in the microworld. The existence of superlu-
minal particles according to Terletskii has the fluc-
tuation nature and, therefore, can be possible. But
the systematic process of tachyon emission is forbid-
den. In addition, the tachyon mass should be imag-
inary. Almost simultaneously, six days after Terlet-
skii’s paper was accepted for publication, S. Tanaka
in published work [17] where it was investigated in
terms of canonical quantization how the existence of
superluminal particles is consistent with the conven-
tional theory of elementary particles.

Another notable work is the paper by O.-M. Bi-
laniuk, V.K. Deshpande, and E.C.G. Sudarshan [1].
There, the superluminal particles were considered
in terms of classical relativistic mechanics, and a
“reinterpretation principle” was put forward in order
to overcome some problems arising in the tachyon
theory.

In 1966, Ya.P. Terletskii published the book about
paradoxes in relativity theory [18] and, in one of
the chapters, interpreted the tachyons as a violation
of the second thermodynamic law caused by fluc-
tuations.

The term “tachyon” was introduced by G. Feinberg
in [3]. He considered the quantization of such fields.

Since then, more researches were performed in the
field. Those works were dedicated to the problems
that occur in the process of construction of tachyon
theory and its quantization. More details about the
development of this theory can be found in [19].

In the last decades, the tachyon theory deve-
lops within the cosmology field [11], in particular in
the works related to string theory [9, 10] and dark
energy [12].

No experiment has yet confirmed the existence of
tachyons. So, the scientific world is split in two camps
having different views on the probability of the exis-
tence of tachyons.

3. Model Description.
Hamiltonian and Scattering Matrix

The considered model is derived from the scalar
Yukawa model [13, 14] describing the dynamics of
complex scalar fields 𝜑𝑎(𝑥) with masses 𝑚𝑎 (in our
case – two fields: 𝑎 = 1, 2) and a real scalar field 𝜒(𝑥)
with mass 𝑚′, being an interaction mediator.

The reduction of the field 𝜒(𝑥) in the initial La-
grangian of the Yukawa model leads to the nonlocal
effective Lagrangian:

ℒ =

2∑︁

𝑎=1

ℒ𝑎 + ℒint =

=

2∑︁

𝑎=1

{(𝜕𝜈𝜑*
𝑎)(𝜕

𝜈𝜑𝑎)−𝑚2
𝑎𝜑

*
𝑎𝜑𝑎}+

+
1

2

∫︁
d4𝑥′ 𝜌(𝑥)𝐺(𝑥− 𝑥′)𝜌(𝑥′) (1)

with a nonlocal term describing the interaction of cur-
rents 𝜌 = −∑︀

𝑎 𝑔𝑎𝜑
*
𝑎𝜑𝑎 of fields 𝜑𝑎 (with “charges”

𝑔𝑎) through the symmetric Green function 𝐺(𝑥− 𝑥′)
of a mediating field.

Time-nonlocality in Lagrangian (1) complicates the
hamiltonization and quantization of the model. In
[14] for such Lagrangian, the Hamiltonian in the
quadratic approximation by a coupling constant
(“charge”) was constructed: 𝐻 = 𝐻free +𝐻int, where

𝐻free =

2∑︁

𝑎=1

∫︁
d3𝑘 𝑘𝑎0{𝑏†𝑎k𝑏𝑎k + 𝑑†𝑎k𝑑𝑎k} (2)

is the free field Hamiltonian, and

𝐻int = −
∑︁

𝑎𝑏

𝑔𝑎𝑔𝑏
(4𝜋)3

∫︁
d3𝑘 d3𝑞 d3𝑢d3𝑣√

𝑘𝑎0𝑞𝑎0𝑢𝑏0𝑣𝑏0
:
{︁
�̃�(𝑢𝑏−𝑣𝑏)×
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×
[︀
𝛿(k+q+u−v)𝑑𝑎k𝑏𝑎q𝑑𝑏u𝑑

†
𝑏v +

+ 𝛿(k+q−u+v)𝑑𝑎k𝑏𝑎q𝑑
†
𝑏u𝑑𝑏v +

+ 𝛿(k−q+u−v)𝑑𝑎k𝑑
†
𝑎q𝑑𝑏u𝑑

†
𝑏v +

+ 𝛿(k−q−u+v)𝑑𝑎k𝑑
†
𝑎q𝑏

†
𝑏u𝑏𝑏v +

+ 𝛿(k−q−u+v)𝑏†𝑎k𝑏𝑎q𝑑𝑏u𝑑
†
𝑏v +

+ 𝛿(k−q+u−v)𝑏†𝑎k𝑏𝑎q𝑏
†
𝑏u𝑏𝑏v +

+ 𝛿(k+q−u+v)𝑏†𝑎k𝑑
†
𝑎q𝑑𝑏u𝑑

†
𝑏v +

+ 𝛿(k+q+u−v)𝑏†𝑎k𝑑
†
𝑎q𝑏

†
𝑏u𝑏𝑏v

]︀
+

+ �̃�(𝑢𝑏 + 𝑣𝑏)
[︀
𝛿(k+q+u+v)𝑑𝑎k𝑏𝑎q𝑑𝑏u𝑏𝑏v +

+ 𝛿(k+q−u−v)𝑑𝑎k𝑏𝑎q𝑏
†
𝑏u𝑑

†
𝑏v +

+ 𝛿(k−q+u+v)𝑑𝑎k𝑑
†
𝑎q𝑑𝑏u𝑏𝑏v +

+ 𝛿(k−q−u−v)𝑑𝑎k𝑑
†
𝑎q𝑏

†
𝑏u𝑏

†
𝑏v +

+ 𝛿(k−q−u−v)𝑏†𝑎k𝑏𝑎q𝑑𝑏u𝑏𝑏v +

+ 𝛿(k−q+u+v)𝑏†𝑎k𝑏𝑎q𝑏
†
𝑏u𝑏

†
𝑏v +

+ 𝛿(k+q−u−v)𝑏†𝑎k𝑑
†
𝑎q𝑑𝑏u𝑏𝑏v +

+ 𝛿(k+q+u+v)𝑏†𝑎k𝑑
†
𝑎q𝑏

†
𝑏u𝑑

†
𝑏v

]︀}︁
: (3)

describes an interaction. Here, 𝑏†𝑎k, 𝑏𝑎k are the cre-
ation and annihilation operators of 𝑎-sort particles,
and 𝑑†𝑎k, 𝑑𝑎k – accordingly, antiparticles; 𝑘𝑎 =
= {𝑘𝑎0,k} – 4-momentum on the mass surface with
0-component 𝑘𝑎0 =

√︀
k2 +𝑚2

𝑎; colon : · · · : denotes
the normal ordering;

̃︀𝐺(𝑘) ≡ ̃︀𝐺[𝑘2] =

∫︁
𝑑4𝑥 𝑒−𝑖𝑘𝑥𝐺(𝑥) =

𝒫
𝑚′2 − 𝑘2

(4)

is the Fourier component of the symmetric Green
function of a mediating field; and 𝒫 means “in a sense
of the principal value”.

For such approximation, the unitary scattering
matrix 𝑆 was constructed in [15]. The expression
for 𝑆 − 1 can be obtained by the formal substi-
tution 𝛿(k+q+u+v) ↦→ −2𝜋 i 𝛿(4)(𝑘𝑎+𝑞𝑎+𝑢𝑏+𝑣𝑏),
etc. (preserving the corresponding signs for mo-
menta) in expression (3). Then the scattering ampli-
tude 𝑀(p′

1 ...p
′
𝑚;p1 ...p𝑛) for the process of scatter-

ing of the 𝑛-particle state into an 𝑚-particle state can
be determined from the equality

⟨p′
1 ...p

′
𝑚|𝑆 − 1|p1 ...p𝑛⟩ =

=
𝛿(4)(𝑝′1 + ...+ 𝑝′𝑚 − 𝑝1 − ...− 𝑝𝑛)√︀

2𝑝′10 ... 2𝑝
′
𝑚02𝑝10 ... 2𝑝𝑛0

×

× i (2𝜋)4𝑀(p′
1 ...p

′
𝑚;p1 ...p𝑛) (5)

as in conventional field theory [20].

4. Two-Particle Elastic Scattering Processes

It is sufficient to consider three types of two-particle
scattering states: different sorts of particles, e.g. 1+2,
the same sort of particles, e.g. 1+1, and the particle-
antiparticle state 1 + 1̄:

|1+2⟩ = 𝑏†1p1
𝑏†2p2

|0⟩, (6)

|1+1⟩ = 2−1/2 𝑏†1p1
𝑏†1p2

|0⟩, (7)

|1+1̄⟩ = 𝑏†1p1
𝑑†1p2

|0⟩, (8)

where |0⟩ is a vacuum. Other states, e.g. 1 + 2̄ or
1̄ + 1̄, can be reduced by physical properties to the
preceding ones according to the charge symmetry of
the system. The corresponding scattering amplitudes
of states (6)–(8) are calculated by (5) and have the
form

𝑀1+2 =
𝑔1𝑔2
(2𝜋)6

�̃�[𝑡], (9)

𝑀1+1 =
𝑔21

2(2𝜋)6
{�̃�[𝑡] + �̃�[𝑢]}, (10)

𝑀1+1̄ =
𝑔21

(2𝜋)6
{�̃�[𝑡] + �̃�[𝑠]}, (11)

where

𝑠 = (𝑝1 + 𝑝2)
2 = (𝑝′1 + 𝑝′2)

2,

𝑡 = (𝑝1 − 𝑝′1)
2 = (𝑝2 − 𝑝′2)

2,

𝑢 = (𝑝1 − 𝑝′2)
2 = (𝑝2 − 𝑝′1)

2

are the invariant Mandelstam variables [20].
The structure of expressions (9)–(11) is analogous

to two-particle scattering amplitudes in the conven-
tional QFT that can be described by Feynman di-
agrams in Fig. 1: diagram 1, a corresponds to the
contribution of �̃�[𝑡], diagram 1, b – to the contribu-
tion of �̃�[𝑢] and diagram 1, c – to the contribution
of �̃�[𝑠]. The only difference is that, in conventional
QFT, the causal Green function of this field corre-
sponds to mediating field lines. In our case of a par-
tially reduced FT, it is replaced by the symmetric
Green function.

✺

❛✮✁q
p2

p1

p′2

p′1

❜✮✁q
p2

p1

p′1

p′2

❝✮✁
q

p2

p1

p′2

p′1

❋✐❣✉r❡ ✶✳ Ôåéíìàí✐âñüê✐ ä✐àãðàìè äëÿ ïðîöåñ✐â ïðóæíîãî ðîçñ✐ÿííÿ
Fig. 1. Feynman diagrams for elastic scattering processes of
a two-particle system
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5. Differential and Total Cross Sections

In the center-of-mass system, where

p1 = −p2 ≡ p, p′
1 = −p′

2 ≡ p′, |p| = |p′|,

for the same mass particles 𝑚1 = 𝑚2 ≡ 𝑚, the Man-
delstam variables become

𝑠 = (𝑝01 + 𝑝02)
2 = 𝐸2 = 4𝑝20 ≥ 4𝑚2, (12)

𝑡 = −2p2(1− cos 𝜃) ≤ 0, (13)

𝑢 = −2p2(1 + cos 𝜃) ≤ 0, (14)

where 𝜃 is the scattering angle, and 𝐸 is the energy
of the system. Then, according to the axial symme-
try, the expression for differential cross section can be
conveniently written as

d𝜎 =
1

64𝜋2
|𝑀 |2 d𝑜

′

𝐸2
=

−1

32𝜋
|𝑀 |2 dcos 𝜃

𝐸2
=

=
−1

64𝜋
|𝑀 |2 d𝑡

p2𝐸2
, (15)

where d𝑜′ = 2𝜋 sin 𝜃d𝜃 = −2𝜋dcos 𝜃 = − 𝜋
p2 d𝑡 –

element of the spatial angle of outgoing momenta,
and 𝑡 ∈ [−4p2, 0] when 𝜃 ∈ [0, 𝜋].

–1 1 –1 1

∣∣∣∣
dσ

dcos θ

∣∣∣∣
∣∣∣∣

dσ

dcos θ

∣∣∣∣

cos θ cos θ

0 0
p︷ ︸︸ ︷

1− |µ|2
2p2

a) b)

Fig. 2. Differential cross section for 1 + 2 reaction for mas-
sive (dashes) and tachyonic (continuous line) interaction me-
diators with the same (meta)mass value |𝜇|: a) 2|p| > |𝑚′|;
b) 2|p| < |𝑚′|

σ

0 1 |µ|2
4p2

Fig. 3. Total cross section for 1 + 2 reaction for Yukawa-
like (dashes) and tachyonic (continuous line) interactions as a
function of the (meta)mass |𝜇|

We consider the case where the interaction medi-
ator is the tachyon field, i.e. the Klein–Gordon field
with imaginary mass 𝑚′ = i𝜇. The quantity 𝜇 ≡ |𝑚′|
according to [2] is called metamass.

The scattering matrix contains a symmetric Green
function as opposed to the casual one in conven-
tional QFT [20]. This fact is beneficial in the case
of a tachyon mediating field, because the causal
Green function for this field is not Poincaré-invariant,
while the symmetric function is given in [4]. From the
Fourier component of this function

̃︀𝐺(𝑘) ≡ ̃︀𝐺[𝑘2] =
−𝒫

𝜇2 + 𝑘2
(16)

and from inequalities (13)–(14), it can be noted that
amplitudes (9)–(11) and the corresponding cross sec-
tions (15) have the poles:

𝑡+ 𝜇2 = 0 =⇒ cos 𝜃 = 1− 𝜇2

2p2
, (17)

𝑢+ 𝜇2 = 0 =⇒ cos 𝜃 =
𝜇2

2p2
− 1. (18)

They exist when

2|p| ≥ 𝜇 (19)

and are symmetrically located in relation to the plane
of the equator of the scattering sphere (i.e. 𝜃 and
𝜋− 𝜃). It corresponds to lateral surfaces of the cones,
along which the flow density of particles is infinite
(shining). For the reactions 1 + 2 and 1 + 1̄, there
exists only one shining cone (17), and the reaction
1 + 1 gives two cones because of the interference of
incoming and outgoing particles.

The following heuristic interpretation can be pro-
posed for the existence of shining cones. Consider
Feynman diagram 1, a and suppose that the free par-
ticles with corresponding 4-momenta 𝑝1, ..., 𝑝′2, 𝑞 (on
their mass surfaces) correspond to all lines, and the
interaction occurs only in vertices. In each vertex, the
4-momentum conservation law is satisfied. Then, in
center-of-mass system, we have q = p − p′, 𝑞0 = 0.
The last equality is impossible for the massive interac-
tion mediator. Hence, the vertices in diagram 1, a can
only be connected by virtual particles. But tachyons
are particles without threshold, and this means that
the condition

𝑞0 ≡
√︀
q2 − 𝜇2 = 0 =⇒ q2 = 𝜇2 (20)
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is possible and corresponds to the existence of the
transcendental tachyon moving with infinite veloc-
ity [1, 8]. Thus, there is no fundamental difference
between virtual and real tachyons. The latter are a
subset of the former. In view of the fact that condi-
tion (20) is identical to (17), the shining cone (17)
can be interpreted as the contribution of the free
tachyons (or, in our case, the free field) to the scat-
tering process.

The differential cross sections of 1 + 2 reaction
for ordinary and tachyonic interaction mediators with
the same mass |𝑚′| by condition (19) are shown in
Fig. 2, a. It is natural to suppose that the existence
of a shining pole in the differential cross section is
caused by the stability of tachyonic states as a con-
sequence of the over-simplified model. More compli-
cated theories which involve the tachyon interaction
with electromagnetic or gravitational fields [21] or are
based on the string theory [10] yield the tachyon in-
stability. In that case, the finite peaks should appear
in the cross sections instead of the poles. The tachyon
interpretation of peaks in meson-nucleon sections was
proposed in [6].

The pole disappears when 2|p| < 𝜇. In this case,
the differential cross section is finite, and the back-
ward scattering predominates in 1 + 2 and 1 + 1̄
reactions over forward scattering, in contrast to the
case of the ordinary mediator Fig. 2, b.

The total cross section

𝜎 =

∫︁

Ω

d𝜎 =
1

64𝜋p2𝐸2

0∫︁

−4p2

|𝑀 |2d𝑡 (21)

is infinite by condition (19) because of the pole and
converges in the opposite case. For instance, for reac-
tion 1 + 2

𝜎=
𝑔21𝑔

2
2

220𝜋13p2𝐸2
×
{︂
(𝜇2−4p2)−1−𝜇−2, 2|p| < 𝜇,

∞, 2|p| ≥ 𝜇;
(22)

see Fig. 3.
It should be noted that, in the case of the Ruther-

ford scattering, the total cross section is theoretically
infinite. But in practice, it is cut off by the screening
of distant charges. If the tachyon interaction exists,
as described here, then there should exist the cut-
off mechanism for it. The possible mechanism that
would provide the finite total cross section, by simul-
taneously avoiding the pole in the differential cross

section, can be supported by the assumption about
the large metamass of the tachyon field, such that
2|p| < 𝜇.

6. Conclusions

We have presented the scattering problem for the in-
teraction via a tachyon field in Partially Reduced FT.

By the interaction via the field with imaginary
mass 𝑚′ = i𝜇, the differential cross section for
different-sort particles (or particle-antiparticle) has
a singularity (a pole), if the momenta of particles
(in C.M. system) are large enough: 2|p| ≥ 𝜇. This
pole corresponds to the cone surface with correspond-
ing scattering angle. Along this surface, the den-
sity of particle current is infinite (the so-called shin-
ing). Hereby, the total cross section is divergent. Two
symmetric conjugate shining cones arise because of
the scattering of one-sort particles caused by the in-
terference of the incoming and outgoing currents.

By the condition 2|p| < 𝜇, the pole in the different
cross section is absent, and the total cross section is
finite. In this case, the backward scattering predom-
inates over the forward scattering in contrast to the
case of a usual massive interaction mediator.

To the author’s knowledge, the scattering pro-
cesses with such nontrivial properties are not ob-
served in experiments. By assumption of the exis-
tence of tachyonic interactions, the lack of reconcili-
ation between theory and experiment should be ex-
plained. For the present we can propose two different
explanations.

One of the possible explanations: the intermedi-
ate state corresponding to tachyon lines in Feyn-
man diagrams (Fig. 1) can be considered as unsta-
ble. Then the denominators of the tachyonic propa-
gator (16) in amplitudes (9)–(11) (i.e. the expressions
𝑡+𝜇2, 𝑠+𝜇2, and so on) transform into the Breit–
Wigner expressions 𝑡+𝜇2 − i𝜇Γ, and so on. The cor-
responding poles transform into finite peaks with
width Γ. The similar tachyon interpretation of the
peaks in the meson-nucleon cross sections was pro-
posed in [6]. Unfortunately, the cited work obtained
no further development or confirmation.

The other way to interpret the shining nonobserv-
ability by the sideward scattering is the assumption
that the metamass of the tachyonic field is near sev-
eral TeV or more. Then condition (19) for a pole to
exist is not provided for the modern accelerators, but
it can be reached in the future.
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I. Загладько

ВЗАЄМОДIЯ СКАЛЯРНИХ ЧАСТИНОК
ЧЕРЕЗ ТАХIОННЕ ПОЛЕ: ЗАДАЧА РОЗСIЯННЯ

Р е з ю м е

Розглянуто взаємодiю скалярних частинок через тахiонне
поле в рамках частково редукованої теорiї поля. Обчисле-
но диференцiальний та повний перетини пружного розсi-
яння двох рiзних частинок, що взаємодiють через поле-
посередник з уявною масою.
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