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The system of 𝑁 identical two-level atoms coupled with a quantized electromagnetic field pre-
pared via a one-photon Fock state is investigated. The corresponding 𝑁-particle state ampli-
tudes in one- and two-mode resonators are calculated for several space configurations in the
cases of closed conservative and open dissipative systems. The nature and the structure of the
Weisskopf–Wigner approximation is revealed in the many-body problem. It is shown that the
space distribution of atoms, the total number of atoms, and even the available volume for the
field modes define the behavior of system’s state amplitudes in time. The elaborated theory
allows one to analytically describe the time evolution of the system for a quite wide range of
the space configurations, if the specific “cyclic” restrictions are applied.
K e yw o r d s: one-photon scattering, one- and two-mode resonator.

1. Introduction

In this work we continue our investigation of the 𝑁 -
atom system coupled with a quantized electromag-
netic field initially prepared in the one-photon Fock
state. The proposed results represent the application
of the theory developed in the recent paper [1]. Here,
as a partial case for [1], the distances between atoms
are assumed to be quite large, so that the average dis-
tances between atoms are larger (or of the same or-
der) than the “resonant transition” wavelength. The
ensemble of 𝑁 two-level atoms is initially in the
ground state. The initial one-photon Fock state of
the electromagnetic field is specified completely by its
wave vectors k0 with the atomic transition frequency
𝜔 = 𝑐 |k0| and its polarization 𝑗 (𝑗 = 1, 2). The
main goal of this investigation is to obtain the in-
formation about the state of the atomic system and
the electromagnetic field in the Weisskopf–Wigner ap-
proximation (see [2] Chapt. 6, p. 206 and comments
in [1]). The calculations of the state amplitudes are
made for several approximations in resonator (cavi-
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ty) characteristics and for several types of the space
configurations of atoms.

A many-body system interacting with a quantized
electromagnetic field can possess certain fundamental
properties. For example, when the average distances
between atoms are much less than the “resonant tran-
sition” wavelength of emitted (absorbed) light, the
cooperative coupling leads to a substantial radiative
shift of the transition energy and a significant change
in the decay rate of the ensemble state. The later was
revealed through the various theoretical (e.g., some
relatively modern researches in [3–6]). The common
features in the system behavior can manifests even if
initially only one atom or one photon state is excited.

In comparison with other researches in this domain,
we will develop a direct consistent solution of the 𝑁 -
particle equations describing the time evolution of the
𝑁 atomic probability state amplitudes. In addition,
in a certain meaning, we will explain the nature of the
widely used Weisskopf–Wigner approximation, that
was not found in the scientific literature reviewed by
us. The question of constructing a correct damping
model is not a new one. The discussion of approaches
to realistic systems, including damping effects, can be
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found, for example, in [10–13]. The later actually in-
troduced the concept of thermalization of the system
states. In practice, the thermalization can be com-
bined with coherent effects, as in the case of “super-
radiance” [6, 14–17], that can in turn be destroyed
by the Doppler broadening of the atomic (electronic)
resonant frequencies (see the analysis in [18]).

As in work [1], we describe the dynamical evolu-
tion of the system, by reviewing, therefore, all the 𝑁
atomic states. Thus, our work differs from such inves-
tigations as [19] and [20], which introduce, generally
saying, the evolutional hierarchy when the atoms-field
system can be considered as stochastic. For compari-
son with the results of the mentioned kinetic method,
the dynamical system of two atoms coupled with elec-
tromagnetic field was analyzed in [21].

The material in the sections of this paper is ar-
ranged in the increasing order of generalization, and
subsections are in the order of difficulty level.

Let us first provide below some general theoreti-
cal premises. More detailed derivations of the corre-
sponding mathematical model can be found in [1].

2. The Equations
of Motion for the State Amplitudes

Let therefore consider a collection of 𝑁 identical
atoms located by the corresponding radius-vectors
(r1, r2, ..., r𝛼, ...,k𝑟𝑁 ) and coupled to a one-mode
electromagnetic field. Each atom 𝛼 = 1, ..., 𝑁 is as-
sumed to have only the two states |𝑎⟩𝛼 and |𝑏⟩𝛼 sep-
arated by the energy 𝐸𝛼 = 𝐸𝑎𝛼 − 𝐸𝑏𝛼 = ~𝜔. In the
dipole approximation, the closed conservative system
of identical atoms with the electromagnetic field in a
cavity can be described by the Hamiltonian consisting
of the terms representing free atoms and the electro-
magnetic field with the dipole-field coupling between
the atoms and the electromagnetic field modes.

Inasmuch as, at the initial time moment 𝑡 = 0, all
the atoms 𝛼 = 1, ..., 𝑁 in the ensemble are in the
ground state |𝑏⟩𝛼 and the electromagnetic field is in
the Fock state |1k0⟩ (that presents one photon with
the wave vector k0), we look for a solution of the
corresponding Schrödinger equation in the interacting
picture in the following form:

Ψ =

𝑁∑︁
𝛼=1

𝛽𝛼(𝑡)|𝑏1𝑏2...𝑎𝛼...𝑏𝑁 0⟩+

+
∑︁
k,𝑗

𝛾k,𝑗(𝑡)|𝑏1𝑏2...𝑏𝑁1k,𝑗⟩ (1)

with the initial conditions

𝛽𝛼(0) = 0, 𝛾k,𝑗(0) = 𝛿k,k0𝛿𝑗,𝑗0 , (2)

where 𝛿k,k0 is the Kronecker delta-symbol (𝛿k,k0
= 1

if k = k0, and 𝛿k,k0 = 0 if k ̸= k0). The same mean-
ing is supposed to have the Kronecker delta-symbol
𝛿𝑗,𝑗0 . The quantities 𝛽𝛼(𝑡) (𝛼 = 1, ..., 𝑁) and 𝛾k,𝑗(𝑡)
(𝑗 = 1, 2) are the atomic 𝛼 excited state amplitude
with the others in the ground states and the excited
Fock field state amplitude of the 𝑗-th polarization
with the wave vector k, respectively.

Then the corresponding Schrödinger equation in
the interacting picture yields the following system of
equations:

�̇�𝛼(𝑡) = 𝑖
∑︁
k,𝑗

𝑔*𝛼(k, 𝑗)𝛾k,𝑗(𝑡)×

× exp(−𝑖(𝜈𝑘 − 𝜔)𝑡+ 𝑖kr𝛼); (3)

�̇�k,𝑗(𝑡) = 𝑖

𝑁∑︁
𝛿=1

𝑔𝛿(k, 𝑗)𝛽𝛿(𝑡) exp(𝑖(𝜈𝑘−𝜔)𝑡−𝑖kr𝛿), (4)

where

𝑔𝛼(k, 𝑗) =

√︂
𝜈𝑘

2~𝜖0𝑉
℘𝛼 · ek,𝑗 , (5)

with

℘𝛼 · ek,𝑗 = 𝑒𝑖𝜑𝛼 |℘𝛼| cos 𝜃k,𝑗 . (6)

Here, 𝜑𝛼 denotes some phase, 𝜃k,𝑗 is the angle be-
tween the dipole vector ℘𝛼 = 𝑒⟨𝑎|r𝛼 el|𝑏⟩ (that rep-
resents the non-diagonal transition dipole matrix el-
ement of a valence electron for the 𝛼-th atom) and
the 𝑗-th unit polarization vector ek,𝑗 (𝑗 = 1, 2 and
ek,𝑗 · k = 0), and 𝑉 is the volume available for the
atoms-field system.

Substituting Eq. (4) into (3), differentiating one
more time, and applying the Weisskopf–Wigner ap-
proximation (details in [1]), we derive the following
dynamical system:

𝑑2

𝑑𝑡2
𝛽𝛼(𝑡) = −

𝑁∑︁
𝛿=1

𝛽𝛿(𝑡)Φ𝛼𝛿 − 2𝐷𝛼
𝑑

𝑑𝑡
𝛽𝛼(𝑡), (7)

where

Φ𝛼𝛿 =
∑︁

𝑗, |k|=𝑘0

𝑔*𝛼(k, 𝑗)𝑔𝛿(k, 𝑗) exp[𝑖k(r𝛼 − r𝛿)]. (8)
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We have also

𝐷𝛼 =
1

2

8𝜋

3

2𝜋

2~𝜀0

(︂
1

2𝜋 𝑐

)︂3
|℘𝛼|2𝜔3 =

=
1

2

1

3𝜋 ~𝜀0𝑐3
|℘𝛼|2𝜔3. (9)

Here, the coefficients 𝐷𝛼, 𝛼 = 1, ..., 𝑁 , describe
the respective (single atom) rate of decay for the 𝛼-
th atom excited state. Note that the “non-resonant”
terms for the particles with indices different from
𝛼 were disregarded here by the assumption of quite
large interatomic distances (see [1]).

3. Applications

Below, for simplicity, only one polarized mode (𝑗 = 1)
of the resonant field modes is taken into account with
the common parameters 𝑔𝛼 and ℘𝛼 for 𝛼 = 1, ..., 𝑁 :

𝑔𝛼(k, 𝑗) = 𝑔𝛼 = 𝑔 > 0 (10)

and

℘𝛼 · ek,𝑗 = |℘| (11)

for |k| = 𝑘0. In other words, the space angle distri-
bution for the components Φ𝛼𝛿 is disregarded here,
assuming that the direction of the transition dipole
moment ℘𝛼 for any atom in the system coincides with
the photon polarization under the absorption or emis-
sion of a resonant photon.

We note also that the cited thereby Rabi frequen-
cies (such like Ω1, 2 introduced later) and all the quan-
tities that were calculated in all the instances below
are present in the SI system of units with the following
notation: ~ ≈ 1.05457× 10−34 J sec/rad; the electric
permittivity of free space 𝜖0 ≈ 8.8542 × 10−12 F/m;
the speed of light in free space 𝑐 = 299792458m/sec;
resonant wavelength close to the 𝐷2-line of a sodium
atom 𝜆D = 589.29 × 10−9 m; corresponding circular
(in radians per second) resonant frequency 𝜔res =
= 2𝜋𝑐

𝜆D
≈ 0.101747 × 1016𝜋 rad/sec; non-diagonal

so-called “transition” dipole matrix element (in the
same order as for the 𝐷2-line transition, i.e., about
1 Debye) 𝜌ex ≈ 1 × 3.33564 × 10−30 C m. For in-
stance, if the volume available for the atoms-field
system has the value equal to 𝑉 = 0.001m3, then
𝑔 = 𝜌ex

√︁
𝜔res

2~𝜖0𝑉 ≈ 77.8597
√
𝜋 rad/sec.

3.1. The system in a one-mode resonator

3.1.1. Conservative system:
without the damping (𝐷𝛼 = 0)

In the resonance approximation, neglecting a fre-
quency detuning, Eqs. (3) and (4) take the following
form:

�̇�𝛼(𝑡) = 𝑖𝑔 𝛾𝑘(𝑡) exp(𝑖kr𝛼), 𝛼 = 1, ..., 𝑁 ; (12)

�̇�𝑘(𝑡) = 𝑖

𝑁∑︁
𝛿=1

𝑔 𝛽𝛿(𝑡) exp(−𝑖kr𝛿). (13)

With regard for the above-mentioned initial condi-
tions and requiring the normalized amplitudes for a
closed system, we obtain the following solution of the
above-introduced system:

𝛾𝑘(𝑡) =
1

2
(exp(𝑖Ω1𝑡) + exp(−𝑖Ω1𝑡)), (14)

𝛽𝛼(𝑡)=
1

2
√
𝑁

(exp(𝑖kr𝛼+𝑖Ω1𝑡)−exp(𝑖kr𝛼−𝑖Ω1𝑡)),

(15)
where Ω1 =

√
𝑁𝑔.

Therefore, in this simple case, the state amplitudes
oscillate with the collective Rabi frequency Ω1 pro-
portional to the square root of the total particle num-
ber. At the same time, the atomic state amplitude is
inversely proportional to the the square root of the to-
tal particle number, thus decreasing with increasing
the number of participating atoms. We see, that, even
in such relatively simple resonant approximation, the
𝑁 -atom system acts as a whole, “distributing” the
possibility to absorb the one-photon Fock state en-
ergy equally among all the atoms.

Furthermore, it is obvious that the collective Rabi
frequency Ω1 depends on the 𝑔 parameter and, hence,
on the available volume for the atoms-field sys-
tem. Some interesting features of this dependence will
be discussed in the following subsections.

3.1.2. With the damping: 𝐷𝛼 ̸= 0

For 𝐷𝛼 = 𝐷, 𝛼 = 1, ..., 𝑁 , neglecting the non-dia-
gonal coefficients when 𝐷𝛼𝛿 ≪ 𝐷, the corresponding
system of equations (7) reduces to

𝑑2

𝑑𝑡2
𝛽𝛼(𝑡) exp(−𝑖kr𝛼) = −𝑔2

𝑁∑︁
𝛿=1

𝛽𝛿(𝑡) exp(−𝑖kr𝛿)−

−2𝐷
𝑑

𝑑𝑡
𝛽𝛼(𝑡) exp(−𝑖kr𝛼). (16)
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Fig. 1. Time evolution of |𝛽𝛼(𝑡)|2 for 𝐷 < Ω1. Here, 𝑉 =

= 0.0001m3; total number of particles 𝑁 = 100; single atom
decay rate is 𝐷 = 1000 rad/sec; 𝑔 = 246.2140988𝜋1/2 rad/sec;
Ω1 = 2462.140988𝜋1/2 rad/sec

Fig. 2. Time evolution of |𝛽𝛼(𝑡)|2 for 𝐷 > Ω1. Here, 𝑉 =

= 0.001m3; total number of particles 𝑁 = 100; single atom
decay rate is 𝐷 = 1000 rad/sec; 𝑔 = 77.85973441𝜋1/2 rad/sec;
Ω1 = 778.5973441𝜋1/2 rad/sec

In the case of 𝐷 ̸= Ω1 and 𝛽𝛼(0) = 0 for 𝛼 =
= 1, ..., 𝑁 , its solutions have the following form:

𝛽𝛼(𝑡) = 𝐶

(︂
exp

[︂
𝑖kr𝛼 +

(︂
−𝐷 +

√︁
𝐷2 − Ω2

1

)︂
𝑡

]︂
−

− exp

[︂
𝑖kr𝛼 +

(︂
−𝐷 −

√︁
𝐷2 − Ω2

1

)︂
𝑡

]︂)︂
. (17)

Here, it has to be noted that the constant 𝐶 can be
determined, when the initial condition 𝑑

𝑑𝑡𝛽𝛼(𝑡) |𝑡=0 is
defined. For example, let us suppose that the initial

derivative is defined through the “exactly conserva-
tive” initial system of equations (3) with 𝛾𝑘(0) = 1
for 𝑘 = 𝑘0 corresponding to the resonant wave-
length. Then

𝐶 =
𝑖Ω1

2
√
𝑁
√︀

𝐷2 − Ω2
1

. (18)

Roughly saying, the found coefficient should yield
“right” limitations on the squared modulus of the
atomic state amplitude. So that, for a quite wide
range of the values of decay coefficient 𝐷, the fol-
lowing quite rough restriction can be required:⃒⃒⃒⃒
⃒
√︀
𝐷2 − Ω2

1

Ω1

⃒⃒⃒⃒
⃒ > 1

2
√
𝑁

. (19)

The situation 𝐷 < Ω1 differs from the case of 𝐷 >
> Ω1 by the character of the evolution in time, as it
is shown in Figs. 1 and 2, respectively.

To depict the first case 𝐷 < Ω1 in Fig. 1, the
following parameters were set up: system’s volu-
me 𝑉 = 0.0001m3; the total number of particles
𝑁 = 100; the space phase kr = 𝜋/6 + 3𝜋; the sin-
gle atom decay rate 𝐷 = 1000 rad/sec. Then 𝑔 =
= 246.2140988𝜋1/2 rad/sec; Ω1 = 2462.140988𝜋1/2

rad/sec, corresponding on the average to about
twenty resonant wavelengths between any two near-
est atoms. Note that, here and in the next several
statements concerning the provided graphs, the word
“average” means that the atoms can actually be lo-
cated much closer to each other not filling the given
volume 𝑉 uniformly.

Note that the same character of the time evolution
as is in Fig. 1, but with the maximum value of the
atomic excited state probability about 8.2× 10−13, is
produced, for example, by the following combination:
𝑉 = 10−2 m3; 𝑁 = 5 × 1011; the space phase kr =
=𝜋/6+3𝜋; 𝐷 = 107 rad/sec. Then 𝑔= 24.62140988×
×𝜋1/2 rad/sec and Ω1 ≈ 0.12311×108(2𝜋)1/2. The ra-
tio between the given volume 𝑉 and the total number
of atoms 𝑁 corresponds, on the average, to about two
resonant wavelengths between any two nearest atoms
(|k · (r𝛼 − r𝛿)| ≥ 4𝜋).

Figure 2 shows the time evolution for the prob-
ability to find an atom in the excited state when
𝐷 > Ω1. Such situation corresponds in our model
to the volume 𝑉 = 0.001m3; the total number of
particles 𝑁 = 100; the space phase (actually any
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choice here is acceptable) is equal, for example,
kr = 𝜋/6 + 3𝜋; the single atom decay rate 𝐷 =
= 1000 rad/sec. Then 𝑔 = 77.85973441𝜋1/2 rad/sec;
Ω1=778.5973441𝜋1/2 rad/sec, corresponding to about
two hundreds of resonant wavelengths between any
two nearest atoms on the average.

The same character of the time evolution as in
Fig. 2, but with the maximum value of the ato-
mic excited state probability about 2.5 × 10−13,
is produced, for example, by the following com-
bination: 𝑉 = 10−1 m3; 𝑁 = 5× 1011; the space
phase kr = 𝜋/6 + 3𝜋; 𝐷 = 107 rad/sec. This yields
𝑔 = 7.785973441𝜋1/2 rad/sec and Ω1 ≈ 0.3893×
× 107(2𝜋)1/2 rad/sec. The values of 𝑉 and 𝑁 corres-
pond to about twelve resonant wavelengths between
any two nearest atoms on the average (|k·(r𝛼−r𝛿)| ≥
≥ 24𝜋).

As was supposed in the derivation of the differen-
tial equations with the damping terms such like (16)
(see the details in work [1]), the available volume 𝑉
(assumed here as a rectangular box!) for the whole
atoms-field system defines all the “available” modes
for the electromagnetic field. Roughly saying, the re-
striction on the volume 𝑉 in this sense determines
the lower cutoff frequency for all the available res-
onant harmonics. In this case, we can discuss the
following. Inasmuch as Ω1 depends on the factor 𝑔,
the system behavior, generally saying, depends on the
“available” volume for the electromagnetic field. The
value of volume 𝑉 can determine one of the inequal-
ities 𝐷 < Ω1 and 𝐷 > Ω1, therefore defining the
character of the relaxation of the system. Besides the
above-mentioned parameter 𝑉 , the collective charac-
teristic frequency Ω1 depends on the total number of
particles 𝑁 . Therefore, the total number of atoms 𝑁
defines the character of the relaxation of the system
as well. These features are reflected in Figs. 1 and 2
supplied by the corresponding comments.

3.2. The system in a two-mode resonator

3.2.1. Resonance distances
|k(r𝛼 − r𝛼±1)| = 2𝜋𝑛, where 𝑛 is an integer. 𝐷𝛼 = 0

Again, as in the previous subsection, the correspond-
ing system of differential equations can be derived
from the initial “closed” conservative equations (3)
and (4) in the resonant approximation.

Without any loss of generality, we set k · r1 = 0.
Then the condition of the “resonant distances” allows

Fig. 3. |𝛽1|2(kr1, 𝑁, 𝑡1) for a one-mode cavity, |𝛽𝛼|2(𝑁, 𝑡
′
1)

for a two-mode cavity. 𝑁 is the total number of atoms in the
system, 𝑉 = 0.1m3, 𝐷 = 107 rad/sec

us to refer the problem to the following system of
homogeneous linear differential equations:

𝑑2

𝑑𝑡2
𝛽𝛼(𝑡) = −2𝑔2

𝑁∑︁
𝛿=1

𝛽𝛿(𝑡), where 𝛼 = 1, ..., 𝑁. (20)

It is easy to show that

𝑑

𝑑𝑡
𝛾k(𝑡) =

𝑑

𝑑𝑡
𝛾−k(𝑡) = 𝑖𝑔

𝑁∑︁
𝛿=1

𝛽𝛿(𝑡). (21)

Therefore, the normalized solution of the above sys-
tem satisfying the initial conditions 𝛾k(0) = 1,

𝛾−k(0) = 0, and 𝛽𝛼(0) = 0 with
𝑑

𝑑𝑡
𝛽𝛼(0) = 𝑖𝑔 is

𝛾k (𝑡) =
1

2

[︁
cos

(︁
Ω

′

1𝑡
)︁
+ 1

]︁
, (22)

𝛾−k (𝑡) =
1

2

[︁
cos

(︁
Ω

′

1𝑡
)︁
− 1

]︁
, (23)

𝛽𝛼 (𝑡) = 𝑖
𝑔

Ω
′
1

sin
(︁
Ω

′

1𝑡
)︁
, (24)

where Ω
′

1 = 𝑔
√
2𝑁 . As we can see, the frequency Ω2

for the system in a two-mode resonator differs from
that for the system in a one-mode resonator Ω1 =
= 𝑔

√
𝑁 : Ω

′

1/Ω1 =
√
2.

Furthermore, as can be seen from Fig. 3, the
probability to find the 𝛼-th atom in the excited state
for a two-mode resonator is lower in comparison
with that for a one-mode resonator. To depict the
found dependences of (24) and (17) with (18) on
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the total number of atoms 𝑁, the parameters were
set as follows: 𝑉 = 0.1m3; 𝑁 = 1.20; kr1 = 2𝜋

3 ;
𝐷 = 107 rad/sec; 𝑔 = 7.785973441𝜋1/2 rad/sec;
Ω1(𝑁) = 𝑔

√
𝑁 , Ω

′

1(𝑁) = 𝑔
√
2𝑁 , 𝑡1 = 𝜋

(2Ω1(𝑁)) and
𝑡
′

1 = 𝜋
(2Ω

′
1(𝑁))

. Based on the obtained expressions,

the same character of the dependence |𝛽𝛼|(𝑁, 𝑡
′

1) on
the total number of atoms 𝑁 is proper for any atom
out of the labeled 𝛼 = 1, ..., 𝑁 , for any value of the
volume 𝑉 , and the single atom decay rate 𝐷 at the
given time moments 𝑡

′

1.
Despite the relative simplicity of the solutions

found in the above subsections, the corresponding
methodology of calculation is not trivial with respect
to the raised physical problems. Some interest there-
fore invokes the method of solving the 𝑁 -particle lin-
ear differential equations. In the next subsections and
sections, we provide the procedure of solving the 𝑁 -
particle linear differential equations in more general
cases.

3.2.2. Cyclically distanced
atoms

∑︀𝑁
𝛼 sin(kr𝛼) cos(kr𝛼) = 0. 𝐷𝛼 = 0

From the system of equations (7) with the “resonant”
wave vectors ±k, neglecting the decay terms 𝐷𝛼 = 0
for 𝛼 = 1, ..., 𝑁 , we can obtain the following “reduced”
system of linear differential equations:

𝑑2

𝑑𝑡2
𝛽𝛼(𝑡)=−2𝑔2

𝑁∑︁
𝛿=1

𝛽𝛿(𝑡) cos(k(r𝛼−r𝛿)), 𝛼=1, ..., 𝑁.

(25)
Using the notation

𝐵𝑐 (𝑡) =

𝑁∑︁
𝛿

𝛽𝛿 (𝑡) cos (kr𝛿), (26)

and the requirement of cyclicity for the atomic space,
kr𝛼 (𝛼 = 1, ..., 𝑁), we derive from the system of equa-
tions (25) that

𝑑2

𝑑𝑡2
𝐵𝑐 = −2𝑔2

𝑁∑︁
𝛼

cos2 (kr𝛼)𝐵𝑐. (27)

Therefore, the solution of the above equation is as
follows:

𝐵𝑐 =
∑︁
𝛼

𝛽𝛼(𝑡) cos(kr𝛼) =

= 𝐶𝑜 (exp (𝑖Ω2𝑡)− exp (−𝑖Ω2𝑡)), (28)

where Ω2 = 𝑔
√︀
2
∑︀

𝛼 cos2(kr𝛼).
By analogy,

𝐵𝑠 =
∑︁
𝛼

𝛽𝛼(𝑡) sin(kr𝛼) =

= 𝐶
′

𝑜

(︁
exp

(︁
𝑖Ω

′

2𝑡
)︁
− exp

(︁
−𝑖Ω

′

2𝑡
)︁)︁

, (29)

where Ω
′

2 = 𝑔
√︁
2
∑︀

𝛼 sin2(kr𝛼).

By definition, the introduced Rabi frequencies Ω
′

2

and Ω2 satisfy the relation Ω
′2

2 +Ω2
2 = 2𝑔2𝑁 .

In the approximation described here, the solution
𝛽𝛼 (𝑡) (𝛼 = 1, ..., 𝑁) can be found by substituting
the above-established expressions for 𝐵𝑐 and 𝐵𝑠 into
the initial second-order differential equation (25) with
its following two-time integration over the time vari-
able. The last requires the knowledge of the time
derivative for atomic state amplitudes at the ini-
tial time moment 𝑡 = 0. In other words, the sub-
stitution into the initial system of equations (4) can
be performed with regard for the initial conditions
𝛾k(0) = 1 and 𝛾−k(0) = 0. Substituting the result
into the initial system of equations (3) and perform-
ing the time integration, we obtain

𝛾k(𝑡) = 2𝑖𝑔

(︂
𝑖
𝐶𝑜

Ω2
(1− cos(Ω2𝑡))+

+
𝐶

′

𝑜

Ω
′
2

(︁
1− cos(Ω

′

2𝑡)
)︁)︂

+ 1, (30)

𝛾−k(𝑡)=2𝑖𝑔

(︂
𝑖
𝐶𝑜

Ω2
(1− cos(Ω2𝑡))−

− 𝐶
′

𝑜

Ω
′
2

(︁
1− cos(Ω

′

2𝑡)
)︁)︂
, (31)

𝛽𝛼(𝑡) = −2𝑔2
(︂[︂

𝑖
𝐶𝑜

Ω2

(︂
𝑡− 1

Ω2
sin(Ω2𝑡)

)︂
+

+
𝐶

′

𝑜

Ω
′
2

(︂
𝑡− 1

Ω
′
2

sin(Ω
′

2𝑡)

)︂]︂
×

× exp(𝑖kr𝛼) +
1

2𝑖𝑔
𝑡 exp(𝑖kr𝛼)+

+

[︂
𝑖
𝐶𝑜

Ω2

(︂
𝑡− 1

Ω2
sin(Ω2𝑡)

)︂
− 𝐶

′

𝑜

Ω
′
2

(︂
𝑡− 1

Ω
′
2

sin(Ω
′

2𝑡)

)︂]︂
×

× exp(−𝑖kr𝛼)

)︂
. (32)
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The terms proportional to the time variable 𝑡 can
be eliminated by the following choice of the constant
coefficients 𝐶𝑜 and 𝐶

′

𝑜:

𝐶𝑜 =
Ω2

4𝑔
, 𝐶

′

𝑜 =
Ω

′

2

Ω2
𝑖 𝐶𝑜. (33)

Thus,

𝛾k(𝑡) =
1

2

(︁
cos(Ω2𝑡) + cos(Ω

′

2𝑡)
)︁
, (34)

𝛾−k(𝑡) =
1

2

(︁
cos(Ω2𝑡)− cos(Ω

′

2𝑡)
)︁
, (35)

𝛽𝛼(𝑡) = 𝑖𝑔

(︂
1

Ω2
sin(Ω2𝑡) cos(kr𝛼)+

+𝑖
1

Ω
′
2

sin(Ω
′

2𝑡) sin(kr𝛼)

)︂
, (36)

where Ω2 = 𝑔
√︀
2
∑︀

𝛼 cos2(kr𝛼) and Ω
′

2 =

= 𝑔
√︁
2
∑︀

𝛼 sin2(kr𝛼), k is the “resonant” wave
vector for the one-photon Fock state of the electro-
magnetic field.

It is worth to note that the solution obtained in
this section is normalized and satisfies the system of
first-order linear differential equations (3), (4). The
direct substitution of the found solutions for 𝐵𝑐 and
𝐵𝑠 into the mentioned initial system of first-order dif-
ferential equations yields the same expressions for the
actual state amplitudes, when the terms linear in time
are eliminated by the appropriate choice of the intro-
duced coefficients 𝐶𝑜 and 𝐶

′

𝑜. Thus, we can say that
the model described in this subsection is a particular
case, more carefully a resonant limit, of the conser-
vative system that is inclosed in the initial system of
differential equations (3) and (4).

A more deeper role of such constants, like the co-
efficients 𝐶𝑜 and 𝐶

′

𝑜, arising in solving a more gen-
eral system of differential equations, is revealed in
the next section. Here, we can only hint that apply-
ing the certain physical limitations on the solutions
requires the so-called regularization procedure. As we
shall see, the main feature in solving the more gen-
eral system of 𝑁 linear differential equations is the
possibility to “regularize” the behavior of the system
in the limit of long time intervals.

In the next subsection, we investigate a limit of the
nonconservative system that is modeled by the system
of second-order linear differential equations (7). The
principal difference in structures of the solutions for
the conservative and nonconservative physical models
are shown below.

3.2.3. Cyclically distanced atoms∑︀𝑁
𝛼 sin(kr𝛼) cos(kr𝛼) = 0 with the model damping

From the system of equations (7) in the case of a
cavity with the two resonant modes k = ±k0 and
identical atoms with 𝐷𝛼 ≡ 𝐷 for 𝛼 = 1, ..., 𝑁 , one
can derive that

𝑑2

𝑑𝑡2
𝛽𝛼(𝑡) = −2𝑔2

𝑁∑︁
𝛿=1

𝛽𝛿(𝑡) cos(k(r𝛼 − r𝛿))−

− 2𝐷
𝑑

𝑑𝑡
𝛽𝛼(𝑡). (37)

Using the notation similar to the previous instance,

𝐵𝑐 (𝑡) =

𝑁∑︁
𝛼=1

𝛽𝛼 (𝑡) cos (kr𝛼) , (38)

and the “cyclic” condition
∑︀𝑁

𝛼 sin(kr𝛼) cos(kr𝛼) = 0
yields the following relatively simple linear differential
equation:

𝑑2

𝑑𝑡2
𝐵𝑐 (𝑡) = −2𝑔2

∑︁
𝛼

cos2(kr𝛼)𝐵𝑐 (𝑡) −

− 2𝐷
𝑑

𝑑𝑡
𝐵𝑐 (𝑡). (39)

Therefore, in view of the initial conditions 𝛽𝛿 (0) = 0
for 𝛼 = 1, ..., 𝑁 , the solution of the above equation is
as follows:

𝐵𝑐 =
∑︁
𝛼

𝛽𝛼(𝑡) cos(kr𝛼) = 𝐶(exp(Ω2+𝑡)−

− exp(Ω2−𝑡)), (40)

where Ω2 = 𝑔
√︀
2
∑︀

𝛼 cos2(kr𝛼) and

Ω2± = −𝐷 ±
√︁
𝐷2 − Ω2

2. (41)

By analogy,

𝐵𝑠 =
∑︁
𝛼

𝛽𝛼(𝑡) sin(kr𝛼) =

= 𝐶
′
(︁
exp

(︁
Ω

′

2+𝑡
)︁
− exp

(︁
Ω

′

2−𝑡
)︁)︁

, (42)

where Ω
′

2 = 𝑔
√︁
2
∑︀

𝛼 sin2(kr𝛼) and

Ω
′

2± = −𝐷 ±
√︁
𝐷2 − Ω′2

2. (43)
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It is easy to see that Ω
′2

2 +Ω2
2 = 2𝑔2𝑁 .

The field probability amplitudes can be obtained
using the subsystem of equations (4) of the full “con-
servative” system of equations (3) and (4). Therefore,
substituting (40) and (42) into Eqs. (4) and then con-
sidering the restrictions 𝛽𝛼(0) = 0 for 𝛼 = 1, ..., 𝑁
yields

𝛾k(𝑡) = 2𝑖𝑔
[︁
𝐶 {Ω2+𝑓 (Ω2+, 𝑡)− Ω2−𝑓 (Ω2−, 𝑡)}−

− 𝑖𝐶
′
{︁
Ω

′

2+𝑓
(︁
Ω

′

2+, 𝑡
)︁
− Ω

′

2−𝑓
(︁
Ω

′

2−, 𝑡
)︁}︁]︁

+ 1; (44)

and

𝛾−k(𝑡) = 2𝑖𝑔
[︁
𝐶 {Ω2+𝑓 (Ω2+, 𝑡)− Ω2−𝑓 (Ω2−, 𝑡)}+

+ 𝑖𝐶
′
{︁
Ω

′

2+𝑓
(︁
Ω

′

2+, 𝑡
)︁
− Ω

′

2−𝑓
(︁
Ω

′

2−, 𝑡
)︁}︁]︁

, (45)

where

𝑓 (Ω, 𝑡) =
exp

(︀
Ω𝑡
2

)︀
Ω2

sinh

(︂
Ω𝑡

2

)︂
. (46)

Note that we neglected the possible space angle distri-
bution for the direction of the resonant wave vector k.

Inasmuch as cos (k(r𝛼−r𝛿))=cos (kr𝛼) cos (kr𝛿)+
+ sin (kr𝛼) sin (kr𝛿), then, after the substitution of
the found superpositions (40) and (42) into the ini-
tial equation (37), we derive the following integrable
differential equation:

𝑑2

𝑑𝑡2
𝛽𝛼(𝑡) + 2𝐷

𝑑

𝑑𝑡
𝛽𝛼(𝑡) =

= −2𝑔2 {cos (kr𝛼)𝐵𝑐(𝑡) + sin (kr𝛼)𝐵𝑠(𝑡)}. (47)

Integrating the left- and right-hand sides of Eq. (47)
over the time yields

𝑑

𝑑𝑡
𝛽𝛼(𝑡) + 2𝐷𝛽𝛼(𝑡) = 𝑇𝛼 (𝑡), (48)

where

𝑇𝛼 (𝑡) = −2𝑔2 {cos (kr𝛼)𝐹𝑐(𝑡) + sin (kr𝛼)𝐹𝑠(𝑡)}+

+
𝑑

𝑑𝑡
𝛽𝛼(0) + 2𝐷𝛽𝛼(0), (49)

and

𝐹𝑐,𝑠(𝑡) =

𝑡∫︁
0

[𝐵𝑐,𝑠(𝑡)] 𝑑𝑡. (50)

According to the definition of the functions 𝐹𝑐,𝑠(𝑡),

𝐹𝑐(𝑡) = 𝐶

{︂
1

Ω2+
[exp (Ω2+𝑡)− 1]−

− 1

Ω2−
[exp (Ω2−𝑡)− 1]

}︂
; (51)

and

𝐹𝑠(𝑡) = 𝐶
′
{︂

1

Ω
′
2+

[︁
exp

(︁
Ω

′

2+𝑡
)︁
− 1

]︁
−

− 1

Ω
′
2−

[︁
exp

(︁
Ω

′

2−𝑡
)︁
− 1

]︁}︂
. (52)

The solution of such linear first-order differential
equation, like (48), has the form

𝛽𝛼(𝑡) =
1

exp (2𝐷𝑡)

∫︁
[𝑇𝛼 (𝑡) exp (2𝐷𝑡)] 𝑑𝑡. (53)

The integration in the last expression can be per-
formed and yields∫︁ [︁

𝑇𝛼 (𝑡) 𝑒(2𝐷𝑡)
]︁
𝑑𝑡 =

= −2𝑔2
{︂
cos (kr𝛼)𝐶

{︂
1

Ω2+

[︂
1

Ω2+ + 2𝐷
×

×
(︁
𝑒((2𝐷+Ω2+)𝑡) − 1

)︁
−

− 1

2𝐷

(︁
𝑒(2𝐷𝑡) − 1

)︁]︂
− 1

Ω2−

[︂
1

Ω2− + 2𝐷
×

×
(︁
𝑒((2𝐷+Ω2−)𝑡) − 1

)︁
−

− 1

2𝐷

(︁
𝑒(2𝐷𝑡) − 1

)︁]︂}︂
+ sin (kr𝛼)𝐶

′
×

×
{︂

1

Ω
′
2+

[︂
1

Ω
′
2+ + 2𝐷

(︂
𝑒

(︁
(2𝐷+Ω

′
2+)𝑡

)︁
− 1

)︂
−

− 1

2𝐷

(︁
𝑒(2𝐷𝑡) − 1

)︁]︂
− 1

Ω
′
2−

[︂
1

Ω
′
2− + 2𝐷

×

×
(︂
𝑒

(︁
(2𝐷+Ω

′
2−)𝑡

)︁
− 1

)︂
− 1

2𝐷

(︁
𝑒(2𝐷𝑡) − 1

)︁]︂}︂}︂
+

+

(︂
𝑑

𝑑𝑡
𝛽𝛼(0) + 2𝐷𝛽𝛼(0)

)︂
1

2𝐷

(︁
𝑒(2𝐷𝑡) − 1

)︁
+ 𝐶0. (54)

Therefore,

𝛽𝛼(𝑡) =
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=−2𝑔2
{︁
cos (kr𝛼)𝐶 [𝐻 (Ω2+, 𝐷, 𝑡)−𝐻 (Ω2−, 𝐷, 𝑡)] +

+ sin (kr𝛼)𝐶
′
[︁
𝐻

(︁
Ω

′

2+, 𝐷, 𝑡
)︁
−𝐻

(︁
Ω

′

2−, 𝐷, 𝑡
)︁]︁}︁

+

+

(︂
𝑑

𝑑𝑡
𝛽𝛼(0)+2𝐷𝛽𝛼(0)

)︂
1

2𝐷

(︁
1−𝑒−(2𝐷𝑡)

)︁
+𝐶0𝑒

−(2𝐷𝑡),

(55)
where

𝐻 (Ω, 𝐷, 𝑡) =
1

Ω

[︂
1

Ω + 2𝐷

(︁
𝑒(Ω𝑡) − 𝑒−(2𝐷𝑡)

)︁
−

− 1

2𝐷

(︁
1−𝑒−(2𝐷𝑡)

)︁]︂
. (56)

The initial condition 𝛽𝛼(0) = 0, for 𝛼 = 1/, ..., 𝑁 ,
sets the coefficient 𝐶0 equals 0. The initial time
derivative 𝑑

𝑑𝑡𝛽𝛼(0) can be determined, for example,
if the system of equations (3) is chosen from the ini-
tial “conservative” full system of equations (3) and (4)
as a basis at the time moment 𝑡 = 0. Then the ini-
tial condition for the field state amplitude 𝛾k(0) = 1,
where k = k0, sets the time derivative

𝑑

𝑑𝑡
𝛽𝛼(0) = 𝑖𝑔

{︀
𝑒kr𝛼𝛾k(0) + 𝑒−kr𝛼𝛾−k(0)

}︀
=

= 𝑖𝑔 {cos (kr𝛼) + 𝑖 sin (kr𝛼)}. (57)

Now, the question arises: how can the coefficients 𝐶
and 𝐶

′
be chosen correctly? First of all, the choice

has to satisfy the limitations on the probability ampli-
tude, yielding the probability limited above by 1 (in
more details, it has to be mentioned here the sum
of all the squared moduli of the introduced states
in the model). Second, the solution with the coeffi-
cients have to be consistent with the model decay
(damping).

We observe that, formally, when the real part of
the variable Ω is a negative quantity, i.e., Re (Ω) < 0,
the introduced functions 𝐻 and 𝑓 have the following
limits for a quite long-time intervals:

lim
𝑡→∞

𝐻 (Ω, 𝐷, 𝑡) = − 1

2𝐷Ω
, when Re (Ω) < 0; (58)

lim
𝑡→∞

𝑓 (Ω, 𝑡) = − 1

2Ω2
, when Re (Ω) < 0. (59)

Then

lim
𝑡→∞

𝛾k (𝑡) = 𝑖𝑔

[︂
𝐶

{︂
1

Ω2−
− 1

Ω2+

}︂
−

− 𝑖𝐶
′
{︂

1

Ω
′
2−

− 1

Ω
′
2+

}︂]︂
+1; (60)

lim
𝑡→∞

𝛾−k (𝑡) = 𝑖𝑔

[︂
𝐶

{︂
1

Ω2−
− 1

Ω2+

}︂
+

+ 𝑖𝐶
′
{︂

1

Ω
′
2−

− 1

Ω
′
2+

}︂]︂
; (61)

lim
𝑡→∞

𝛽𝛼 (𝑡) = − 1

𝐷
𝑔2

{︂
𝐶

{︂
1

Ω2−
− 1

Ω2+

}︂
cos (kr𝛼) +

+𝐶
′
{︂

1

Ω
′
2−

− 1

Ω
′
2+

}︂
sin (kr𝛼)

}︂
+

1

2𝐷

𝑑

𝑑𝑡
𝛽𝛼(0). (62)

As we deal with the open system, it should be expec-
ted that, for a quite long time intervals, all the elec-
tromagnetic energy of the atoms-field excited states
should be emitted into the subsystem causing the
state damping. Therefore, let us define the coeffi-
cients 𝐶 and 𝐶

′
in the following manner:

𝐶 =
𝑖Ω2−Ω2+

2𝑔 (Ω2+ − Ω2−)
(63)

and

𝐶
′
= −

Ω
′

2−Ω
′

2+

2𝑔
(︀
Ω

′
2+ − Ω

′
2−

)︀ . (64)

Then, after the substitution into the expressions for
the time limits, one derives the logical final for sys-
tem’s evolution:

lim
𝑡→∞

𝛾k (𝑡) = 0; (65)

lim
𝑡→∞

𝛾−k (𝑡) = 0; (66)

lim
𝑡→∞

𝛽𝛼 (𝑡) = 0. (67)

The possible space configurations of the atomic
system satisfying the condition of “circularity” can
be easily found. For example, the set s3a1: kr1 ≡
≡ k ·r1 = 𝜋

6 , kr2 = 2𝜋
3 , and kr3 = 𝜋. As an instance,

it can also be the set s3a2: kr1 = 2𝜋
3 , kr2 = 3𝜋

2 , and
kr3 = 𝜋

6 + 2𝜋. A space configuration for five atoms
can be represented, for example, by such set like s5a1:
kr1 ≡ k · r1 = 2𝜋

3 , kr2 = 3𝜋
2 , kr3 = 5𝜋

2 , kr4 = 7𝜋
2 ,

and kr5 = 19𝜋
6 . Specifically, a combination such like

kr𝑖 = ±𝜋
𝑛 + 𝑜𝑖

(︀
𝜋
𝑛

)︀
+ 2𝑖𝜋 with 𝑖 = 1, ..., 𝑁 , 𝑛 > 2,

and
⃒⃒
𝑜𝑖
(︀
𝜋
𝑛

)︀⃒⃒
≪ 𝜋

𝑛 , can generate the necessary magni-
tudes of the characteristic frequencies of the system
Ω2 and Ω

′

2 (that, actually, are the corresponding Rabi
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Fig. 4. Time evolution of |𝛽𝛼(𝑡)|2. The volume 𝑉 = 10−4 m3

is filled by the set s5a1 with 𝐷 ≈ 300 rad/sec initially coupled
with the one-photon Fock state; 𝑔 ≈ 246.2141

√
𝜋 rad/sec; Ω2 ≈

≈ 246.2141
√
2𝜋 rad/sec and Ω

′
2 ≈ 492.4282

√
2𝜋 rad/sec. Solid

thin curve is for the space phase 19𝜋/6, dashed curve is for
5𝜋/2, bold curve is built for the space phase 2𝜋/3

Fig. 5. Time evolution of |𝛽𝛼(𝑡)|2. The volume 𝑉 =

= 10−4 m3 is filled by totally 𝑁 = 1012 atoms with 𝐷 ≈
≈ 107 rad/sec initially coupled with the one-photon Fock state;
𝑔 ≈ 246.2141

√
𝜋 rad/sec; Ω2 = Ω

′
2 ≈ 0.60421

√
𝜋 × 108 rad/sec

frequencies), comparable with the given magnitude of
the decay coefficient 𝐷.

To illustrate some interesting properties of the de-
scribed system, we assume that the available vol-
ume is 𝑉 = 10−4 m3, somehow filled by the set
s5a1 with 𝐷 ≈ 300 rad/sec initially coupled with
the one-photon Fock state. Then 𝑔 = 𝜌ex

√︁
𝜔res

2~𝜖0𝑉 ≈

≈ 246.2141
√
𝜋 rad/sec; Ω2 ≈ 246.2141

√
2𝜋 rad/sec

and Ω
′

2 ≈ 492.4282
√
2𝜋 rad/sec. The corresponding

graphs for the excited state probability of each atom
are shown in Fig. 4. The local maximum of the proba-
bility |𝛽𝛼(𝑡)|2 decreases to the value of the order 10−4

in the time interval about 0.015 sec (not shown in the
graph).

Suppose now that there are 𝑁 ∼ 1012 atoms with
the single atom decay rate by five orders higher than
in the previous case, i.e., 𝐷 ≈ 107 rad/sec, in the
same value 𝑉 = 10−4 m3. It can correspond to the
quite realistic situation, where the average distance
between any nearest atoms is equal to about twenty
resonant wavelengths: |r𝛼 − r𝛿| ≥ 20𝜆𝐷, 𝛼, 𝛿 =
= 1, ..., 𝑁 . Then 𝑔 ≈ 246.2141

√
𝜋 rad/sec. If we ap-

proximate the characteristic Rabi frequencies Ω2 and
Ω

′

2 by the value 𝑔
√︀
(𝑁), i.e., Ω2 = Ω

′

2 ≈ 0.60421
√
𝜋×

×108 rad/sec, then the corresponding graph of the
atomic excited state probability is shown in Fig. 5.

Note that if the volume 𝑉 = 10−4 m3 is filled by
totally 𝑁 = 1012 atoms with the single atom decay
rate 𝐷 = 300 rad/sec, as in the first situation with
the space configuration s5a1, then the initial prob-
ability local maximum |𝛽𝛼(𝑡)|2loc.max decreases from
the value 1.6×10−11 to 5×10−14, i.e., lower by three
orders, in the time interval about 0.01 sec.

3.2.4. Some comments about the “physical”
properties of the obtained solutions

Note that the solution obtained in this section (55)
does not satisfy the initial system of differential equa-
tions (3) and (4) for a closed conservative system of 𝑁
atoms and the electromagnetic field. The direct sub-
stitution of the above-found solution (40) and (42)
for 𝐵𝑐 and 𝐵𝑠 in the mentioned initial system of lin-
ear first-order differential equations (3) and (4) yields
such state amplitudes like

𝛽untrue
𝛼 (𝑡) = −2𝑔2 [exp(𝑖kr𝛼) {𝐶(𝑓 (Ω2+, 𝑡) −

− 𝑓 (Ω2−, 𝑡))− 𝑖𝐶
′
(︁
𝑓
(︁
Ω

′

2+, 𝑡
)︁
− 𝑓

(︁
Ω

′

2−, 𝑡
)︁)︁}︁

+

+exp(−𝑖kr𝛼) {𝐶 (𝑓 (Ω2+, 𝑡)− 𝑓 (Ω2−, 𝑡))+

+ 𝑖𝐶
′
(︁
𝑓
(︁
Ω

′

2+, 𝑡
)︁
− 𝑓

(︁
Ω

′

2−, 𝑡
)︁)︁}︁]︁

, (68)

where 𝛼 = 1, ..., 𝑁 , 𝐶, 𝐶
′
, and the function 𝑓 (Ω, 𝑡)

were already introduced above. The alternative un-
correct solutions (68), 𝛼 = 1, ..., 𝑁 , are not limited
above, when the parameters of the system (for ex-
ample, such like 𝑉 and 𝑔) run through a quite wide
range of values. Therefore, at first look, this fact does
not permit any physical application of the above “un-
true” solutions (68). But the condition of absence of
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any terms linear in time for the solutions generates
the same expressions (63) and (64) for the coefficients
𝐶 and 𝐶

′
in the direct substitution, giving somehow

a similar “vanishing” behavior of the “untrue” solution
(68) for quite long-time intervals. It is of interest that
the following backward substitution of the provided
above “untrue” expressions (68) for 𝛼 = 1, ..., 𝑁 into
the definitions for 𝐵𝑐 and 𝐵𝑠 does not give the “true”
forms (40) and (42). Hence, the found “correct” solu-
tion of the form (55) cannot be counted as a particular
one (or as a limit of such) for the system of equations
(3) and (4) that represents only a closed conservative
system of atoms with an electromagnetic field. Note
that the method proposed in the previous subsection
of calculating the initial derivatives can be argued by
a relatively slow decay of the excited state of the sys-
tem. So that, for a quite small interval of time, the
initial conditions can approximately satisfy the “con-
servative” equations (3) and (4). Thus, we can say
that the model described in this section, besides the
atoms and the electromagnetic field, implicitly con-
tains a third participant guaranteeing a relaxation of
the total system. The last property was strongly im-
posed by the choice (63) and (64) for the coefficients
𝐶 and 𝐶

′
.

4. Conclusion

We have investigated the system of 𝑁 identical two-
level long distanced atoms. The functional depen-
dence of the 𝑁 atomic state amplitudes on the
space configuration and the time is derived in the
Weisskopf–Wigner approximation.

It is shown that, with increasing the volume 𝑉 of
the system, the maximum value of probability to find
an atom in its excited state decreases.

The nature of Weisskopf–Wigner approximation
was revealed through the provided application to the
many-body system. The found solution (55) cannot
be counted as a particular one, or as a limit of such,
for the initial system of equations (3) and (4) that
represents only a closed conservative system of atoms
and an electromagnetic field. Thus, we can say that
the model described in this work, besides the atoms
and the electromagnetic field, implicitly contains a
third participant guaranteeing a relaxation of the to-
tal system in time. It is worth to note that the “com-
plete” decay of the excitations of the system was
strongly imposed by the choice of the coefficients 𝐶
(63) and 𝐶

′
(64).

The described methods of solving the system of
linear differential equations can be applied even to
more general situations where the boundary “cir-
cular” conditions are not satisfied. In certain cases,
the problem allows one to extend the system by
adding a subsystem of relatively non-sufficient num-
ber of atoms (or an atom when the expression⃒⃒⃒∑︀𝑁

𝛼 sin(kr𝛼) cos(kr𝛼)
⃒⃒⃒
< 1 is actual) without influ-

encing the main characteristics under our interest. In
addition, it is of interest to investigate the depen-
dence of the value of the mentioned construction⃒⃒⃒∑︀𝑁

𝛼 sin(kr𝛼) cos(kr𝛼)
⃒⃒⃒

on the location of the origin
of a coordinate system.

The possibility of extension of the described
method of “cyclic bonds” requires an additional inves-
tigation in the case of elements Φ𝛼𝛿 (see Eq. 8) dis-
tributed over the space angle. It can happen that the
appropriate description will become possible in the
terms of spherical harmonics. Then the introduced
“cyclic” conditions should be reformulated.

The theoretical material proposed by us requires an
experimental verification. The described model sys-
tem can be realized on atomic or molecular systems
(developing the “visible” or “infrared” modifications
of the method proposed in [9], for example), chains
of trapped ions (like in [22]), etc.

1. A.S. Sizhuk and S.M. Yezhov, Ukr. J. Phys. 58, 1009
(2013).

2. M.O. Scully and S. Zubairy, Quantum Optics (Cambridge
Univ. Press, Cambridge, 1997).

3. M.O. Scully, E.S. Fry, C.H. Raymond Ooi, and K. Wód-
kievic, Phys. Rev. Lett. 96, 010501 (2006).

4. M.O. Scully and A.A. Svidzinsky, Science 325, 1510
(2009).

5. J. Chang, Characteristics of Cooperative Spontaneous
Emission with Applications to Atom Microscopy and Co-
herent XUV Radiation Generation (Texas AM University,
2008).

6. A.A. Svidzinsky, Phys. Rev. A 85, 013821 (2012).
7. N. Skribanowitz, I.P. Herman, J.C. Mac Gillivray, and

M.S. Feld, Phys. Rev. Lett. 30, 309 (1973).
8. M. Gross and S. Haroche, Phys. Rep. 93, 301 (1982).
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А.С.Сiжук
ОДНОФОТОННЕ РОЗСIЯННЯ
СИСТЕМОЮ 𝑁 АТОМIВ: ЗАСТОСУВАННЯ
ДО ОДНО- ТА ДВОМОДОВОГО РЕЗОНАТОРА

Р е з ю м е

Розглянуто систему 𝑁 однакових дворiвневих атомiв, вза-
ємодiючих з квантованим електромагнiтним полем у резо-
нансному наближеннi. Вiдповiднi 𝑁 -частинковi амплiтуди
стану в одно- та двомодовому резонаторах порахованi для
декiлькох просторових конфiгурацiй у випадках замкнутої
консервативної та вiдкритої дисипативної систем. Природу
i структуру наближення Вайскопфа–Вiгнера було розкрито
для даного типу багаточастинкових задач. Було показано,
що просторове розташування атомiв та “доступний” об’єм
для мод поля визначають поведiнку амплiтуд станiв систе-
ми з часом. Розроблена теорiя дозволяє аналiтично опису-
вати еволюцiю системи у часi для достатньо широкого спе-
ктра просторових конфiгурацiй, якщо запровадженi специ-
фiчнi “циклiчнi” обмеження.
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