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PSEUDOGAP ANOMALIES IN THE NORMAL
STATE OF THE ATTRACTIVE HUBBARD MODELPACS 74.20.Mn, 74.25.Ha

The normal state temperature one- and two-particle Green’s functions are calculated within
the framework of the conserving self-consistent approximation accounting for the fluctuations
in the particle-particle channel for the attractive Hubbard model. The Padé continuation to
the complex plane is used to study the pole structure of the retarded one-particle Green’s func-
tion. The momentum and temperature dependences of the positions of the leading quasiparti-
cle poles are consistent with Bogolyubov’s picture, when the second leading pole emerges and
rapidly moves toward the real axes. The non-Fermi liquid behavior of the first leading pole is
detected at the intermediate coupling. The two-particle Green’s function is used to calculate
the temperature dependence of the uniform static spin susceptibility, which is shown to exhibit
the diamagnetic tendency, as the system approaches the superconducting phase transition.
K e yw o r d s: attractive Hubbard model, one- and two-particle Green’s functions, quasiparti-
cle pole.

1. Introduction

Angle-resolved photoemission experiments on the
high-temperature superconductors have provided the
evidence of the presence of the pseudogap in
the quasiparticle spectrum above the supercon-
ducting transition temperature 𝑇𝑐 [1]. The evidence
of the anomalous behavior was first observed on
Bi2Sr2CaCu2 O8+𝛿 compound [2]. Subsequently, the
same feature was observed on other families of the
cuprates [3]. This issue has been addressed before,
and is closely related, in a broad general context, to
the phenomenon of the crossover from the regime of
the BCS superconductivity to the Bose–Einstein con-
densation (BEC) of the preformed pairs [4, 5]. In the
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latter, it was considered using the attractive Hubbard
model in the range of intermediate couplings, where
the Gaussian approximation to the functional inte-
gral formulation of the continuum model was consid-
ered. The general picture that emerges out of the cal-
culations is presented on Fig. 1. The presence of the
pseudogap regime between 𝑇𝑐 and 𝑇 * > 𝑇𝑐 is related
to the strong pairing fluctuations above the supercon-
ducting transition temperature 𝑇𝑐. At 𝑇 > 𝑇 *, the
conventional Fermi liquid picture is recovered. For a
comprehensive review and available analytical results,
see [6].

2. Diagrammatic Approach

The Gaussian approximation is related to the dia-
grammatic approach, when the irreducible particle-
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particle vertex 𝑉 is replaced with the bare potential
(see Fig. 2). This completes the set of equations and
allows one to obtain the full self-consistent solution
for the Green’s function [7]. The temperature Green’s
function has to be analytically continued to the real
𝜔-axis to obtain the retarded Green’s function, which,
in turn, allows one to study the spectral functions of
a system: 𝜋𝐴(k, 𝜔) = −ℑ𝐺𝑅(k, 𝜔+𝑖0+, 𝑇 ). The con-
ventional method is the Padé approximation [8].

The purpose of this paper is to report on the re-
sults of the self-consistent approach in the case of the
attractive Hubbard model, which has pairing correla-
tions in the 𝑠-wave channel and the superconductiv-
ity in the ground state. The calculations were done in
the normal state on a two-dimensional square lattice
with 64×64 sites. The maximum number of Matsub-
ara frequencies was 512 for the lowest temperature.

The generalized frequency- and momentum-depen-
dent gap equation is necessary to assure that the cal-
culations are done in the normal state of the system
(𝑇 > 𝑇𝑐). Within the accepted approximation at 𝑇 =
=𝑇𝑐, it reduces to the condition 𝜆=1, where 𝜆= |𝑈 |×
×𝜒0

𝑝𝑝(𝑞 = 0), and the renormalized particle-particle
bubble is defined as 𝜒0

𝑝𝑝(𝑞) = (𝑇/𝑁)
∑︀

𝑘 𝐺(𝑘)𝐺(𝑞−𝑘)
in the 𝑠−wave case (a similar quantity can be easily
introduced for models with different symmetries of
the superconducting order parameter and will be ad-
dressed in future publications) [9]. At 𝑇 > 𝑇𝑐, 𝜆 < 1,
which controls being in the normal state. Note that,
within the accepted approximation, 𝜆 is directly re-
lated to the pair susceptibility 𝜒𝑝𝑝(𝑞), which is pro-
portional to 𝜆/(1−𝜆) and exhibits the 2D-𝑋𝑌 critical
scaling over a large temperature interval. Such anal-
ysis was performed using the numerically calculated
𝜆(𝑇 ) depicted in Fig. 3 [10]. As is seen, 𝜆 < 1 over
the accessed temperature interval.

The Hamiltonian reads

𝐻 =− 𝑡
∑︁
⟨ij⟩,𝜎

(︁
𝑐†i,𝜎𝑐j,𝜎 + h.c.

)︁
− 𝜇

∑︁
i,𝜎

𝑛i𝜎 +

+
𝑈

𝑁

∑︁
k,p,q

𝑐†k↑𝑐p↑𝑐
†
q−k↓𝑐q−p↓, (1)

where 𝑐†k,𝜎 creates an electron in the state k with spin
projection 𝜎, 𝑛i𝜎 is the number operator, the sum ⟨ij⟩
runs over the pairs of nearest-neighbor lattice sites,
𝑈 is the strength of the potential, 𝑡 is the nearest-
neighbor hopping amplitude, and 𝜇 is the chemical
potential.

Fig. 1. Qualitative temperature-coupling phase diagram of
the attractive Hubbard model. The curve with a hump repre-
sents the approximate (model-specific) dependence of the crit-
ical temperature 𝑇𝑐 on the potential strength 𝑉 . The pseudo-
gap regime corresponds to the region between 𝑇𝑐 and 𝑇 *. The
acronyms used in the figure are: SC – superconductivity,
BEC – Bose–Einstein condensation, BCS – Bardeen–Cooper–
Schrieffer (original theory of superconductivity), FL – Fermi
liquid

 
 
 

!
!
!

  
  
  

!!
!!
!!

  
  
!!
!!

 
 
!
!

   !!! 
 
 
 
!
!
!
!

 
 

 
 

 
 

!
!

!
!

!
!

  !!

   !!!

 
 
 
 

!
!
!
!

 
 

 
 

!
!

!
!

 
 
 
 
 
 

!
!
!
!
!
!

 
 
 
 

!
!
!
!

 
 

 
 

!
!

!
!

 
 
 
 
 
 

!
!
!
!
!
!

 
 
 
 

!
!
!
!

  !!

   !!!

 
 
 
 

!
!
!
!

 
 

 
 

 
 

!
!

!
!

!
!

 
 
 
 

 

!
!
!
!

!

  
  
  
  

!!
!!
!!
!!

  
  
 
  

!!
!!
!
!! 
 
  
  

!
!
!!
!!

  
  
  

!!
!!
!!

 
 
 

!
!
!

 
 
 

!
!
!

 
 
!
!

 
 
!
!

           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           

!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!
!!!

Bethe-Salpeter Equation 

Two-particle Green’s Function

Self-Energy

- +

=

= - -

Γ

G

Γ

Γ V V V Γ

II

Fig. 2. Set of equations for one- and two-particle Green’s func-
tions. Note that both Green’s functions depend on the same
full vertex in the exact treatment, but the set is incomplete [7]

The results discussed in this study were mostly ob-
tained at the intermediate coupling 𝑈 = −4𝑡 (some
results were obtained at 𝑈 = −2𝑡, 𝑈 = −6𝑡, and
𝑈 = −8𝑡 for comparison or contrasting the differ-
ence; see the text and figures for details) and the
moderate density ⟨𝑛⟩ = 0.5 corresponding to the
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Fig. 3. Dependence of the parameter 𝜆 (which is directly
related to the pair susceptibility 𝜒𝑝𝑝(𝑞), see the text) on the
coupling strength for various coupling strengths at the density
𝑛 = 0.5

Fig. 4. Density of states vs temperature. The pseudogap de-
velops near the chemical potential (𝜔 = 0) as the temperature
decreases. Energy unit is 𝑡 in this figure

quarter-filled system. The final temperature Green’s
function was analytically continued to the complex
plane, which allowed us to extract the position of
leading poles and to study their temperature and mo-
mentum behaviors.

The density of states 𝑁(𝜔) = 1
𝑁

∑︀
k 𝐴(k, 𝜔) is

plotted in Fig. 4 at various temperatures. This pic-
ture agrees with the Monte-Carlo calculations [11]
and shows a nontrivial feature of the normal state of
the Fermi-system with on-site two-particle attraction:

Fig. 5. Spectral functions 𝐴(k, 𝜔) for various momenta in a
vicinity of the non-interacting Fermi surface at 𝑇 = 0.115𝑡

the depletion of the spectral weight at the chemical
potential level (in Fig. 4 at 𝜔 = 0).

The spectral functions in a vicinity of the non-
interacting Fermi surface are shown in Fig. 5 on
the log-scale. The momenta are given in terms of
𝜋/32. The Fermi momentum corresponds to kF =
= (18𝜋/32, 0). One can easily notice that the curves
have a pronounced two-peak structure: one peak is
below, and one is above the Fermi level. Both peaks
are evidently overdamped as compared with the con-
ventional Fermi liquid picture.

3. Analytic Continuation

To address such puzzling features, the pole structure
of the Green’s function is studied. Namely, the Padé
continuation is performed to the lower complex plane
to locate the positions of the leading poles. The Padé
approximant can be represented as a series:

𝐺(𝑧) ≈
∑︁
𝑖

𝑅𝑖

𝑧 − 𝑃𝑖
, (2)

and the position 𝑃𝑖 of a pole defines the energy and
the lifetime of the one-particle excitation. The analy-
sis of the pole positions shows that, at a low enough
temperature, there are only two isolated poles close
to the real axis. They define the two-peak structure of
the spectral function, while others mostly contribute
to the background and are far below in the lower
half-plane. The dynamics of the leading poles’ motion
with temperature is depicted in Fig. 6. The strongest
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pole is located at negative frequencies and corre-
sponds to a Landau quasiparticle, which is stable be-
low 𝑇 *. Within the considered temperature interval
0.1𝑡 < 𝑇 < 0.2𝑡, its displacement is negligible. The
second leading pole located above the chemical po-
tential is much weaker than the first one and rapidly
moves toward the real axis to occupy the position that
is consistent with Bogolyubov’s excitation.

The remarkable fact that it happens above 𝑇𝑐 tes-
tifies to the presence of strong pairing correlations
in the normal state. Note that this behavior is not
present in the weak-coupling BCS limit. The reason
is that, at an intermediate coupling strength, the pair
size is much smaller, and, thus, the pair correlations
can acquire a considerable strength well before estab-
lishing the coherent state.

The incipient pairing instability changes the tem-
perature dependence of the lifetime of a Landau qua-
siparticle defined as the reciprocal imaginary part of
the first pole’s position. The inverse lifetime behav-
ior becomes marginal (proportional to 𝑇 ) over an
extended temperature range. In Fig. 7, the marginal
temperature dependence of the position of the lead-
ing pole is compared with the 2D Fermi liquid depen-
dence, which can be parametrized as [12]

1

𝜏
= −𝜋

2
𝑤

𝑇 2

𝑇F𝛼
ln

𝑇

𝑇F𝛼
, (3)

where 𝑇F is the Fermi temperature, and 𝛼 and 𝑤
are fitting parameters. Figure 7 compares two dis-
tinct cases: 𝑈 = −4𝑡 (Fig. 7, a), when the pairing
instability in the system creates strong fluctuations
associated with it, and 𝑈 = −2𝑡 (Fig. 7, b) when the
system is much less affected by the strength of the
superconducting fluctuations in its normal state. The
latter case is easily fitted by the 2D Fermi liquid de-
pendence, while the strong coupling case allows for
no fitting (note: all cases appear to be linear at the
first glance).

Up to now, we have discussed the pseudogap behav-
ior in our approximation in the single-particle Green’s
function, which carries information about the spectral
weight. The results of numerical calculations of the
uniform spin susceptibility presented in Fig. 8 were
obtained, by using the two-particle Green’s function
within the framework of the same approximation (see
Fig. 2). It shows that the temperature dependence of
the spin susceptibility also demonstrates a pseudogap
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Fig. 6. Motion of two leading poles with decreasing tempera-
ture. All energies are given in terms of 𝑡
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F
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F

Fig. 7. Marginal temperature dependence of the lifetime of
a Landau quasiparticle as compared to the 2D Fermi liquid
picture (see the text)

Fig. 8. Temperature dependence of the uniform static spin
susceptibility for various coupling strengths at the density
𝑛 = 0.5
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behavior, similar to what is observed in NMR experi-
ments [13]. The pseudogap feature of the spin suscep-
tibility has also been shown to take place in the case
of a model, which has the d-wave superconductivity
in its ground state. More details of the calculations
of the d-wave case will be presented elsewhere [9].

Thus, we have numerically performed the complex
plane analysis of the Green’s function pole structure
of the 2D attractive Hubbard model in the pseudogap
regime. The study reveals the marginal (non-Fermi
liquid) temperature dependence of the quasiparticle’s
lifetime and the development of a Bogolyubov-like
two-pole structure of the Green’s function at low tem-
peratures.
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ПСЕВДОЩIЛЬОВI АНОМАЛIЇ В НОРМАЛЬНОМУ
СТАНI ПРИТЯГАЛЬНОЇ МОДЕЛI ХАББАРДА

Р е з ю м е

Одно- i двочастковi температурнi функцiї Грiна нормаль-
ного стану притягальної моделi Хаббарда розраховуються
в рамках самоузгодженого флуктуацiйного наближення в
каналi частинка–частинка. Аналiтичне продовження в ком-
плексну площину було використано для вивчення полюсної
структури запiзнiлої функцiї Грiна однiєї частинки. Iмпуль-
сна i температурна залежностi позицiй провiдного полюса
квазiчастинки узгоджуються з теорiєю Боголюбова, коли
другий ведучий полюс з’являється i швидко рухається в бiк
реальної осi. Не-Фермi-рiдинну поведiнку першого ведучого
полюса було виявлено в областi промiжного зв’язку. Дво-
часткова функцiя Грiна була використана для розрахун-
ку температурної залежностi рiвномiрної статичної спiно-
вої сприйнятливостi, яка проявляє дiамагнiтнi властивостi,
у мiру того, як система наближається до надпровiдного фа-
зового переходу.
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