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We construct a pseudo-unitary scattering matrix for the Duffin–Kemmer–Pétiau (DKP) par-
ticles when interacting with a barrier potential.
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1. Introduction

The computation of the 𝑆-matrix is the main aim
of the scattering theory. It finds its physical inter-
pretation when we connect it with the coefficients
of reflection and transmission. The realistic cases in
the study of the problems of scattering are gener-
ally three-dimensional, the one-dimensional case be-
ing an approximation representing this reality, given
that the one and three-dimensional scattering prob-
lems have interesting similarities, like the case of the
scattering from a monosymmetric potential in one di-
mension which is similar to that of the triplet nucleon-
nucleon scattering (in three dimensions).

The 𝑆-matrix for the Feshbach–Villars (FV) equa-
tion for spin 0 and 1/2 particles in the presence of a
Woods-Saxon potential was constructed in [1] using
an unified approach, and the transmission and reflec-
tion coefficients were deduced.

The physical matrix elements of an 𝑆-matrix in the
Duffin–Kemmer–Pétiau and Klein–Gordon–Fock the-
ories coincide in cases of spin 0 particles interacting
with external and quantized Maxwell and Yang-Mills
fields and in case of an external gravitational field
(without and with torsions) [2].
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In this paper, we will construct the scattering ma-
trix for the one-dimensional DKP equation in case
of the interaction of spin 0 and spin 1 particles with
a barrier potential. The related Green function was
given in [3] by using the Sakata and Taketani (ST)
decomposition, which brings out the “particle compo-
nents” into one distinct Hamiltonian constructed on
the basis of the FV analogy. Note that the particle
components contain all what is necessary to describe
the particle and exhibit the particle-antiparticle na-
ture of the DKP equation which is revealed by the
charge density.

Let us recall that the DKP equation [4–7], which is
similar in structure to the Dirac equation, describes
scalar (spin 0) and vectorial (spin 1) particles coupled
to an electromagnetic field and will be written as (~ =
= 𝑐 = 1):

[𝑖𝛽𝜇 (𝜕𝜇 + 𝑖𝑒𝐴𝜇)−𝑚]𝜓 (r, 𝑡) = 0, (1)

and the matrices 𝛽𝜇 satisfy the DKP algebra

𝛽𝜇𝛽𝜈𝛽𝜆 + 𝛽𝜆𝛽𝜈𝛽𝜇 = 𝑔𝜇𝜈𝛽𝜆 + 𝑔𝜈𝜆𝛽𝜇. (2)

The convention for the metric tensor is 𝑔𝜇𝜈 =
= diag(1,−1,−1,−1). Algebra (2) has three irre-
ductible representations, whose degrees are 1, 5, and
10. The first one is trivial, having no physical content,
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the second and third ones correspond, respectively, to
the scalar and vectorial representations. For the spin
0, the 𝛽𝜇 are given by

𝛽0 =
(︁
𝜃 0
0 0

)︁
; 𝛽𝑖 =

(︂
0 𝜌𝑖

−𝜌𝑖𝑇 0

)︂
; 𝑖 = 1, 2, 3, (3)

with

𝜌1 =
(︁−1 0 0

0 0 0

)︁
, 𝜌2 =

(︁
0 −1 0
0 0 0

)︁
,

𝜌3 =
(︁
0 0 −1
0 0 0

)︁
, 𝜃 =

(︁
0 1
1 0

)︁
.

(4)

The 𝜌𝑇 denotes the transposed matrix of 𝜌, and 0
denotes the zero matrix. For the case of spin 1, 𝛽𝜇

are given by

𝛽0 =

⎛⎜⎜⎝
0 0 0 0

0
𝑇

0 1 0

0
𝑇

1 0 0

0
𝑇

0 0 0

⎞⎟⎟⎠;

𝛽𝑖 =

⎛⎜⎜⎝
0 0 𝑒𝑖 0

0
𝑇

0 0 −𝑖𝑠𝑖
−𝑒𝑇𝑖 0 0 0

0
𝑇 −𝑖𝑠𝑖 0 0

⎞⎟⎟⎠; 𝑖 = 1, 2, 3,

(5)

with

𝑒1 = (1, 0, 0); 𝑒2 = (0, 1, 0);

𝑒3 = (0, 0, 1); 0 = (0, 0, 0).
(6)

The 𝑠𝑖 are the standard nonrelativistic (3× 3) spin 1
matrices, and 0 and 1 denotes, respectively, the zero
matrix and the unity matrix. When the interaction
is scalar and independent of time, namely the square
barrier potential

𝑉 (𝑧) = 𝑉0𝜃 (𝑎− |𝑧|), (7)

we choose the form 𝑒−𝑖𝐸𝑡𝜅(𝑧) for 𝜓(𝑧, 𝑡), and we ob-
tain the following eigenvalue equation [8]:[︂
𝛽0 (𝐸 − 𝑒𝑉 ) + 𝑖𝛽3 𝑑

𝑑𝑧
−𝑚

]︂
𝜅 (𝑧) = 0. (8)

Here, 𝜅 (𝑧)𝑇 = (𝜙,A,B,C), 𝐴,𝐵, and 𝐶 are, re-
spectively, vectors with components 𝐴𝑖, 𝐵𝑖, and 𝐶𝑖;
𝑖 = 1, 2, 3. The square barrier potential is one of the
simple models of potentials realizing the specific phys-
ical situation of the pair-creation phenomena [9–11],
which is intimately related to the tunnel phenomena.

According to the equations they satisfy, one gathers
the components of 𝜅 (𝑧) in this way:

Ψ𝑇 = (𝐴1, 𝐴2, 𝐵3), Φ𝑇 = (𝐵1, 𝐵2, 𝐴3),

Θ𝑇 = (𝐶2,−𝐶1, 𝜙); and 𝐶3 = 0,
(9)

with

OKGΨ = 0;
(︁
Φ
Θ

)︁
=

(︂𝐸−𝑒𝑉
𝑚
𝑖
𝑚

𝑑
𝑑𝑧

)︂
⊗Ψ. (10)

Then one will designate, by 𝜑 (𝑧)
𝑇

= (Ψ,Φ,Θ) , the
solution of (8), 𝑂KG = 𝑑2

𝑑𝑧2 +
[︁
(𝐸 − 𝑒𝑉 )

2 −𝑚2
]︁

being
the Klein–Gordon (KG) operator.

2. Scattering Matrix

When the wave representing a particle is incident
on a potential, it is partially transmitted and par-
tially reflected. The asymptotic forms of diverging
waves can be determined at the time very long af-
ter the interaction and, therefore, determined by the
𝑆-matrix [12]. We consider a vectorial DKP parti-
cle to be subjected to the barrier potential (7). As
|𝑧| → ∞, 𝑉 (𝑧) → 0 sufficiently fast so that 𝜑 (𝑧) , the
solution of Eq. (8) becomes that for a free particle. In
what follows, we will try to examine the transmission-
reflection problem, in which the particle is incident,
say, from the left (−∞) or from the right (+∞). The
asymptotic form for the wave function 𝜑 (𝑧) is given
by [8]

𝜑± (𝑧) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑒±𝑖𝑘(𝑧+𝑎)𝑀 ⊗V+

+ 𝑒∓𝑖𝑘(𝑧+𝑎)𝑁 ′ ⊗V

{︂
𝑧 → −∞ for (+),
𝑧 → +∞ for (−),

𝑒±𝑖𝑘(𝑧−𝑎)𝑀 ′ ⊗V+

+ 𝑒∓𝑖𝑘(𝑧−𝑎)𝑁 ⊗V

{︂
𝑧 → +∞ for (+),
𝑧 → −∞ for (−).

(11)

So, the incoming and outgoing parts of the wave func-
tion will be written as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜑in± (𝑧) = 𝜃 (−𝑧) 𝑒±𝑖𝑘(𝑧+𝑎)𝑀 ⊗V+

+ 𝜃 (𝑧) 𝑒∓𝑖𝑘(𝑧−𝑎)𝑁 ⊗V,

𝜑out± (𝑧) = 𝜃 (𝑧) 𝑒±𝑖𝑘(𝑧−𝑎)𝑀 ′ ⊗V+

+ 𝜃 (−𝑧) 𝑒∓𝑖𝑘(𝑧+𝑎)𝑁 ′ ⊗V,

(12)

where 𝑘 =
√
𝐸2 −𝑚2. The suffix ± refers to the sit-

uation where the wave is incident from ∓∞, and V
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is a constant vector of dimension 3 × 1, whose com-
ponents are related to the three directions of the spin
1. The vectors 𝑀 ;𝑀 ′;𝑁 ;𝑁 ′ are defined by

𝑀 =

⎛⎝ 𝐵
𝐵 𝐸

𝑚

−𝐵 𝑘
𝑚

⎞⎠; 𝑀 ′ =

⎛⎝ 𝐶
𝐶 𝐸

𝑚

−𝐶 𝑘
𝑚

⎞⎠;
𝑁 =

⎛⎝ 𝐷
𝐷 𝐸

𝑚

𝐷 𝑘
𝑚

⎞⎠; 𝑁 ′ =

⎛⎝ 𝐴
𝐴𝐸

𝑚

𝐴 𝑘
𝑚

⎞⎠.
(13)

The 𝑆-matrix relating 𝜑in± (𝑧) to 𝜑out± (𝑧) will be
written as(︂
𝑀 ′

𝑁 ′

)︂
⊗V =

(︁
𝑆𝑎𝑎 𝑆𝑎𝑏
𝑆𝑏𝑎 𝑆𝑏𝑏

)︁ [︁(︁
𝑀
𝑁

)︁
⊗V

]︁
, (14)

where 𝑆𝑎𝑎, 𝑆𝑏𝑎, 𝑆𝑎𝑏, and 𝑆𝑏𝑏 are block matrices of
dimension 9 × 9. Applied to the two special cases
(𝑀,𝑁) = (0,1) and (𝑀,𝑁) = (1,0), where 1𝑇 =
= (1, 1, 1) and 0𝑇 = (0, 0, 0), the relation above leads
to

𝑆 =
(︁
𝑇+ 𝑅−
𝑅+ 𝑇−

)︁
⊗ 𝐼9. (15)

We define the pseudo-unitarity of 𝑆 by

𝑆𝑆 = 𝑆𝑆 = 𝐼18,

where

𝑆 =
(︁
𝐼2 ⊗̃︁𝛽0

)︁
𝑆+
(︁
𝐼2 ⊗̃︁𝛽0

)︁
, (16)

and

̃︁𝛽0 =

(︃
0 1 0
1 0 0
0 0 0

)︃
; 𝐼18 =

(︁
𝐼2 ⊗̃︁𝛽0

)︁2
, (17)

where 1 and 0 are, respectively, the (3× 3) unit and
null matrices. This leads to

|𝑇+| = |𝑇−| ; |𝑅+| = |𝑅−| . (18)

The parity of 𝑉 (𝑧) involves 𝑆𝑆* = 𝑆*𝑆 = 1. This
implies that

𝑅+ = 𝑅−; 𝑇+ = 𝑇−. (19)

Finally, 𝑆 takes the form

𝑆 =
(︁
𝑇 𝑅
𝑅 𝑇

)︁
⊗ 𝐼9. (20)

While putting 𝐷 = 0 in Eq. (11) , we obtain R
and T:

R= |𝑅|2 =

⃒⃒⃒⃒
𝐴

𝐵

⃒⃒⃒⃒2
; T= |𝑇 |2 =

⃒⃒⃒⃒
𝐶

𝐵

⃒⃒⃒⃒2
. (21)

Note that R and T are given in [8] by

R =

(︂
𝑘2 − 𝑝2

2𝑝𝑘

)︂2
sin2 2𝑝𝑎

1 +

(︂
𝑘2 − 𝑝2

2𝑝𝑘

)︂2
sin2 2𝑝𝑎

, (22)

T =
1

1 +

(︂
𝑘2 − 𝑝2

2𝑝𝑘

)︂2
sin2 2𝑝𝑎

, (23)

with 𝑝 =
√︁
(𝐸 − 𝑒𝑉0)

2 −𝑚2.
The scattering matrix for the spin 0 case would be

deduced from that for the spin 1. Instead of being
18× 18, it would only be 6× 6, since we remove the
tensorial product (⊗V) everywhere it appears in the
relations above, since the particle of spin 0 is obvi-
ously scalar, not vectorial. Therefore,

𝑆 =
(︁
𝑇 𝑅
𝑅 𝑇

)︁
⊗ 𝐼2. (24)

The pseudo-unitarity of 𝑆 is defined by

𝑆𝑆 = 𝑆𝑆 = 𝐼6 (25)

with

𝑆 =
(︁
𝐼2 ⊗̃︁𝛽0

)︁
𝑆+
(︁
𝐼2 ⊗̃︁𝛽0

)︁
(26)

and

̃︁𝛽0 =

(︃
0 1 0
1 0 0
0 0 0

)︃
; 𝐼6 =

(︁
𝐼2 ⊗̃︁𝛽0

)︁2
. (27)

Remark that if we consider only the two first compo-
nents of 𝑀,𝑀 ′, 𝑁 and 𝑁 ′, 𝑆 becomes of dimension
4× 4 identically to the case of 𝐹𝑉 [13].

3. Conclusion

We have constructed the DKP scattering matrix for
the time-like Lorentz vector interaction. For a scalar
particle, the 𝑆-matrix has been yet constructed in the
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literature using the FV and the KG theories. In this
paper, it is deduced from that of a vectorial particle
using the DKP theory in case of the interaction with
a barrier potential, and its physical elements coincide
with those of the FV theory.
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МАТРИЦЯ РОЗСIЯННЯ В ТЕОРIЇ ДКП.
ВИПАДОК БАР’ЄРНОГО ПОТЕНЦIАЛУ

Р е з ю м е

Побудована псевдоунiтарна матриця розсiювання для Дуф-
фiн–Кеммер–Петi (ДКП) частинок, що взаємодiють за до-
помогою бар’єрного потенцiалу.
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