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The supercritical instability in a system of two identical charged impurities in gapped graphene
described in the continuous limit by the two-dimensional Dirac equation has been studied. The
case where the charge of each impurity is subcritical, but their sum exceeds the critical value
calculated in the version with a single Coulomb center, is considered. Using the developed
variational method, the dependence of the critical distance 𝑅cr between the impurities on their
total charge is calculated. The 𝑅cr-value is found to grow as the total impurity charge increases
and the quasiparticle band gap decreases. The results of calculations are compared with those
obtained in earlier researches.
K e yw o r d s: graphene, supercritical instability, critical distance, Kantorovich variational
method.

1. Introduction

The gapless linear spectrum of graphene was deter-
mined rather long ago [1], while constructing the
band model of graphite provided that the inter-
action between the planes of carbon atoms is ne-
glected. Nevertheless, graphene itself was obtained
for the first time only in 2004 [2], which launched its
intense theoretical and experimental study. Graphene
permanently attracts attention of scientists through-
out the world owing to its unique properties. In par-
ticular, it is one of the first two-dimensional crys-
tals and possesses the ultrahigh mechanical strength
and the charge carrier mobility, which determines the
prospects of its application in novel nanoelectron-
ics. The physics of graphene is also of interest from
the viewpoint of fundamental scientific researches, be-
cause it turned out to have a deep relation to quan-
tum electrodynamics (QED) and other quantum field
theories.

Graphene has a honeycomb crystalline lattice. In
the tight-binding approximation, the spectrum of
low-energy quasiparticle excitations is linear, and the
latter are described by a 2 + 1-dimensional mass-
less Dirac equation [3–6]. Hence, in the continuous
limit, we obtain an effective quantum field theory
with 2 + 1-dimensional Dirac fermions that interact
with the ordinary three-dimensional Coulomb poten-
tial, ∼ 1/𝑟. Those circumstances testify to a capabil-
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ity of the solid-state implementation of experiments
aimed at detecting such QED phenomena as the Klein
paradox, Schwinger effect (the creation of pairs in
a strong external electric field), supercritical atomic
collapse, and others, which have not yet been ob-
served in the Nature. The Klein tunneling was really
revealed in graphene [7], and the supercritical atomic
collapse of charged impurities was recently observed
experimentally [8].

The solution of the relativistic Kepler problem with
regard for the finite size of an atomic nucleus [9]
showed that, if the so-called critical charge of a nu-
cleus, 𝑍cr ≈ 170, is exceeded, the energy levels of
bound states dives into the lower continuum, and
the escape of positrons is observed [10, 11]. However,
there are no nuclei with this charge, and, hence, the
effect has not been observed. Somewhat later, there
emerged an idea concerning head-on (or almost head-
on) collisions between the nuclei of heavy atoms, e.g.,
uraniums [10, 12–14]. In this case, the total charge of
the nuclei exceeds the critical value, and there ex-
ists a distance between the nuclei, at which the low-
est bound state dives into the lower continuum. This
distance is also called critical. Unfortunately, in the
relativistic problem of two centers, the variables
cannot be separated in any coordinate system, so
that an analytical solution cannot be derived [10,
11]. However, the calculations with the help of ap-
proximate quantum-mechanical methods, in partic-
ular, the variational one [15], were carried out, and

ISSN 2071-0194. Ukr. J. Phys. 2014. Vol. 59, No. 5 531



O.O. Sobol

Fig. 1. Electron in the field of two Coulomb impurities

the dependences of the critical distance between the
nuclei on the total system charge were plotted.

In the physics of graphene, the Fermi velocity,
𝑣F ≈ 106 m/s, appears instead of the light velocity
𝑐. As a result, the “fine structure constant” for graphe-
ne is 𝛼 = 𝑒2

~𝑣F ≈ 2.19. However, graphene is actually
located on a dielectric substrate. Therefore, the inter-
action with an impurity with charge 𝑍𝑒 is described
by the constant 𝛽 = 𝑍𝛼/𝜅, where 𝜅 is the dielectric
permittivity of a substrate. The problem of supercrit-
ical instability of a single charged impurity in gapless
graphene was studied in detail in works [16, 17]. In
the case of graphene with the gap 2Δ and the reg-
ularized Coulomb potential 𝑉 (𝑟) = −𝑍𝑒2

𝜅𝑟 𝜃(𝑟 − 𝑅)−
−𝑍𝑒2

𝜅𝑅 𝜃(𝑅−𝑟), the transition to the supercritical mode
was found to occur at 𝛽c = 1/2+𝜋2/ log2(𝑐Δ𝑅/~𝑣F),
where 𝑐 ≈ 0.21.

Although the supercritical instability manifests it-
self in graphene already at impurity charges 𝑍 & 1,
a possibility to detect it is illusory because of exper-
imental difficulties associated with the production of
impurities, whose charge is larger than 1. The solu-
tion of this task consists in arranging a few charged
impurities on a small section of graphene. Just this
approach was implemented by a group of scientists
from the University of California [8], while observ-
ing the supercritical instability in graphene (ionized
dimers of calcium were used as impurities). Hence,
despite that the coupling constant in graphene is
larger by a factor of 300, the necessity to consider
a few, rather than one, impurities located closely to
one another arises in this case as well, the configu-
ration with two Coulomb centers being the simplest
variant. In work [19], the critical distance between
impurities was calculated, and the position and the
width of a resonance that arises in the lower contin-
uum in the supercritical mode were determined in the

first approximation with the use of variational tech-
nique.

This work aims at obtaining the next (second)
approximation in the framework of the variational
method. The article structure is as follows. In Sec-
tion 2, the problem is formulated, and the asymp-
totics for the wave function of a state that dives into
the lower continuum are determined. The variational
method to find the critical distance between impu-
rities is described in Section 3. In Section 4, the re-
sults obtained are discussed, and some conclusions
are made.

2. Statement of the Problem

In the tight-binding approximation, the band spec-
trum of graphene has a valence band and a conduc-
tion band that touch each other at two nonequiva-
lent points of the reciprocal crystalline lattice. These
are the so-called Dirac points K±. The spectrum of
low-energy excitations is linear. The effective Hamil-
tonian that describes electron quasiparticle excita-
tions in vicinities of the Dirac points has the form
of a 2+1-dimensional Dirac Hamiltonian. In the case
where there is a quasiparticle gap between the valence
and conduction bands, the Hamiltonian also includes
the mass term

𝐻 = 𝑣F𝜏𝑝+ 𝜉Δ𝜏𝑧 + 𝑉 (𝑟), (1)

where 𝑝 is the canonical momentum, 𝜏𝑖 are the Pau-
li matrices, and Δ is the quasiparticle gap half-
width. This Hamiltonian operates in the space of two-
component spinors Ψ𝜉𝑠 distinguished by the valley
(𝜉 = ±) and spin (𝑠 = ±) subscripts. It is general-
ly adopted that Ψ𝑇

+𝑠 = (𝜓𝐴, 𝜓𝐵)𝐾+𝑠 and Ψ𝑇
−𝑠 =

= (𝜓𝐵 , 𝜓𝐴)𝐾−𝑠, where 𝐴 and 𝐵 are the correspond-
ing sublattices of the hexagonal lattice in graphene.
The interaction potential reads

𝑉 (r) = −𝑒
2

𝜅

(︂
𝑍1

𝑟1
+
𝑍2

𝑟2

)︂
, (2)

where 𝜅 is the dielectric permittivity of the substrate,
𝑍1,2 are the impurity charges, and 𝑟1,2 = |r±R/2| are
the distances reckoned from the Coulomb impurities
to the electron (see Fig. 1). The potential does not
depend on the spin, so that we will omit the spin
subscript below. We also suppose that the electron
is located near the Dirac point 𝐾+. If the electron is
located near the point 𝐾_, Δ has to be substituted by

532 ISSN 2071-0194. Ukr. J. Phys. 2014. Vol. 59, No. 5



Variational Method for the Calculation of Critical Distance

−Δ everywhere. In recent experiments [8], identical
impurities were considered, and we also put 𝑍1 =
= 𝑍2 = 𝑍 in this work.

Hence, the Dirac equation for an electron in the
potential of two charged impurities looks like

(𝑣F𝜏𝑥𝑝𝑥 + 𝑣F𝜏𝑦𝑝𝑦 +Δ𝜏𝑧 + 𝑉 (r))Ψ(r) = 𝐸Ψ(r). (3)

For the two-component spinor Ψ(r) = (𝜑, 𝜒)𝑇 , it can
be rewritten in the form⎧⎪⎪⎨⎪⎪⎩
(𝐸 − 𝑉 −Δ)𝜑+ 𝑖𝑣F

(︂
𝜕

𝜕𝑥
− 𝑖

𝜕

𝜕𝑦

)︂
𝜒 = 0,

(𝐸 − 𝑉 +Δ)𝜒+ 𝑖𝑣F

(︂
𝜕

𝜕𝑥
+ 𝑖

𝜕

𝜕𝑦

)︂
𝜑 = 0.

(4)

Expressing the component 𝜒 from the second equa-
tion of system (4) and substituting it to the first
one, we obtain the following second-order differential
equation for the spinor component 𝜑:

(𝜕2𝑥 + 𝜕2𝑦)𝜑+

𝜕𝑉
𝜕𝑥 − 𝑖𝜕𝑉𝜕𝑦
𝐸 − 𝑉 +Δ

(︂
𝜕𝜑

𝜕𝑥
+ 𝑖

𝜕𝜑

𝜕𝑦

)︂
+

+ 𝑣−2
F

(︀
(𝐸 − 𝑉 )2 −Δ2

)︀
𝜑 = 0. (5)

The supercritical instability takes place when the
lowest bound state dives into the lower continuum,
i.e. when 𝐸 = −Δ [10,11]. In the further calculations,
only this energy value will be considered.

2.1. Asymptotic behavior of the wave function

Let us analyze the asymptotic behavior of the wave
function at large distances, 𝑟 → ∞. In this limit, the
potential looks like

𝑉 (r) = −𝜁𝑣F
(︂
1

𝑟
+
𝑅2

4𝑟3
𝑃2(cos𝜙) +𝑂

(︂
1

𝑟5

)︂)︂
, (6)

where 𝜁 = 2𝑍𝛼/𝜅, and 𝑃2(𝑥) is the Legendre polyno-
mial of the second order. Substituting potential (6)
into Eq. (5) and preserving only the most contribut-
ing terms, we obtain

𝜑′′ +
2

𝑟
𝜑′ +

(︂
𝜁2

𝑟2
− 2𝑚𝜁

𝑟

)︂
𝜑 = 0, (7)

where 𝑚 = Δ/𝑣F is the inverse Compton wavelength
of quasiparticles. The solution of this equation van-
ishing at infinity is described by the Macdonald func-
tion as follows:

𝜑(𝑟) = 𝐶𝑟−1/2𝐾𝑖𝛾(
√︀

8𝑚𝜁𝑟), 𝛾 =
√︀
4𝜁2 − 1. (8)

Then, with regard for the asymptotic behavior of the
Macdonald function [20], we have

𝜑asym(𝑟) = 𝐶𝑟−3/4 exp(−
√︀
8𝑚𝜁𝑟), 𝑟 → ∞. (9)

To study the asymptotic behavior of the solution in
a vicinity of either of the impurities, it is convenient to
change to the elliptic coordinate system (𝜉, 𝜂), where

𝜉 ≡ 𝑟1 + 𝑟2
𝑅

, 𝜂 ≡ 𝑟1 − 𝑟2
𝑅

. (10)

The new coordinates can be varied within the in-
tervals

1 ≤ 𝜉 <∞, −1 ≤ 𝜂 ≤ 1,

and the impurities are located at the points (𝜉 = 1,
𝜂 = ±1).

In the elliptic coordinates, the interaction potential
looks like

𝑉 (r) = − 2𝜁𝑣F𝜉

𝑅(𝜉2 − 𝜂2)
. (11)

In a vicinity of either of the impurities, the quantity
𝜉2 − 𝜂2 is small. In the elliptic coordinates, Eq. (5)
reads

4

𝑅2 (𝜉2 − 𝜂2)

[︂√︀
𝜉2 − 1

𝜕

𝜕𝜉

(︂√︀
𝜉2 − 1

𝜕

𝜕𝜉

)︂
+

+
√︀
1− 𝜂2

𝜕

𝜕𝜂

(︂√︀
1− 𝜂2

𝜕

𝜕𝜂

)︂]︂
𝜑+

+
4

𝑅2𝜉(𝜉2 − 𝜂2)3

[︂
𝜉4𝜂 + 3𝜉2𝜂3 − 3𝜉2𝜂 − 𝜂3 −

− 𝑖
√︀

(𝜉2 − 1)(1− 𝜂2)(𝜉3 + 3𝜉𝜂2)

]︂
×

×
[︂(︁
𝜂(𝜉2 − 1) + 𝑖𝜉

√︀
(𝜉2 − 1)(1− 𝜂2)

)︁ 𝜕𝜑
𝜕𝜉

+

+
(︁
𝜉(1− 𝜂2)− 𝑖𝜂

√︀
(𝜉2 − 1)(1− 𝜂2)

)︁ 𝜕𝜑
𝜕𝜂

]︂
+

+

(︂
4𝜁2𝜉2

𝑅2(𝜉2 − 𝜂2)2
− 4𝜁𝑚𝜉

𝑅(𝜉2 − 𝜂2)

)︂
𝜑 = 0. (12)

We seek a solution in the form 𝜑(𝜉, 𝜂) = 𝜑(𝜇), where
𝜇 = 𝜉2 − 𝜂2 = 4𝑟1𝑟2/𝑅

2. After the substitution in
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Eq. (12), we retain only the most weighty terms and
obtain the equation

𝑑2𝜑

𝑑𝜇2
+

2

𝜇

𝑑𝜑

𝑑𝜇
+

𝜁2

4𝜇2
𝜑 = 0, (13)

whose solution regular as 𝜇→ 0 is

𝜑imp(𝜇) = 𝐶2𝜇
−𝜎/2, 𝜎 = 1−

√︀
1− 𝜁2. (14)

Taking into account that 𝜇 ≃ 4𝑟2/𝑅2 as 𝑟 → ∞,
solution (8) can be rewritten in the form

𝜑(𝜇) = 𝐶1𝜇
−1/4𝐾𝑖𝛾(2

√︀
𝑚𝜁𝑅𝜇1/4). (15)

Matching solutions (14) and (15) across the point
𝜇 = 1, we obtain an implicit equation for the de-
pendence of the critical distance 𝑅cr on 𝜁, namely,
the transcendental equation

2
√︀

1− 𝜁2 − 1 = 2
√︀
𝑚𝜁𝑅

𝐾 ′
𝑖𝛾(2

√
𝑚𝜁𝑅)

𝐾𝑖𝛾(2
√
𝑚𝜁𝑅)

. (16)

Its numerical solution is shown by the dash-dotted
curve in Fig. 2. In the next section, this dependence
will be calculated more accurately with the help of
the variational method.

3. Variational Method

As was indicated above, the relativistic Dirac equa-
tion, if being applied to the problem of two Coulomb
centers, does not allow the variables to be separated
in any orthogonal coordinate system; that is why it
is impossible to obtain its solution in the analytical
form. While constructing an approximate solution,
let us take advantage of the variational method, as
was done in the case of QED [15]. In work [21], it
was indicated that the highest accuracy within the
variational method is achieved when the correspond-
ing trial functions satisfy the asymptotics of the ex-
act solution in vicinities of charged impurities and
at infinity. Those asymptotics were obtained in the
previous section.

In order to formulate the variational problem, it is
enough to mark that the differential equation (5) can
be derived, while analyzing the following functional
with respect to the extremum value:

𝑆[𝜑] =

∫︁ (︂
(𝐸 − 𝑉 +Δ)−1

⃒⃒⃒⃒
𝜕𝜑

𝜕𝑥
+ 𝑖

𝜕𝜑

𝜕𝑦

⃒⃒⃒⃒2
−

− 𝑣−2
F (𝐸 − 𝑉 −Δ)|𝜑|2

)︂
𝑑𝑥𝑑𝑦, (17)

and providing the norm preservation condition,

𝑁 =

∫︁
Ψ*Ψ𝑑𝑥𝑑𝑦 =

∫︁ [︃
𝑣−2
F |𝜑|2 +

+(𝐸 − 𝑉 +Δ)−2

⃒⃒⃒⃒
𝜕𝜑

𝜕𝑥
+ 𝑖

𝜕𝜑

𝜕𝑦

⃒⃒⃒⃒2]︃
𝑑𝑥𝑑𝑦. (18)

Let us designate the new field as 𝜓 =𝑊−1/2𝜑, where
𝑊 = 𝐸 − 𝑉 + Δ. Then the functional 𝑆[𝜑] can be
expressed in the form typical of non-relativistic quan-
tum mechanics,

𝑆[𝜓] =

∫︁ [︂
|∇𝜓|2 + 𝑖

(︂
∇𝑉

2𝑊
×∇𝜓*

)︂
𝜓−

− 𝑖𝜓*
(︂
∇𝑉

2𝑊
×∇𝜓

)︂
+ 2(𝑈 − 𝜖)|𝜓|2

]︂
𝑑𝑥𝑑𝑦, (19)

where a × b = 𝜖𝑖𝑗𝑎𝑖𝑏𝑗 , 𝜖 = (𝐸2 − Δ2)/2𝑣2F is the
effective energy, and the effective potential 𝑈 looks
like

𝑈 =
𝐸𝑉

𝑣2F
− 𝑉 2

2𝑣2F
+

△𝑉
4𝑊

+
3

8

(∇𝑉 )2

𝑊 2
. (20)

The second and third terms in functional (19) de-
scribe the pseudospin-orbit coupling. The norm reads

𝑁 =

∫︁ [︃
|∇𝜓|2 +

+ 𝑖

(︂
∇𝑉

2𝑊
×∇𝜓*

)︂
𝜓 − 𝑖𝜓*

(︂
∇𝑉

2𝑊
×∇𝜓

)︂
+

+

(︂
𝑊 2

𝑣2F
+

△𝑉
2𝑊

+
5(∇𝑉 )2

4𝑊 2

)︂
|𝜓|2

]︃
𝑊−1𝑑𝑥𝑑𝑦, (21)

being important if proper boundary conditions are se-
lected. In what follows, we are interested in the case
where the lowest bound state dives into the lower
continuum. Therefore, we put 𝐸 = −Δ (𝜖 = 0) and
𝑊 = −𝑉 . As a result, the functional 𝑆[𝜓] becomes
simpler.

In Section 2, the exact solution of the problem was
found to depend only on the single variable 𝜇 in both
asymptotic cases (14) and (15). Therefore, we use the
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Fig. 2. Dependences 𝑚𝑅cr(𝜁) obtained as numerical solutions of Eqs. (16) (dash-dotted curve)
and (35) (solid curve). For comparison, the results of calculations obtained in the first approxi-
mation of the variational method and taken from work [19] are exhibited by the dashed curve

Kantorovich variational method (for more details, see
Section 3 in review [22]) and select the sums

𝜓 =

𝑁∑︁
𝑘=1

𝜓𝑘(𝜇)𝜈
𝑘−1 (22)

as trial functions. Here, 𝜓𝑘(𝜇) compose a set of sought
functions, and 𝜈 = 𝜈(𝜉, 𝜂) is a fixed function of the
coordinates, which is independent of 𝜇. In work [15],
two variants of the function 𝜈 were considered. The
results obtained turned out close enough. Therefore,
in this work, we select the variant 𝜈 = 𝜂2/(𝜉2−𝜂2) =
= (𝑟1 − 𝑟2)

2/4𝑟1𝑟2.
Substituting expression (22) into functional (19)

and integrating over 𝜈, we obtain

𝑆𝑁 (𝜓) = 4

𝑁∑︁
𝑘,𝑙=1

∞∫︁
0

𝑑𝜇

(︂
𝑃𝑘𝑙𝜓

′
𝑘𝜓

*
𝑙
′ +𝑄𝑘𝑙𝜓𝑘𝜓

*
𝑙 +

+𝑅𝑘𝑙𝜓
′
𝑘𝜓

*
𝑙 +𝑅†

𝑘𝑙𝜓𝑘𝜓
*
𝑙
′
)︂
, (23)

where P̂, Q̂, and R̂ are 𝑁×𝑁 -matrices depending on
𝜇. The corresponding expressions for them are given
in Appendix A (see Eqs. (A12)–(A14)).

Functional (23) reaches its minimum on the solu-
tions of the Lagrange–Euler equations

𝑑

𝑑𝜇

(︂
𝑃𝑘𝑙

𝑑𝜓𝑘

𝑑𝜇
+𝑅†

𝑘𝑙𝜓𝑘

)︂
−𝑄𝑘𝑙𝜓𝑘 −𝑅𝑘𝑙

𝑑𝜓𝑘

𝑑𝜇
= 0, (24)

where 𝑙 = 1, 𝑁 . The boundary conditions are so se-
lected that the norm remains finite, and the trial func-
tions satisfy the exact solution asymptotics. The Lag-
range–Euler equations and the corresponding bound-
ary conditions constitute a boundary problem to be
solved.

In work [19], the first approximation of the Kan-
torovich variational method with 𝑁 = 1 was used.
The shooting method was used to calculate the de-
pendence of the critical distance between two impuri-
ties on their total charge, 𝑅cr(𝜁). The result obtained
is shown in Fig. 2 by the dashed curve for comparison.

A higher accuracy can be reached by applying the
Kantorovich variational method with 𝑁 > 1. Howe-
ver, in this case, there are some differences from the
case 𝑁 = 1 considered in work [19]. First of all, the
shooting method is no more applicable, because the
system of differential equations rather than a single
equation is dealt with. It was noticed in work [23],
that, in order to simplify numerical calculations, the
system of differential equations of the second order
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has to be reduced to a matrix differential equation of
the first order with the use of the substitution

𝜓′
𝑖(𝜇) =

𝑁∑︁
𝑗=1

𝑌𝑖𝑗(𝜇)𝜓𝑗(𝜇). (25)

In this case, we obtain the following nonlinear matrix
Riccati equation for the matrix Ŷ:

Ŷ′ = Â− B̂Ŷ − Ŷ2. (26)

Here, the matrix coefficients Â and B̂ look like

Â = P̂−1(Q̂− R̂′), (27)

B̂ = P̂−1(R̂− R̂𝑇 + P̂′). (28)

The matrices P̂, Q̂, and R̂ are singular at zero
and infinity. This is a reflection of the fact that the
different functions 𝜓𝑘(𝜇), as well as different ele-
ments of the matrix Ŷ, are characterized by different
growth/fall degrees in vicinities of special points. To
overcome this inconvenience, let us subject the trial
functions to a linear transformation,

𝜓𝑘(𝜇) = 𝑆𝑘𝑙(𝜇)𝜓𝑙(𝜇), det Ŝ(𝜇) ̸= 0. (29)

The new matrix is designated as ŶS,

𝜓′
𝑘(𝜇) = (𝑌S)𝑘𝑙 (𝜇)𝜓𝑙(𝜇). (30)

It is related to the matrix Ŷ by the formula

ŶS = Ŝ−1ŶŜ− Ŝ−1Ŝ′. (31)

The matrix ŶS also satisfies the Riccati equation,

Ŷ′
S = ÂS − B̂SŶS − Ŷ2

S. (32)

The laws governing the change of coefficients in
Eqs. (32) and (24) at transformation (29) are given in
Appendix B. They give rise to the criterion of choice
of a matrix Ŝ; namely, the matrix P̂S must be non-
degenerate after the transformation, because the cor-
responding inverse matrix must exist as well.

In vicinities of each special points (𝜇 = 0 and
𝜇→ ∞), the corresponding specific transformation
matrix Ŝ0/∞ must be selected, and the transformed
matrix coefficients ÂS and B̂S must be expanded in
series in the variable 𝜇. Accordingly, the sought ma-
trix ŶS should be of the form

Ŷ
(0)
S = 𝜇𝜆0

(︁
Ŷ

(0)
1 + 𝜇Ŷ

(0)
2 + 𝜇2Ŷ

(0)
3 + ...

)︁
, 𝜇→ 0,

Ŷ
(∞)
S =𝜇𝜆∞

(︂
Ŷ

(∞)
1 +

1

𝜇
Ŷ

(∞)
2 +

1

𝜇2
Ŷ

(∞)
3 + ...

)︂
,

𝜇→ ∞.

(33)

Let us substitute those formulas in Eq. (32) and
equate the numerical coefficients of the terms with
identical power exponents of the variable 𝜇. We ob-
tain a chain of coupled linear algebraic equations for
the matrices Ŷ2, Ŷ3, and so on. But, for the matrix
Ŷ1, we have the quadratic equation

Ŷ2
1 − B̂1Ŷ1 − Â1 = 0, (34)

where Â1 and B̂1 are some numerical matrices. In the
case where 𝑁 = 2, the transformation matrices can
be selected to provide B̂1 = 𝐵11̂, and the quadratic
matrix equation can be solved. Of two roots, the root
corresponding to a more regular behavior of the trial
functions in vicinities of special points must be se-
lected (namely, the positive root in a vicinity of 𝜇 = 0
and the negative one in a vicinity of 𝜇 → ∞). The
power exponents 𝜆0/∞ are so selected to provide the
coincidence of the power exponents in the most im-
portant terms on both sides of the equation.

In this way, the initial conditions for the matrix ŶS

at zero and infinity were determined. The correspond-
ing matrices are presented in Appendix B. Afterward,
the Riccati equations were integrated numerically, by
using the Runge–Kutta method and taking the initial
conditions in the regions 𝜇 ∈ [0, 1] and 𝜇 ∈ [1,∞) into
account. Then the values of matrices Ŷ

0/∞
S (𝜇 = 1)

were calculated, and the inverse transformations were
carried out to find the matrices Ŷ0/∞(𝜇 = 1). A
smooth matching of trial functions in the intervals
𝜇 > 1 and 𝜇 < 1 can be done if

𝛿(𝑚𝑅cr, 𝜁) ≡ det[Ŷ0(𝜇 = 1)−Ŷ∞(𝜇 = 1)] = 0. (35)

In this work, the case 𝑁 = 2 was consid-
ered. The corresponding transformation matrices and
the matrices of initial conditions are given in Ap-
pendix B. All the actions described above were ex-
ecuted for various values of product 𝑚𝑅 and at a
fixed value of 𝜁. A value of 𝑚𝑅cr, at which condition
(35) was satisfied, was considered to be critical. The
results of numerical calculations were used to plot the
dependence 𝑚𝑅cr(𝜁) (solid curve in Fig. 2).

4. Conclusions

A research of the supercritical instability in a sys-
tem of two identical charged impurities in graphene
is carried out. The charge of each impurity is selected
to be subcritical, but their sum 𝜁 = 2𝑍𝛼/𝜅 exceeds
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the critical value 𝜁c = 1/2. Hence, for every fixed 𝜁,
there exist a distance 𝑅cr between the impurities, at
which a supercritical regime is realized. The urgency
of the presented research is associated with recent ob-
servations of the supercritical instability in clusters of
Ca impurities located on graphene [8].

The characteristic feature of this problem consists
in that the variables in the Dirac equation cannot
be separated in any known coordinate system. There-
fore, it is impossible to obtain the solution in the ana-
lytical form, and the Kantorovich variational method
was applied to find the dependence of the critical
distance on the charge of the system. For massless
particles, the critical phenomena are associated only
with the emergence of a resonance in the lower contin-
uum. Since it is inconvenient to work with resonances
within the variational method, a gap Δ was supposed
to exist in the band spectrum of graphene. Such a
gap can be created experimentally by plenty of tech-
niques, e.g., changing to a graphene nanoribbon, cre-
ating deformations, hydrogenating the surface, and
so forth [24]. The presence of a gap results in the
appearance of levels belonging to a discrete spec-
trum. Therefore, a diving of the lowest level into the
lower continuum is observed. The distance between
the impurities, at which this diving takes place, is
called critical.

The Kantorovich variational method provides an
opportunity for an arbitrary number of trial functions
to be used. In this work, a variant of the method with
two trial functions was applied. For the sake of com-
parison, the results of similar calculations but with
only one trial function, which were carried out in
work [19], are also presented. The calculated depen-
dences of 𝑚𝑅cr on 𝜁, as well as the corresponding
approximate curve obtained by matching the exact
solution asymptotics, are plotted in Fig. 2. One can
see that the results of two consecutive approxima-
tions by the variational method agree rather well with
each other both qualitatively and quantitatively. The
maximum discrepancy between them does not exceed
8÷10%. This fact testifies that, despite the simplicity
of the applied approximation, the results obtained in
work [19] are satisfactory: as it should be, 𝑅cr → 0 as
𝜁 → 1/2 (i.e. the supercritical instability occurs only
if the impurities are brought together) and 𝑅cr → ∞
as 𝜁 → 1 (i.e. each impurity becomes supercritical).
It is also demonstrated that, as Δ → 0, the value
𝑅cr → ∞ for any fixed 𝜁. This means that, if the

total charge in the system exceeds the critical one,
the system is in the supercritical state at any finite
distance between the impurities.

As was shown in work [19], this supercritical in-
stability manifests itself as the emergence of a quasi-
stationary state in the lower continuum. It can be de-
tected in the local density of states, which is an ex-
perimentally measured quantity. However, the energy
and the width of the resonance decrease according to
the 1

𝑅 -law, as the distance 𝑅 between the impurities
grows. Therefore, when the distance becomes large
enough, the resonance becomes unobservable (e.g.,
because of a confined accuracy of measurements). In
this case, the system state cannot be distinguished
from the subcritical one.

The author expresses the sincere gratitude to
E.V.Gorbar and V.P.Gusynin for the valuable advice
and corrections made while discussing this work. The
work was sponsored by the State Fund for Fundamen-
tal Researches of Ukraine (grant F53.2/028).

APPENDIX A
Expressions for Matrix Coefficients

In this Appendix, expressions for the matrices P̂, Q̂, and R̂

in functional (23) are presented. At 𝐸 = −Δ, functional (19)
takes the form

𝑆[𝜓] = 4

𝑁∑︁
𝑘,𝑙=1

∞∫︁
0

𝑑𝜇𝑑𝜈|𝐽 |
[︂
(∇𝜇)2𝜓′

𝑘𝜓
*
𝑙
′𝜈𝑘+𝑙−2 +

+2∇𝜇∇𝜈ℜ𝑒(𝜓*
𝑙 𝜓

′
𝑘)(𝑙 − 1)𝜈𝑘+𝑙−3−

− 2

(︂
∇𝑉

2𝑉
×∇𝜇

)︂
ℑ(𝜓*

𝑙 𝜓
′
𝑘)𝜈

𝑘+𝑙−2 +

+𝜓*
𝑙 𝜓𝑘

[︂
(∇𝜈)2(𝑙 − 1)(𝑘 − 1)𝜈𝑘+𝑙−4 −

− 𝑖(𝑙 − 𝑘)

(︂
∇𝑉

2𝑉
×∇𝜈

)︂
𝜈𝑘+𝑙−3 +

+2𝑈𝜈𝑘+𝑙−2

]︂]︂
𝑓(𝜇, 𝜈), (A1)

where the functions ∇𝜇, ∇𝜈, 𝑉 , and 𝑈 can be expressed in
terms of the variables 𝜇 and 𝜈. Since 𝜇𝜈 = 𝜂2 < 1 and 𝜇(𝜈 +

1) = 𝜉2 > 1, the integration in the plane (𝜇, 𝜈) is carried out
over the curvilinear triangle(︂
1

𝜇
− 1

)︂
𝜃 (1− 𝜇) < 𝜈 <

1

𝜇
, (A2)

which can be provided with the help of the function

𝑓(𝜇, 𝜈) = 𝜃(1− 𝜇𝜈)×

× [𝜃(1− 𝜇)𝜃(𝜇(𝜈 + 1)− 1) + 𝜃(𝜇− 1)]. (A3)
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Being expressed in terms of the variables 𝜇 and 𝜈, all the quan-
tities in functional (A1) look like as follows:

|𝐽 | =
𝜇𝑅2

16

1√︀
𝜈(𝜈 + 1)(𝜇+ 𝜇𝜈 − 1)(1− 𝜇𝜈)

, (A4)

𝑉 (𝜇, 𝜈) = −
2𝑣𝐹 𝜁

𝑅

√︃
𝜈 + 1

𝜇
, (A5)

(∇𝜇)2 =
16

𝑅2
(𝜇+ 2𝜇𝜈 − 1), (A6)

(∇𝜈)2 =
16𝜈(𝜈 + 1)

𝜇2𝑅2
, (A7)

∇𝜇∇𝜈 = −
16𝜈(𝜈 + 1)

𝑅2
, (A8)

∇𝑉

𝑉
×∇𝜇 = (∇𝜈 ×∇𝜇)

𝜕 ln𝑉

𝜕𝜈
=

=
8

𝑅2𝜇

√︀
𝜈(𝜇+ 𝜇𝜈 − 1)(1− 𝜇𝜈)

√
𝜈 + 1

, (A9)

∇𝑉

𝑉
×∇𝜈 = (∇𝜇×∇𝜈)

𝜕 ln𝑉

𝜕𝜇
=

=
8

𝑅2𝜇2

√︀
𝜈(𝜈 + 1)(𝜇+ 𝜇𝜈 − 1)(1− 𝜇𝜈), (A10)

2𝑈 =
2

𝑅2

[︂
2𝑣𝐹 𝜁𝑚𝑅

√︃
𝜈 + 1

𝜇
− 2𝜁2

𝜈 + 1

𝜇
−

−
4𝜈 + 1

𝜇
+

3

2

4𝜇𝜈2 + 5𝜇𝜈 + 𝜇− 1

𝜇2(𝜈 + 1)

]︂
. (A11)

Functional (A1) acquires form (23), in which P̂, Q̂, and R̂ are
𝑁 ×𝑁 -matrices depending on 𝜇:

𝑃𝑘𝑙(𝜇) =

∞∫︁
0

(∇𝜇)2𝜈𝑘+𝑙−2|𝐽 |𝑓(𝜇, 𝜈)𝑑𝜈, (A12)

𝑄𝑘𝑙(𝜇) =

∞∫︁
0

[︃
(∇𝜈)2(𝑙 − 1)(𝑘 − 1)𝜈𝑘+𝑙−4 −

− 𝑖(𝑙 − 𝑘)

(︂
∇𝑉

2𝑉
×∇𝜈

)︂
𝜈𝑘+𝑙−3 +

+2𝑈𝜈𝑘+𝑙−2

]︃
|𝐽 |𝑓(𝜇, 𝜈)𝑑𝜈, (A13)

𝑅𝑘𝑙(𝜇) =

∞∫︁
0

[︃
∇𝜇∇𝜈(𝑙 − 1)𝜈𝑘+𝑙−3 +

+ 𝑖

(︂
∇𝑉

2𝑉
×∇𝜇

)︂
𝜈𝑘+𝑙−2

]︃
|𝐽 |𝑓(𝜇, 𝜈)𝑑𝜈. (A14)

Let us obtain expressions for the elements of the matrices
P̂, Q̂, and R̂ in the case 𝑁 = 2. They can be calculated with
the help of integrals taken from [25], which are expressed in
terms of the complete elliptic integrals of the first, 𝐾(𝑘), sec-
ond, 𝐸(𝑘), and third, Π(𝑘, 𝑙), kinds. The final forms of the
expressions are obtained with the help of the identities [26]

Π(𝜇, 𝜇) =
𝜋

4(1− 𝜇)
+

1

2
𝐾(𝜇), (A15)

Π(𝜇2, 𝜇) =
1

1− 𝜇2
𝐸(𝜇). (A16)

Again, since the ground state of the system is considered, and
the wave function of the ground state is real-valued, all imagi-
nary parts of coefficients do not make contributions. Therefore,

𝑃11(𝜇) = 𝜋𝜇, (A17)

𝑃12(𝜇) = 𝑃21(𝜇) =
𝜋

2
(1− 𝜇)+

+ 𝜃(1− 𝜇)
[︀
2𝐸(𝜇)− (1− 𝜇2)𝐾(𝜇)

]︀
+

+ 𝜃(𝜇− 1)𝜇

[︂
2𝐸

(︂
1

𝜇

)︂
−
(︂
1−

1

𝜇2

)︂
𝐾

(︂
1

𝜇

)︂]︂
, (A18)

𝑃22(𝜇) =
𝜋

2

1− 𝜇+ 𝜇2

𝜇
+

+ 𝜃(1− 𝜇)
1− 𝜇

𝜇

[︀
2𝐸(𝜇)− (1− 𝜇2)𝐾(𝜇)

]︀
+

+ 𝜃(𝜇− 1)(1− 𝜇)

[︂
2𝐸

(︂
1

𝜇

)︂
−
(︂
1−

1

𝜇2

)︂
𝐾

(︂
1

𝜇

)︂]︂
, (A19)

𝑅11(𝜇) = 𝑅21(𝜇) = 0, (20)

𝑅12(𝜇) = −
𝜋

2𝜇
− 𝜃(1− 𝜇)

𝐸(𝜇)

𝜇
−

− 𝜃(𝜇− 1)

[︂
𝐸

(︂
1

𝜇

)︂
−
(︂
1−

1

𝜇2

)︂
𝐾

(︂
1

𝜇

)︂]︂
, (A21)

𝑅22(𝜇) = −
𝜋(2− 𝜇)

4𝜇2
−

− 𝜃(1− 𝜇)

[︂
3− 𝜇

2𝜇2
𝐸(𝜇)−

1− 𝜇2

2𝜇2
𝐾(𝜇)

]︂
−

− 𝜃(𝜇− 1)

[︂
3− 𝜇

2𝜇
𝐸

(︂
1

𝜇

)︂
+

+
(𝜇− 1)(𝜇2 − 𝜇− 2)

2𝜇3
𝐾

(︂
1

𝜇

)︂]︂
, (A22)

𝑄11(𝜇) = −
𝜋(𝜁2 − 1)

8𝜇
+

+
𝜁𝑚𝑅

2

[︂
𝜃(1− 𝜇)𝐾(

√
𝜇) +

𝜃(𝜇− 1)
√
𝜇

𝐾

(︂
1
√
𝜇

)︂]︂
+

+ 𝜃(1− 𝜇)

[︂
3

8𝜇(1 + 𝜇)
𝐸(𝜇)−

−
(2𝜁2 + 1)(1 + 𝜇)

8𝜇
𝐾(𝜇)

]︂
+

+ 𝜃(𝜇− 1)

[︂
3

8(1 + 𝜇)
𝐸

(︂
1

𝜇

)︂
−

−
(𝜁2 − 1)(1 + 𝜇) + 3𝜇

4𝜇2
𝐾

(︂
1

𝜇

)︂]︂
, (A23)

𝑄12(𝜇) = 𝑄21(𝜇) = −
𝜋
(︀
3𝜇+ 4(𝜁2 − 1)

)︀
32𝜇2

+

+ 𝜃(1− 𝜇)
𝜁𝑚𝑅

2𝜇
𝐸(

√
𝜇)+

+ 𝜃(𝜇− 1)
𝜁𝑚𝑅

2
√
𝜇

[︂
𝐸

(︂
1
√
𝜇

)︂
−
𝜇− 1

𝜇
𝐾

(︂
1
√
𝜇

)︂]︂
−

− 𝜃(1− 𝜇)

[︂
3𝜇+ 2(𝜇+ 1)(𝜁2 − 1)

8𝜇2(1 + 𝜇)
𝐸(𝜇) +

3(1− 𝜇)

16𝜇
𝐾(𝜇)

]︂
−
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− 𝜃(𝜇− 1)

[︂
3𝜇+ 2(𝜇+ 1)(𝜁2 − 1)

8𝜇(1 + 𝜇)
𝐸

(︂
1

𝜇

)︂
+

+
(1− 𝜇)

(︀
9𝜇+ 4(1 + 𝜇)(𝜁2 − 1)

)︀
16𝜇3

𝐾

(︂
1

𝜇

)︂]︂
, (A24)

𝑄22(𝜇) =
𝜋

32𝜇3

(︀
16− (2𝜁2 − 2 + 3𝜇)(2− 𝜇)

)︀
+

+ 𝜃(1− 𝜇)
𝜁𝑚𝑅

6𝜇

[︂
2

(︂
2

𝜇
− 1

)︂
𝐸(

√
𝜇)−

−
(︂
1

𝜇
− 1

)︂
𝐾(

√
𝜇)

]︂
+

+ 𝜃(𝜇− 1)
𝜁𝑚𝑅

6
√
𝜇

[︂
2

(︂
2

𝜇
− 1

)︂
𝐸

(︂
1
√
𝜇

)︂
−

−
(︂
1−

1

𝜇

)︂(︂
3

𝜇
− 2

)︂
𝐾

(︂
1
√
𝜇

)︂]︂
+

+ 𝜃(1− 𝜇)

[︂
(1− 𝜇)

(︀
2(𝜁2 − 1)(𝜇+ 1)− 3𝜇(1− 𝜇)

)︀
16𝜇3

𝐾(𝜇)+

+
3𝜇2 + 13𝜇+ 16 + 2(𝜁2 − 1)(𝜇2 − 2𝜇− 3)

16𝜇3(1 + 𝜇)
𝐸(𝜇)

]︂
+

+ 𝜃(𝜇− 1)

[︂
(1− 𝜇)(3𝜇2 + 5𝜇+ 8)

8𝜇4
𝐾

(︂
1

𝜇

)︂
+

+
(𝜁2 − 1)(1− 𝜇)(𝜇2 − 𝜇− 2)

8𝜇4
𝐾

(︂
1

𝜇

)︂
+

+
3𝜇2 + 13𝜇+ 16 + 2(𝜁2 − 1)(𝜇2 − 2𝜇− 3)

16𝜇2(1 + 𝜇)
𝐸

(︂
1

𝜇

)︂]︂
. (A25)

APPENDIX B
Characteristic features of the application
of the variational method in the case 𝑁 = 2

In this Appendix, some details concering the application of the
Kantorovich method in the case 𝑁 = 2 are discussed.

Transformation (29) changes the coefficients of Eqs. (32) and
(24) as follows:

ÂS = Ŝ−1ÂŜ− Ŝ−1B̂Ŝ′ − Ŝ−1Ŝ′′, (B1)

B̂S = Ŝ−1B̂Ŝ+ 2Ŝ−1Ŝ′′, (B2)
P̂S = Ŝ𝑇 P̂Ŝ, (B3)
R̂S = Ŝ𝑇 R̂Ŝ+ Ŝ𝑇 P̂Ŝ′, (B4)
Q̂S = Ŝ𝑇 Q̂Ŝ+ Ŝ′𝑇 R̂Ŝ+ Ŝ𝑇 R̂𝑇 Ŝ′ + Ŝ′𝑇 P̂Ŝ′. (B5)

1. In the interval 0 < 𝜇 ≤ 1,

det P̂(𝜇) =
𝜋2𝜇2

8
+𝑂

(︀
𝜇4
)︀
, 𝜇→ 0. (B6)

Therefore, the matrix Ŝ(0) should be so selected that det Ŝ(0) ∼
1
𝜇

. In this work, we selected the matrix

Ŝ(0)(𝜇) =

⎛⎝ 𝜇−1

𝜇3/2
𝜇+1

𝜇3/2

1√
𝜇

− 1√
𝜇

⎞⎠, det Ŝ(0) = −
2

𝜇
. (B7)

The power exponent is 𝜆0 = −1, which corresponds to the
power-law behavior of trial functions in a vicinity of the point
𝜇 = 0. The coefficients of Eq. (34) look like

Â
(0)
1 =

⎛⎝ 3−𝜁2

4
− 3

4

− 1
4

1−𝜁2

4

⎞⎠, B̂
(0)
1 ≡ 1̂. (B8)

Equation (34) is reduced to(︂
Ŷ

(0)
1 −

1

2
1̂

)︂2
= Â

(0)
1 +

1

4
1̂. (B9)

Its solution is

Ŷ
(0)
1 =

1

2
1̂+

+

(︃ 1
2

− 3
2

1
2

1
2

)︃⎛⎜⎝
√

1−𝜁2

2
0

0

√
5−𝜁2

2

⎞⎟⎠(︃ 1
2

3
2

− 1
2

1
2

)︃
=

=

⎛⎜⎝ 4+
√

1−𝜁2+3
√

5−𝜁2

8
3
√

1−𝜁2−3
√

5−𝜁2

8
√

1−𝜁2−
√

5−𝜁2

8
4+3

√
1−𝜁2+

√
5−𝜁2

8

⎞⎟⎠. (B10)

The matrix 1
𝜇
Ŷ

(0)
1 is used as the initial condition, while nu-

merically integrating the Riccati equation (32) in the interval
0 < 𝜇 ≤ 1.

2. In the interval 1 ≤ 𝜇 <∞,

det P̂(𝜇) =
𝜋2

8
+𝑂

(︂
1

𝜇2

)︂
, 𝜇→ ∞. (B11)

Therefore, the matrix Ŝ(∞) should be selected so that
det Ŝ(∞) ∼ 1. In this work, we take the matrix

Ŝ(∞)(𝜇) =

(︃
1√
𝜇

− 1√
𝜇

√
𝜇

√
𝜇

)︃
, det Ŝ(∞) = 2. (B12)

The power exponent is 𝜆∞ = −3/4, which corresponds to the
behavior of the trial functions ∼ exp(−𝜇1/4) as 𝜇 → ∞. The
coefficients of Eq. (34) look like

Â
(∞)
1 =

𝜁𝑚𝑅

4
1̂, B̂

(∞)
1 ≡ 0̂. (B13)

The solution of Eq. (34) reads

Ŷ
(∞)
1 = −

√
𝜁𝑚𝑅

2
1̂. (B14)

The matrix 1
𝜇3/4 Ŷ

(∞)
1 is used as the initial condition, while

numerically integrating the Riccati equation (32) in the interval
1 ≤ 𝜇 <∞.
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ВАРIАЦIЙНИЙ МЕТОД
ОБЧИСЛЕННЯ КРИТИЧНОЇ ВIДСТАНI В ЗАДАЧI
ДВОХ КУЛОНIВСЬКИХ ЦЕНТРIВ У ГРАФЕНI

Р е з ю м е

Дослiджено надкритичну нестабiльнiсть в системi двох за-
ряджених домiшок у графенi з квазiчастинками, що в не-
перервнiй границi описуються двовимiрним рiвнянням Дi-
рака. Розглянуто випадок, коли заряд кожної з двох одна-
кових домiшок є субкритичним, а їх сума перевищує кри-
тичний заряд в задачi про один кулонiвський центр. Розви-
нено варiацiйний метод, за допомогою якого обчислюється
значення критичної вiдстанi мiж домiшками 𝑅cr як фун-
кцiї повного заряду системи. Встановлено, що 𝑅cr зростає
зi збiльшенням повного заряду двох домiшок та зi зменше-
нням ширини квазiчастинкової щiлини. Проведено порiвня-
ння результатiв з даними попереднiх дослiджень.
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