
Temperature Dependence of Raman-Active Modes

https://doi.org/10.15407/ujpe64.2.173

O.O. GOMONNAI,1, 2 M. LUDEMANN,3 A.V. GOMONNAI,4, 1 I.YU. ROMAN,4

A.G. SLIVKA,1 D.R.T. ZAHN 3

1 Uzhhorod National University
(46, Pidhirna Str., Uzhhorod 88000, Ukraine; e-mail: gomonnai.o@gmail.com)

2 Vlokh Institute of Physical Optics
(23, Drahomanov Str., Lviv 79005, Ukraine)

3 Semiconductor Physics, Chemnitz University of Technology
(D-09107 Chemnitz, Germany)

4 Institute of Electron Physics, Ukr. Nat. Acad. Sci.
(21, Universytets’ka Str., Uzhhorod 88017, Ukraine)

TEMPERATURE DEPENDENCE
OF RAMAN-ACTIVE MODES OF TlIn(S0.95Se0.05)2
SINGLE CRYSTALS

The unpolarized Raman spectra of TlIn(S0.95Se0.05)2 single crystals in the frequency interval
16–340 cm−1 are studied in the temperature interval 30 ≤ 𝑇 ≤ 293 K. The Raman spectra are
analyzed by a multipeak simulation using Lorentzian contours. The temperature behavior of the
vibrational band parameters (half-width, intensity, and frequency) is studied with the emphasis
on the temperature range, where changes related to phase transformations are revealed.
K e yw o r d s: Raman scattering, layered crystal, phase transition.

1. Introduction

The physical properties of layered ferroelectrics are
determined by their quasi-two-dimensionality and a
strong structural anisotropy, which make them inter-
esting objects for investigation [1–4]. One of the ma-
terials of this class is TlInS2, which is characterized
by a complex sequence of phase transitions (PTs) in
the temperature interval 190–216 K [1, 2] and poly-
critical phenomena in the (p, 𝑇 )-phase diagram in
the pressure interval 580 ≤ 𝑝 ≤ 660 MPa [5–8]. In
the row of TlIn(S1−𝑥Se𝑥)2 crystalline solid solutions,
the crystal structure changes from 𝐶6

2h to 𝐷18
4h sym-

metry at a Se content x near 0.7–0.75 [9–12]. It was
shown [12–14] that the isovalent S → Se anionic sub-
stitution results in a downward shift of the structural
phase transition temperatures with a simultaneous
shrinking of the temperature interval of the incom-
mensurate phase existence. It was concluded that, in
the (x, 𝑇 ) phase diagram of TlIn(S1−𝑥Se𝑥)2 crys-
tals, a Lifshitz type point can exist at 𝑥 = 0.05
[12, 13]. Several works were devoted to Raman spec-
troscopic studies of TlIn(S1−𝑥Se𝑥)2 solid solutions
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(0 < 𝑥 < 1), where the compositional transformation
of Raman spectra was investigated mostly at room
temperature [15–19], as well as at lower temperatures
[19]. With regard to the studies of vibrational spec-
tra in a broad temperature range, including the phase
transition range, such data were obtained for TlInS2

crystals by several research teams [20–29]. A detailed
analysis of the polarized Raman spectra of TlInS2

was performed in a broad temperature range, includ-
ing the temperature dependences of spectral posi-
tions and half-widths of low-frequency modes, and
a conclusion was made on the existence of soft modes
[24, 25]. Recently, several studies were published in-
cluding the temperature-dependent analysis of the
spectral positions and half-widths of other Raman
modes in the TlInS2 crystal spectra [26–29]. A de-
tailed analysis of the spectral interval 120–400 cm−1

in the temperature interval 77–300 K is presented
in Ref. [27], the spectral interval 35–150 cm−1 was
analyzed in Ref. [28], polarized spectra in the 35–
180 cm−1 interval at temperatures from 77 to 320 K
are presented in Ref. [29]. With regard to infrared
reflection spectroscopy of the TlIn(S1−𝑥Se𝑥)2 single
crystal system, a detailed study of vibration band pa-
rameters (half-width, intensity, and frequency) down
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Fig. 1. Raman spectra of a TlIn(S0.95Se0.05)2 single crystal
in the Z(XX+XY)Z configuration at different temperatures

Fig. 2. Raman spectra of a TlIn(S0.95Se0.05)2 single crystal
in the Z(XX+XY)Z configuration in the interval 16–110 cm−1

at 30–293 K and their multipeak Lorentzian simulation

to the liquid nitrogen temperature was carried out
only for crystals with 𝑥 = 0.2 [30]. This motivates
the interest toward the investigation of sulfur-rich
TlIn(S1−𝑥Se𝑥)2 mixed crystals by vibrational spec-
troscopy. Here, we present the results of Raman stud-
ies of TlIn(S0.95Se0.05)2 single crystals in the temper-
ature interval 30≤𝑇 ≤293 K.

2. Materials and Methods

TlIn(S0.95Se0.05)2 single crystals were grown by the
Bridgman technique [16]. The crystal quality and
chemical composition were checked by methods de-
scribed in Ref. [16]. The results of X-ray diffraction,
scanning electron microscopy, and energy-dispersive
X-ray spectroscopy obtained for the samples under
investigation agree well with the data for the 𝐶6

2h

space group typical of TlInS2-type crystals at room
temperature and atmospheric pressure [1, 2]. Raman
measurements were performed using a Dilor XY 800
spectrometer equipped with a CCD camera. The in-
strumental resolution was in all cases better than
2 cm−1. A Kr+ laser operating at 647.1 nm was used
for the excitation. Raman spectra were measured in
the backscattering configuration from the (001) plane
using the Z(XX+XY)Z (unpolarized) geometry. The
samples were placed in a cryostat coupled to a tem-
perature control system that is capable of stabilizing
the sample temperature with an accuracy of ±0.01 K.

3. Results and Discussion

It is worth noting that the analysis of compositional
dependences of frequencies, half-widths, and inte-
grated intensities of Raman bands in TlIn(S1−𝑥Se𝑥)2
(0 ≤ 𝑥 ≤ 0.25) single crystal spectra measured at
30 K in the Z(XX + XY)Z configuration was per-
formed in our earlier paper [19]. Below, we present
the experimental data and analysis of the tempera-
ture behavior of frequencies, half-widths, and inten-
sities of first-order Raman-active optical phonons of
TlIn(S0.95Se0.05)2 crystals. This can be helpful for ac-
quiring the additional information about the charac-
ter of forces and bonds in the crystal lattice and their
transformation under structural phase transitions in
the TlIn(S1−𝑥Se𝑥)2 mixed crystal system.

The Raman spectra of TlIn(S0.95Se0.05)2 single
crystals were studied in the interval 16–350 cm−1 at
temperatures 30 ≤ 𝑇 ≤ 293 K (Figs. 1 and 2). The
number of Raman bands and their spectral positions
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at 𝑇 = 30 K and 𝑇 = 293 K agree with the data avail-
able from the literature for TlInS2 crystals [20–29] in
view of the known features of a compositional trans-
formation of the Raman spectra for TlIn(S1−𝑥Se𝑥)2
single crystals [19]. The experimental Raman spectra
of TlIn(S0.95Se0.05)2 single crystals were analyzed by
multipeak simulation using Lorentzian contours, and
the band parameters (frequencies, half-widths, and
integrated intensities) were determined. An example
of such simulation is shown in Fig. 2.

One should note that the temperature variation
of the TlIn(S0.95Se0.05)2 single crystal Raman spec-
tra includes the typical temperature dependence of
phonon band characteristics in crystals (a slight fre-
quency decrease, increasing half-widths and inte-
grated intensities with temperature), as well as a
phase transition-related transformation of phonon
spectra. The latter can be revealed in different fre-
quency ranges as an essential frequency decrease, a
considerable increase of half-widths, and a redistribu-
tion of intensities of several modes, as well as a possi-
ble drastic spectral transformation with temperature
manifested as a change of the number of first-order
Raman active optical phonon modes. As can be seen
from Fig. 1, the transformation of the Raman spectra
is observed in the low-frequency interval 16–100 cm−1

and in higher-frequency intervals 190–220 cm−1 and
270–320 cm−1.

In the low-frequency interval 16–50 cm−1, a com-
plicated transformation of the spectra with temper-
ature is observed (Figs. 1 and 2). The band centered
at 24 cm−1 (𝑇 = 30 K) shifts down to 19 cm−1

(𝑇 = 293 K), while the band centered at 30 cm−1

(𝑇 = 30 K) vanishes with increasing temperature
at 293 K. Note that a detailed analysis of the band
half-widths and intensities in this lowest-frequency
spectral range in the temperature interval 180–220 K
is encumbered by the Rayleigh wing, the intensity
of which increases, while approaching this tempera-
ture interval. The transformation of the 40 cm−1 and
42 cm−1 bands is of complicated character. As can be
seen from Figs. 1 and 2, at 𝑇 = 30 K, two bands at
40 cm−1 and 42 cm−1 are registered. Their intensities
increase with the temperature and are nearly equal at
𝑇 = 100 K.

One should note the importance of a compari-
son of spectra measured at 𝑇 = 60 K and 𝑇 =
80 K. The comparison of the intensities shows that,
apparently, the spectral position of the band at

40 cm−1 (𝑇 = 30 K) remains practically unchanged,
while the other band centered at 42 cm−1 at 30 K de-
creases. With a further increase in the temperature,
the intensity of the latter band decreases, and its half-
width increases (Fig. 3). At 𝑇 = 220 K, this band is
no longer observed in the spectrum. Considering the
other band (40 cm−1 at 𝑇 = 30 K), its spectral po-
sition remains stable up to room temperature. Such
“crossing” of the temperature dependences of Raman
modes near 40–42 cm−1 in the temperature interval
60–80 K is a clear evidence of their different sym-
metry, similarly to the case of a PbTiO3 single crys-
tal [31]. With regard to the temperature behavior of
TlInS2 single crystals, there are two points of view
concerning the Raman bands in the 38–50 cm−1 in-
terval [24, 25, 29]. According to Ref. [29], the higher-
frequency band position (48.7 cm−1 at 77 K) does
not vary with temperature and is no longer reg-
istered at 218 K, while the lower-frequency band
position (38.8 cm−1 at 77 K) increases at a rate
𝜕𝜈/𝜕𝑇 = 6.4 × 10−3 cm−1/K, and the intermedi-
ate band frequency (45.2 cm−1 at 77 K) decreases to
41.5 cm−1. In earlier publications [24,25], a somewhat
different behavior of a transformation of the vibra-
tional bands was reported. The authors of Ref. [25]
claim that the behavior of the band at 42 cm−1

(𝑇 = 12 K) is characteristic of a soft mode. This con-
clusion was made from the temperature behavior of
the band frequency and half-width. At least, its fre-
quency is the most strongly temperature-dependent
in comparison with other low-frequency modes. A de-
tailed analysis of the temperature dependences of
TlInS2 crystal vibrational modes [24] revealed, in
particular, two bands at 24 cm−1 and 42 cm−1

(𝑇 = 22 K) in the Z(YX)Y scattering configura-
tion, which are claimed to possess a soft mode char-
acter, interacting with rigid modes [24]. One should
note that, according to these authors, the modes
at 39 cm−1 and 42 cm−1 (𝑇 = 10 K) interact at
temperatures below 𝑇 = 100 K [24]. Temperature
changes can also be observed for other spectral in-
tervals of the TlIn(S0.95Se0.05)2 single crystal Raman
spectra (Figs. 1 and 4). In particular, the band at
97 cm−1 vanishes at 200 K. The band at 218 cm−1

is no longer observed above 160 K, while the bands
at 133 cm−1, 306 cm−1, and 319 cm−1 vanish above
168 K, which can be also related to their weak inten-
sities. For other (not discussed above) translational
and “intermolecular” modes of TlIn(S0.95Se0.05)2 sin-
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Fig. 3. Temperature dependences of half-widths, normalized intensities of Raman peaks centered at 30 cm−1,
40 cm−1, 42 cm−1, and 97 cm−1 (𝑇 = 30 K), and integral intensities at 138 cm−1, 291 cm−1 (𝑇 = 30 K) for
a TlIn(S0.95Se0.05)2 single crystal

gle crystals, the temperature-related broadening and
integrated intensity increase (see, e.g., Fig. 3) and
the slight frequency decrease (Figs. 1 and 4) are due
to the anharmonicity of lattice vibrations and the
thermal expansion, similarly to InS [32] and TlInS2

[26] layered crystals. Unpolarized Raman studies of
TlInS2 crystals in the temperature range 10–300 K
showed that, for all modes except for those at 280.9
and 292.3 cm−1, the frequencies decrease with tem-

perature [26]. Note that our earlier spectroscopic el-
lipsometry studies and dielectric constant measure-
ments by an ac bridge of TlIn(S1−𝑥Se𝑥)2 single crys-
tals [33] enabled us to conclude on the existence of
phase transitions in a TlIn(S0.95Se0.05)2 crystal in the
interval 170–220 K. As can be seen from Figs. 1 and 3
and the above analysis, it is this temperature interval
where the transformations of the TlIn(S0.95Se0.05)2
Raman spectra occur. Thus, the temperature stud-
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Fig. 4. Dependence of the Raman line frequencies for a
TlIn(S0.95Se0.05)2 single crystal on the temperature

ies of the TlIn(S0.95Se0.05)2 Raman line frequencies,
half-widths, and integrated intensities show that the
changes in the phase transition range are similar
to those observed by different research groups for
TlInS2 crystals [24–26, 29]. Hence, in our opinion,
TlIn(S0.95Se0.05)2 single crystals can be character-
ized by a phase transition sequence similar to TlInS2

rather than by a Lifshitz-type point in the (𝑥, 𝑇 )
phase diagram of TlIn(S1−𝑥Se𝑥)2 crystals at 𝑥 = 0.05,
as claimed in Ref. [12]. Note that, in order to build
the (𝑥, 𝑇 ) phase diagram and to judge on a possibility
of the existence of the Lifshitz point at 𝑥 = 0.05, one
should perform all-round detailed studies of sulfur-
rich TlIn(S1−𝑥Se𝑥)2 crystals using various techniques.

4. Conclusions

The Raman spectra of TlIn(S0.95Se0.05)2 single crys-
tals in the frequency range of 16–340 cm−1 are stud-
ied experimentally in the temperature interval 30 K ≤
≤ 𝑇 ≤ 293 K in the Z(XX+XY)Z configuration. The
Raman spectra are analyzed by a multipeak simula-
tion using Lorentzian contours. The temperature be-
havior of the vibration band parameters (half-width,
intensity, and frequency) was studied. A complicated
transformation of the low-frequency spectral inter-
val 16–50 cm−1 with temperature is observed. Two
modes at 24 cm−1 and 42 cm−1 (at 𝑇 = 30 K) ex-
hibit the most pronounced temperature dependence

in the temperature range 30 ≤ 𝑇 ≤ 200 K in com-
parison with other low-frequency bands. Note that a
“crossing” behavior of the temperature dependences
of two Raman modes near 40–42 cm−1 in the temper-
ature interval 60–80 K is a clear evidence of the dif-
ferent symmetries of the relevant vibrations. At tem-
peratures above 168 K, the number of modes in the
spectra is reduced. This is related to the existence of
phase transitions: the bands at 30 cm−1, 42 cm−1,
and 97 cm−1 vanish at 𝑇 > 200 K, while the bands
at 132 cm−1, 218 cm−1, 306 cm−1, and 319 cm−1 are
no longer observed above 160 K, which may, however,
be related to their low intensities.
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ТЕМПЕРАТУРНА ЗАЛЕЖНIСТЬ
РАМАНIВСЬКИХ АКТИВНИХ МОД
КРИСТАЛIВ TlIn(S0,95Se0,05)2

Р е з ю м е

Дослiджено неполяризованi спектри раманiвського роз-
сiювання свiтла монокристалiв TlIn(S0,95Se0,05)2 в дiа-
пазонi частот 16–340 см−1 в температурному iнтервалi
30 K≤T≤293 K. Проведено апроксимацiю експерименталь-
них спектрiв суперпозицiєю лоренцових контурiв i визна-
чено температурнi залежностi напiвширин, iнтенсивностей
та частот оптичних мод. Показано, що деякi особливостi
температурних залежностей пов’язанi з iснуванням фазо-
вих переходiв у дослiджуваних об’єктах.

178 ISSN 2071-0194. Ukr. J. Phys. 2019. Vol. 64, No. 2


