
Subsonic Motion of a Projectile

D.I. ZHUKHOVITSKII,1 V.E. FORTOV,1 V.I. MOLOTKOV,1 A.M. LIPAEV,1

V.N. NAUMKIN,1 H.M. THOMAS,2 A.V. IVLEV,2 G.E. MORFILL 2

1 Joint Institute of High Temperatures, Russian Academy of Sciences
(Bd. 2, 13, Izhorskaya Str., Moscow 125412, Russia; e-mail: dmr@ihed.ras.ru)

2 Max-Planck-Institut für Extraterrestrische Physik
(Giessenbachstrasse, 85748 Garching, Germany)

SUBSONIC MOTION
OF A PROJECTILE IN A FLUID COMPLEX PLASMA
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Subsonic motion of a large particle moving through the bulk of a dust crystal formed by nega-
tively charged small particles is investigated, by using the PK-3 Plus laboratory on the board of
the International Space Station. Tracing the particle trajectories shows that the large particle
moves almost freely through the bulk of a plasma crystal, while dust particles move along char-
acteristic 𝛼-shaped pathways near the large particle. We develop a theory of the nonviscous
motion of dust particles near a large particle and calculate particle trajectories. The deforma-
tion of a cavity around a large projectile moving with subsonic velocity in the cloud of small
dust particles is investigated with a due regard for the friction between dust particles and atoms
of a neutral gas. The pressure of a dust cloud at the surface of a cavity around the projectile
can become negative, which entails the emergence of a considerable asymmetry of the cavity,
i.e., the cavity deformation. The corresponding threshold velocity is calculated, which is found
to decrease with increasing the cavity size. A good agreement with experiment validates our
approach.
K e yw o r d s: dusty plasma, plasma crystal, nonviscous motion, cavity deformation.

1. Introduction

Complex (dusty) plasma is a low-temperature plasma
including microparticles. Due to the electron absorp-
tion, particles acquire a considerable electric char-
ge. Thus, a strongly coupled Coulomb system is for-
med [1–9]. Such plasma represents a natural system,
which makes it possible to observe various collective
phenomena at the level of individual particles. In ex-
perimental setups, complex plasmas are usually stud-
ied in gas discharges at low pressures, e.g., in ra-
dio frequency (RF) discharges. A large homogeneous
bulk of complex plasma, which almost fills the entire
discharge volume, can be observed under microgra-
vity conditions either in parabolic flights [10–14] or
on the board of the International Space Station (ISS)
[10, 15–19].

In recent studies, the attention was focused on
tracer particles or projectiles moving through a cloud
of complex plasma. Such projectiles are generated us-
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ing controlled mechanisms of acceleration [11, 20],
or they can appear sporadically [19, 21]. Projectiles
moving with supersonic velocity lead to the forma-
tion of extended Mach cones; subsonic (slow) ones
produce localized disturbances of surrounding par-
ticles. In Ref. 22, it was suggested that the latter
regime, realized when a relatively large subsonic pro-
jectile moves in a dense cloud of smaller particles, can
be well approximated by a flow of an incompressible
fluid. In the framework of the same hydrodynamic ap-
proximation, it was demonstrated that, along with
the regular neutral gas drag, there is an additional
force exerted on the projectile due to the friction be-
tween neutral atoms and the particle fluid [25].

Using the PK-3 Plus laboratory on the board of the
ISS, we have investigated the motion of dust particles
in a vicinity of the moving large particle. Such rela-
tively slow particles are accelerated spontaneously on
the outside of the particle cloud in an RF discharge,
penetrate into the dust cloud, and move inside it. We
have made a series of snapshots of this motion in the
plane of a laser sheet with a high-resolution camera,
which allowed us to trace the trajectories of individual
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Fig. 1. (Color online) The cross-sectional schematic of a
plasma chamber

particles. Motion of small particles caused by the pas-
sage of a large particle has already been studied and
used as a source of valuable information in the course
of a ground-based experiment [24], where heavy par-
ticles were dropped down to the cloud of dust par-
ticles levitating in the plasma sheath region of a RF
capacitive planar discharge. Trajectories of particles
suspended in low-pressure glow discharges have also
been studied in [20]. Dust particles were arranged in
chains, and a heavy particle falling between neighbor-
ing dust chain bundles caused the elliptic motions of
the background dust particles.

A superposition of successive frames recorded in
our experiment reveals that many more dust particles
in a close neighborhood of a moving particle circum-
scribe typical 𝛼-shaped trajectories, while other par-
ticles remain almost at rest. We interpret this motion
as a nonviscous flow about a large particle, for which
we used the hydrodynamic approach. Based on the
classical solution of the Navier–Stokes equation for
the velocity field, we integrate it to obtain stream-
line pathways for individual dust particles. A good
agreement between recorded and calculated trajecto-
ries validates our basic assumption.

In this study, we try to estimate the defor-
mation threshold for an (initially spherical) cavity
around a subsonic projectile. This deformation emer-
ges abruptly as the projectile velocity increases, as
it is seen in snapshots given in [11, 22]. To solve this
problem, we employ the Navier–Stokes equation for a
compressible fluid with regard for the friction between
dust particles and atoms of a neutral gas. We do
not treat the deformation self-consistently. Instead,
we imply that the projectile velocity is below the

threshold value, so that a regular flow around a spher-
ical cavity with no stall can be treated. The solution
shows that, due to the friction, the pressure of a dust
cloud at the boundary of the cavity behind the pro-
jectile can become negative, which entails the forma-
tion of a microscopic void free from dust particles, i.e.,
the cavity deformation. This occurs at some threshold
velocity, which decreases with increasing the cavity
size. The measurement of such velocity would make
it possible to estimate the static pressure inside the
dust cloud.

The paper is organized as follows. In Section 2, we
describe the experimental setup and the results of
tracing the dust particle motion caused by the pas-
sage of a large particle. In Section 3, we solve the
Navier–Stokes equation for an incompressible parti-
cle fluid and obtain both numerical and analytical
solutions for dust particle trajectories. In Section 4,
the gas dynamics problem is solved, and the correc-
tions due to the fluid compressibility to the velocity
and pressure fields are calculated. The calculation re-
sults are compared with available experimental data
in Section 5, and the results of this study are sum-
marized in Section 6.

2. Experimental Setup and Results

Here, we present an observation of the subsonic non-
viscous motion of a large particle in the bulk of a
three-dimensional complex plasma in the PK-3 Plus
laboratory on the board of the ISS. Details on the
setup can be found in [18]. The heart of this labora-
tory consists of a capacitively coupled plasma cham-
ber with circular electrodes of 6 cm in diameter and
3 cm apart (see Fig. 1).

Microparticles can be injected into the main plasma
with dispensers. The particles form then a cloud
around the center of the chamber, typically with a
central void caused by the ions streaming outward.
Generally, some larger particles are present in the
chamber as well. The origin of these particles is not
yet understood; these might be, for instance, agglom-
erates or larger particles left over from previous ex-
periments (not removed during the cleaning proce-
dure). They normally accumulate themselves at the
periphery of the particle cloud, because of the de-
pendence of the ratio of the electric and ion drag
forces on the particle diameter [25]. Sometimes, one
of these larger particles gets sporadically accelerated
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and penetrates into the cloud – we shall call it a pro-
jectile. The reason for such behavior remains a puz-
zle (e.g., it might be caused by a laser-induced rocket
force [26]). Nevertheless, these particles can be used
as natural probes of the microparticle cloud [27, 28] in
the same way as particles injected on purpose [10, 14,
29]. Projectiles enable various active experiments to
be performed in a wide range of testing parameters,
thus providing the opportunity to reveal new features
of strongly coupled complex plasmas. In particular,
the velocities of projectiles can vary significantly, and
when they move through a cloud of background mi-
croparticles at supersonic velocities, they excite Mach
cones [19]. On the other hand, the obvious disadvan-
tage of experiments with projectiles is that their ve-
locities cannot be controlled.

In what follows, we discuss, in detail, one example
of a slow (subsonic) motion of a projectile. The ex-
periment was performed during the 13th mission of
PK-3 Plus on the ISS. Argon was used as a buffer
gas at a pressure of 10 Pa, and the main micropar-
ticle cloud was composed of melamine-formaldehyde
particles 2.55 𝜇m in diameter. The projectile was ac-
celerated from the side and penetrated into the main
cloud, moving almost horizontally from the left to the
right (see Fig. 2, a, phase I).

To determine the size of the projectile, this ex-
periment was compared with others performed with
larger particles, which allowed us to conclude that the
projectile radius was 𝑎𝑝 = 7.5 𝜇m. During its path
toward the void, the velocity of the projectile var-
ied, decreasing from 80 mm/s to 37 mm/s. Inside the
void, the horizontal motion further slowed down. The
particle was then accelerated upward (see Fig. 2, a,
phase II), where it again penetrated into the mi-
croparticle cloud (see the discussion of microparti-
cle trajectories in Ref. [19]). In the region above the
void, the particle was slower than before. It did, how-
ever, push the microparticles away to clear its path.
Figure 2, b shows the projectile motion during phase
II. The microparticles that were pushed away moved
in vortices around the probe particle. The projectile
accelerated while traveling upward through the mi-
croparticle cloud, so that its velocity increased from
7 to 14 mm/s. This value is still lower than the speed
of sound.

In the experiments, we monitored the motion of
dust particles in a vicinity of the projectile, by man-
ually determining its position recorded by a high-

Fig. 2. (a), snapshot of the microparticle cloud from quad-
rant view camera (field of view is 35.7 mm × 26.0 mm). On
the left-hand side, a small track of the initial movement of a
probe particle (projectile) into the cloud is visible. The hori-
zontal dashed line shows schematically the path of the projec-
tile on the left-hand side (phase I); the vertical dashed line is
the path of projectile from the void into the upper part of the
microparticle cloud (phase II). (b), snapshot of the micropar-
ticle cloud from a high-resolution view camera (field of view is
8.1 mm × 5.9 mm). A small track on the right-hand side shows
the projectile motion in phase II

resolution camera at 50 frames/s (a video frame is
illustrated in Fig. 2, b). The horizontal and vertical
resolutions of the camera were 11.3 and 10.3 𝜇m per
pixel, respectively.

The projectile motion from the void to the chamber
wall is represented by frames from bottom to top in
Fig. 3.

Dust particles form a dust crystal, which can be
represented as a set of Wigner–Seitz cells around each
particle. We estimate the dust particle number den-
sity as 𝑛d = 3 × 105 cm−3; hence, the cell radius
is 𝑟d = (3/4𝜋𝑛𝑑)

1/3 = 9.3 × 10−3 cm. We can de-
fine the coupling parameter of the interaction be-
tween the projectile and dust particles (or the scat-
tering parameter) 𝛽dp = 2𝑍p𝑍d𝑒

2/𝜆𝑀𝑑𝑢
2 as the ra-

tio of the characteristic Coulomb energy 𝑍p𝑍d𝑒
2/𝜆

at the plasma (ion) screening length 𝜆 (where 𝑍p

and 𝑍d are the charges of the projectile and a dust
particle, respectively, in units of the electron charge
𝑒) to the kinetic energy of a dust particle 𝑀d𝑢

2/2
in the reference frame co-moving with the projectile
(where 𝑀d = 1.31×10−11 g is the dust particle mass,
and 𝑢 ≃ 1 cm/s is the projectile velocity). Based
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Fig. 3. Positions of dust particles and the projectile (negative
images) at successive instants. Time interval between individ-
ual frames is 0.08 s. Frames (a) and (b) illustrate a spherical
cavity; (c) and (d), deformed cavity. The projectile is acceler-
ated from (a) to (d)

on the analysis of recent melting experiments per-
formed under identical conditions [17], we estimate
𝜆 ≃ 6 × 10−3 cm, 𝑍d ≃ −1200 and, assuming a lin-
ear scaling of the charge with size, 𝑍p ≃ −7000. This
yields 𝛽dp ≃ 100. Hence, the estimate for the radius of
the strong interaction between the projectile and dust
particles gives [6] ≃ 𝜆 ln𝛽dp ≃ 2.7 × 10−2 cm. This
value turns out to be fairly close to the average dis-
tance between the projectile and nearest dust particle
neighbors, 𝑅 ≃ 3.74× 10−2 cm. The superposition of
frames like those shown in Fig. 3 reveals trajectories
of individual dust particles that move along loops of
similar form (Section 3). It is also seen that the pro-
jectile is surrounded by a cavity. The projectile is first
centered in a cavity, and then it is shifted toward its
front edge (Section 5).

3. Nonviscous Dust Particle Motion
in the Incompressible Fluid Approximation

Consider the irrotational flow of an incompressible
particle fluid formed by the dust crystal melted
around a projectile moving with the velocity u(𝑡) rel-
ative to the dust, where 𝑡 is the time. The Navier–
Stokes equation describing the velocity field v(r, 𝑡)
in the reference frame of the projectile has the form

𝜕v

𝜕𝑡
+ (v · ∇)v + 𝜈(v + u) = −∇𝑝

𝜌
, (1)

where 𝜌 = 𝑀d𝑛d is the mass density of the dust
fluid (assumed in this section to be constant),
with 𝑀𝑑 and 𝑛𝑑 being, respectively, the mass and
the number density of dust particles of the radius
𝑎d. Furthermore, 𝑝(𝑡, r) is the dust pressure field, 𝜈 =
= (8

√
2𝜋/3)𝛿𝑚𝑛𝑛𝑛𝑣𝑇𝑛𝑎

2
d/𝑀d is the friction coeffi-

cient with 𝛿 ≃ 1.4 being the accommodation coef-
ficient [6], and 𝑚𝑛, 𝑛𝑛, 𝑇𝑛, and 𝑣𝑇𝑛 = (𝑇𝑛/𝑚𝑛)

1/2

are the mass, number density, temperature, and
thermal velocity of neutral gas molecules, respec-
tively. Equation (1) assumes also that, far from the
projectile, dust particles are quiescent relative to the
neutral gas. It was shown in [22] that the approxi-
mation of nonviscous flow results in a fairly good de-
scription of trajectories of individual dust particles;
the estimate of the viscosity term for the dust parti-
cle fluid is indicative of the fact that, in most cases, it
is small [23]. This allowed us to omit it in Eq. (1) and
to confine ourselves to the nonviscous approximation.

For an incompressible fluid, the continuity equation
is reduced to
∇ · v = 0. (2)

The boundary conditions for (1) and (2) are
(v · n)|𝑟=𝑅 = 0, where n = r/𝑟, and v = −u at
𝑟 = ∞. For an irrotational flow (∇×v = 0), we sub-
stitute v = ∇𝜙− u in Eq. (2) to obtain the equation

∇2𝜙 = 0, 𝜙(𝑡, ∞) = 0,
𝜕𝜙

𝜕n

⃒⃒⃒⃒
𝑟=𝑅

= 0, (3)

which has the solution [30]

𝜙(r) = −𝑅3

2𝑟2
u · n (4)

or
v(r) = −𝑅3

2𝑟3
[u− 3n(n · u)]− u. (5)

The streamlines can be obtained by integration
of Eq. (5) in the laboratory reference frame. Let
the 𝑋-axis be directed along the motion of a
sphere. Then the vector n has the components {(𝑥−
−𝑢𝑡)/𝑟, 𝑦/𝑟, 𝑧/𝑟}, where 𝑟=[(𝑥− 𝑢𝑡)2 + 𝑦2 + 𝑧2]1/2

and u · n = (𝑥 − 𝑢𝑡)𝑢/𝑟. We introduce the variables
𝜁 = (𝑥 − 𝑢𝑡)/𝑅, 𝜂 = 𝑦/𝑅, and 𝜏 = 𝜈𝑡, where
𝜈 = 3𝑢/2𝑅, to rewrite Eq. (5) as a system of dif-
ferential equations,

𝑑𝜁

𝑑𝜏
=

(︂
𝜁2

𝜁2 + 𝜂2
− 1

3

)︂(︀
𝜁2 + 𝜂2

)︀−3/2 − 2

3
,

𝑑𝜂

𝑑𝜏
= 𝜁𝜂

(︀
𝜁2 + 𝜂2

)︀−5/2
,

(6)
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with the initial conditions 𝜁(0) = 0 and 𝜂(0) = 𝜂0
(|𝜂0| ≥ 1). Due to the axial symmetry, the third equa-
tion for 𝑍-axis coincides with the second equation in
(6) and is therefore redundant.

Because a decrease of the particle velocity (5) with
the distance from the projectile is rather fast, |v| ∝
∝ 𝑟−3, we can assume that particles move in a thin
fluid tube in a vicinity of the sphere with the radius
𝑅 so that the difference between 𝑟 and 𝑅 can be ne-
glected, and 𝜁2 + 𝜂2 ≃ 1. Equations (6) are then re-
duced to

𝑑𝜁

𝑑𝜏
= 𝜁2 − 1,

𝑑𝜂

𝑑𝜏
= 𝜁𝜂,

(7)

with the initial conditions 𝜁(0) = 0 and 𝜂(0) = 1.
Within the framework of this approximation, we have
to assume also that a particle is quiescent until it
finds itself on the surface of the moving sphere (pro-
jectile cell). This instant corresponds to the time
𝑡 = −Δ𝑡 and to the distance 𝑑 between the parti-
cle and the projectile motion direction (impact pa-
rameter). Obviously, the solution of Eqs. (6) obeys
the condition |𝜂(±∞)| = 𝑑/𝑅. Due to the time re-
versibility of Eqs. (7), the particle must stop at 𝑡 = Δ𝑡
and further remain quiescent, the total time of mo-
tion being 2Δ𝑡. Thus, the initial conditions should be
completed by the “collision” condition 𝜂(Δ𝑡) = ±𝑑/𝑅,
where the sign of 𝑑 defines the particle motion direc-
tion. We integrate Eqs. (7) to derive 𝜁(𝜏) = − tanh 𝜏
and 𝜂(𝜏) = (cosh 𝜏)−1. In conventional units, we ob-
tain [22]

𝑥* =
𝑥

𝑅
=

2

3
𝜈𝑡− tanh 𝜈𝑡,

𝑦* =
𝑦

𝑅
=

1

cosh 𝜈𝑡
.

(8)

From the second equation in (8), we obtain

Δ𝑡 = 𝜈−1 ln

(︃
𝑅

𝑑
+

√︂
𝑅2

𝑑2
− 1

)︃
. (9)

If 1 − (𝑑/𝑅) ≪ 1, we find approximately Δ𝑡 ≃
≃ (2𝑅/𝑑− 2)

1/2 for a grazing collision. At (𝑑/𝑅) ≪
≪ 1, we have Δ𝑡 ≃ ln(2𝑅/𝑑). It was shown in
Ref. [22] that the approximate solution almost co-
incides with the numerical solution of the system of

Fig. 4. Deformation of a cavity behind the moving projec-
tile (large bullet in the center) moving with the velocity 𝑢

through the dust crystal (small bullets around) in a carrier
gas. The projectile is surrounded by a deformed cavity with
initial radius 𝑅

equations (6) corresponding to the same 𝑑/𝑅. Our ap-
proximation is valid even at a large impact parameter
𝑑 = 𝑅, because the numerical solution of (6) yields
𝑦(0) = 1.33𝑅 in this case, i.e., the distance between
the particle and the projectile is still not much differ-
ent from 𝑅.

The pressure field 𝑝(r) can then be found by sub-
stituting velocity (5) in Eq. (1). This yields the fol-
lowing pressure distribution at the spherical surface
of a cavity (𝑟 = 𝑅),

𝑝 = 𝑝st +
𝜌𝜈𝑅

2
u · n+

𝜌𝑢2

8

[︂
9
(u · n)2

𝑢2
− 5

]︂
+

𝜌𝑅

2
u̇ · n,

(10)

where 𝑝st = const > 0 is the static pressure of dust
at 𝑟 = ∞.

It can be shown that, along with the regular neutral
gas drag, there is an additional force exerted on the
projectile due to the dissipation in the surrounding
particle fluid. This force can be calculated using the
pressure distribution (10). Thus, we have [23]

𝐹d = 2𝜋𝑅2

1∫︁
−1

𝜉𝑝(𝑅, 𝜉) 𝑑𝜉 = −2𝜋

3
𝑚d𝑛d𝑅

3𝜈𝑢, (11)

where 𝑚d is the dust particle mass. This additional
force can provide a significant contribution to the to-
tal drag.

Consider the deformation of a cavity around the
projectile propagating in the dust crystal (Fig. 4).
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Here, we will neglect the finite fluid compressibil-
ity – corresponding corrections are discussed in Sec-
tion 4. Deformation can be caused solely by the for-
mation of a void in the dust fluid stream, because the
interaction parameter 𝛽𝑑𝑝 is large. Since no evidence
for an appreciable attraction between dust particles
has been reported in the literature, we model the
cloud of dust particles by a system of hard spheres. In
such a system, a cavity can be deformed by the void
formation if the condition 𝑝 ≤ 0 is satisfied over some
area around a cavity. This condition corresponds to
the cavitation in a metastable fluid and to a stall in
the gas dynamics.

Let us first consider the case �̇� = 0. According to
Eq. (10), the friction between dust particles and the
neutral gas gives rise to an increase in the pressure
in front of the projectile and a decrease behind it,
so that 𝑝(r) reaches a maximum at the “front pole”
(where u · n = 𝑢). By introducing the cosine of the
polar angle, cos 𝜃 = u · n/𝑢 ≡ 𝜉, we readily derive

𝜕𝑝

𝜕𝜉
=

9

4
𝜌𝑢2(𝜉 − 𝜉cr), (12)

where 𝜉cr = −2𝜈𝑅/9𝑢. If |𝜉cr| > 1, then the pres-
sure reaches a minimum at the “rear pole” (𝜉 = −1),
where 𝑝min = 𝑝st − 𝜌𝑢2(9|𝜉cr|/2 − 1)/2. This corre-
sponds to the low-velocity regime 𝑢 < 2𝜈𝑅/9, when
the minimum pressure decreases (approximately) lin-
early both with 𝑢 and 𝑅. The cavity deformation
threshold is defined by the condition 𝑝min = 0 and
is reached easier for larger projectiles, at the criti-
cal velocity 𝑢cr ≃ 2𝑝st/(𝜌𝜈𝑅) [here, we assume 𝑝st .
. 𝜌(𝜈𝑅)2/8]. Note that, in the high-velocity regime
𝑢 > 2𝜈𝑅/9, the pressure minimum is shifted to a
certain latitude in the rear hemisphere, approaching
the “equator” (𝜉 = 0) asymptotically. In this case, the
friction plays a minor role, and the critical velocity is
𝑢cr ≃

√︀
8𝑝st/5𝜌.

Note that, for an arbitrary acceleration (assuming
u̇‖u), one can introduce the effective damping rate
𝜈eff = 𝜈+ �̇�/𝑢, which can have either sign, so that the
critical cosine 𝜉cr can have either sign as well. Thus, if
the projectile experiences a sufficiently strong decel-
eration (|�̇�|/𝑢 > 𝜈), the cavity can also be deformed
at the front hemisphere.

The critical velocity 𝑢cr calculated above defines
the emergence of a point or a circle of zero pressure
on the cavity surface depending on the value of 𝜉cr. It
is well known in the gas dynamics that the existence

of small local regions of negative pressure would not
lead to a significant deformation of flow lines and,
therefore, to a stall. Instead, the emergence of a
stall requires an extended region of negative pres-
sure that covers a significant part of the “rear hemi-
sphere”. There does not seem to be any criterion that
would tell us how large the negative region should
be to initiate a stall. Nevertheless, one can hope that
the velocity 𝑢cr derived above provides a reasonable
lower bound estimate for the cavity deformation on-
set. Strictly speaking, the theory discussed above is
not applicable to the case 𝑢 > 𝑢cr, because a stream-
lined cavity is already deformed. At the same time,
this deformation is small below the stall threshold,
i.e., the cavity is still almost spherical. Therefore,
one could extend the analysis to the region of veloci-
ties higher than the critical one and, respectively, to
the region of negative pressure larger than a point
or a circle on the cavity surface. In the next section,
the obtained results are generalized to the case of the
finite compressibility of a fluid.

4. Flow with Finite Compressibility

In this section, we will estimate the effect of fi-
nite compressibility of the dust cloud on the veloc-
ity and pressure fields. Here, we will treat a steady
(u̇ = 0) and irrotational (∇×v = 0) flow, so that the
fluid density is a function solely of the radius-vector:
𝜌 = 𝜌(r). Since ∇ × v = 0 and ∇𝑝 = 𝑐2∇𝜌, where
𝑐 =

√︀
(𝜕𝑝/𝜕𝜌)𝑇 is the sound velocity, we can rewrite

Eq. (1) in the form

(v · ∇)v + 𝜈(v + u) = −𝑐2

𝜌
∇𝜌. (13)

In this case, the continuity equation includes the fluid
density,

∇ · v + v · ∇𝜌

𝜌
= 0. (14)

Here, 𝑐 is assumed to be constant independent of the
local velocity and plasma state parameters. We sub-
stitute ∇𝜌/𝜌 = −(1/𝑐2)(v ·∇)v− (𝜈/𝑐2)(v+u) from
(13) in (14) to derive

∇ · v =
1

𝑐2
v · (v · ∇)v +

𝜈

𝑐2
(𝑣2 + u · v). (15)

We will search for a solution of Eq. (15) in the
form v = v0 + v1, where v0(r) is a solution of the
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incompressible problem (for 𝜌 = 𝜌0 = const, i.e., for
𝑐 → ∞) given by Eq. (5), the respective pressure
distribution 𝑝0(r) is presented by Eq. (10) (for �̇� = 0).
Obviously, ∇ · v0 = 0. We assume that |v1| ≪ |v0|
and retain solely zeroth-order terms on the rhs of (15)
to obtain

∇ · v1 =
1

2𝑐2
v0 · ∇𝑣20 +

𝜈

𝑐2
(︀
𝑣20 + u · v0

)︀
. (16)

The solution of Eq. (16) with the boundary conditions
v1(∞) = 0 and n · v1 |𝑟=𝑅 = 0 was obtained in [31].
On the cavity surface, it has the form

v1 |𝑟=𝑅 =
𝑢2

𝑐2

(︂
243

176
𝜉2 +

𝜅

4
𝜉 − 551

880

)︂
(u− 𝜉𝑢n). (17)

As it could be expected from symmetry considera-
tions, v1 |𝑟=𝑅 = 0 at 𝜉 = ±1, i.e, at both poles. Along
with Eq. (13), this solution makes it possible to cal-
culate the correction to the pressure distribution over
the cavity surface due to the finite compressibility of
a dust cloud. If we confine ourselves to the terms pro-
portional to 𝑢2, then we arrive at [31]

𝑝(𝜉)≃𝑝st+
𝜌0𝑢𝜈𝑅

2
𝜉 +

𝜌0𝑢
2

8

(︂
9𝜉2−5+

4𝜈2𝑅2

3𝑐2

)︂
(18)

instead of (10). Thus, the pressure increases due to
the finite compressibility, so that the threshold veloc-
ity of a cavity deformation increases as well. On the
other hand, one can see that the resulting correction
is small when 𝜅𝑢/𝑐 ≪ 1. However, we will see that
the finite compressibility correction is always small
for large projectiles, even if this condition is not sat-
isfied. It is worth mentioning that, even in the general
case, the obtained correction to the pressure includes
solely even powers of 𝜉, so that the corresponding cor-
rection to an additional force exerted on the projectile
due to the dissipation in the surrounding particle fluid
(11) vanishes.

Now, we repeat the analysis of Section 3 for
Eq. (18) instead of (10). Since the finite compressibil-
ity correction is independent of 𝜉, the expression for
𝜉cr remains the same as in Section 3. First, we con-
sider the case |𝜉cr| > 1. Then we have to set 𝜉 = −1 in
Eq. (18) to find the threshold velocity corresponding
to the emergence of a point of zero pressure at the
“rear pole” of a cavity:

𝑢cr =
𝜈𝑅

2𝜔
−

√︃
𝜈2𝑅2

4𝜔2
− 2𝑝st

𝜔𝜌0
≃ 2𝑝st

𝜈𝑅𝜌0
, (19)

where 𝜔 = 1+𝜈2𝑅2/3𝑐2. For the case of large cavities
(𝑅 → ∞) typical of the treated case, approximation
(19) is valid provided that the condition 𝑝st/𝜌0𝑐

2 ≪ 1,
which applies to experiments analyzed in Section 5,
is satisfied even if 𝜅𝑢/𝑐 > 1. Thus, the finite com-
pressibility seems to have no significant effect on the
critical velocity. The reciprocal dependence 𝑝st(𝑢cr)
has the form
𝑝st

𝜌0
=

𝜔𝑢2
cr

2

(︂
𝜈𝑅

𝜔𝑢cr
− 1

)︂
≃ 1

2
𝜈𝑅𝑢cr. (20)

Upon a further increase of the projectile velocity
𝑢, the region of negative pressure on the surface of a
cavity is expanded. It is a straightforward matter to
demonstrate that the extrapolation of the theory to
the extended region of negative pressures (where it is
formally invalid) results in a very fast increase of this
region with the increase of 𝑢. Therefore, 𝑢cr is likely
to be a good estimate for the stall velocity 𝑢st. At
the same time, 𝑢st > 𝑢cr means that if we equate
𝑢cr = 𝑢st, relation (20) yields an overestimated 𝑝st,
which can be treated as an upper bound estimate for
the static pressure.

In the case |𝜉cr| < 1 typical of small projectiles, a
circle with zero pressure firstly emerges at the critical
velocity

𝑢cr = 2

(︂
2𝑝st
5𝜌0

− 𝜈2𝑅2

45

)︂1/2
×

×
(︂
1− 4𝜈2𝑅2

15𝑐2

)︂−1/2

≃
(︂
8𝑝st
5𝜌0

)︂1/2
. (21)

Here, the approximation corresponding to the limit
𝑅 → 0 also coincides with that for an incompressible
fluid. If 𝑢cr is known from experiment, one can derive
an upper bound estimate for the static pressure,

𝑝st

𝜌0
=

5𝑢2
cr

8
+

𝜈2𝑅2

18

(︂
1− 3𝑢2

cr

𝑐2

)︂
≃ 5𝑢2

cr

8
. (22)

In this case at 𝑢 > 𝑢cr, the circle expands to a region
between two circles on the surface of a cavity. For
small projectiles, one can also demonstrate that a fast
expansion of the negative region takes place as 𝑢 is
increased. Thus, 𝑢cr also yields a reasonable order of
magnitude for an estimate of the stall threshold.

5. Comparison with Experiment

Based on the developed theory, we will analyze
the possibility of a cavity deformation in experi-
ments. First, let us consider the experiments carried
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Fig. 5. (Color online) Individual dust particles moving along
the 𝛼-shaped pathways. Traces are the superposition of frames
obtained in the experiment (negative image, vertical trace
marks the projectile trajectory), solid lines show the result of
calculation by formulas (8) and (9), dashed line indicates the
trajectory portion “forced” by the local crystallization

Fig. 6. Deformed cavity around a large subsonic projectile
moving with the velocity 𝑢 = 1.8 cm/s. Reproduction of an
enlarged fragment of Fig. 3, a in Ref. [11]

out in the PK-3 Plus Laboratory on the board of
the ISS under microgravity conditions discussed in
Section 2.

Figure 5 shows a good correspondence between so-
lution (8), (9) and experimentally observed traces of
individual particles in their closed portions obtained
by superposition of frames. Indication of this corre-
spondence is a good agreement between the ratio of
the height of a closed loop to 𝑅 determined experi-
mentally (Fig. 5), which amounts to about 0.28, while
the theoretical value is 0.277. This ratio is indepen-
dent of the loop position relative to the projectile
path. Note that since the streamline takes place in
a close neighborhood of the projectile and farther re-

gions are crystallized, an approximate solution (8),
(9) utilizing the same approximation seems to be even
more adequate to the treated system than the nu-
merical solution. Open portions of particle traces re-
veal some differences from theory. In Fig. 5, the up-
per trace portion of the bottom loop on the left-hand
side seems to disappear due to the fact that the par-
ticle goes out of the illumination plane. On the con-
trary, the upper trace portion of the top loop on the
left-hand side would not appear at all, but the par-
ticle was probably pushed toward the projectile due
to a spatial re-distribution of particles in the course
of local crystallization. A good correspondence be-
tween theory and experiment demonstrates that the
stream flow of dust particles is almost a potential
nonviscous one.

Consider the onset of the deformation of a cavity
around the moving projectile. For a gas pressure of
10 Pa and and the temperature 𝑇𝑛 = 300 K, respec-
tively, we have 𝑚𝑛 = 6.63 × 10−23 g, 𝑛𝑛 = 2.42×
× 1015 cm−3, and 𝑣𝑇𝑛

= 2.5× 104 cm/s. Under these
conditions for dust particles, we have 𝜈 = 46.6 s−1.

Successive frames of the projectile path recorded
by a high-resolution camera are shown in Fig. 3. The
projectile velocity increases slowly from 𝑢 = 0.7 cm/s
to 1.4 cm/s. Since the sound velocity measured in
this experiment amounts to 2.2 cm/s [19], such mo-
tion is subsonic. The peculiarity of this motion is an
abrupt change of the cavity configuration. At the be-
ginning, the projectile moves in the center of a cavity
[cf. Figs. 3, a and b]. Then, at the point of trajec-
tory characterized by the velocity 𝑢 = 1.06 cm/s,
acceleration �̇� = 2.6 cm/s2, and the cavity radius
𝑅 = 3.74 × 10−2 cm, the projectile shifts abruptly
from the cavity center to its front side (Fig. 3, c). In
the course of further motion, the cavity deformation
is preserved (Fig. 3, d). One can assume that, at the
point shown in Fig. 3,c, the velocity of the accelerat-
ing projectile exceeds the stall threshold. Under spec-
ified experimental conditions, 𝜉cr = −0.365; hence,
we substitute 𝑢cr = 1.06 cm/s in (22) to derive an
upper bound estimate 𝑝st/𝜌0 ≈ 0.753 cm2/s2 (or
𝑝st ≈ 3.0×10−7 Pa). Note that the correction for the
acceleration to the total pressure −𝜌�̇�𝑅/2 [Eq. (10)]
is small due to a small projectile acceleration at the
selected point (�̇�/𝑢 ≪ 𝜈) and can be neglected.

The estimate obtained above can be compared with
a theoretical estimation for the static pressure, which
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is based on dimensionality considerations. Since the
dimensionalities of the pressure and the energy den-
sity coincide, we can write 𝑝st ∼ 𝑍2

d𝑒
2𝑛d/2𝑟 with an

order-of-magnitude accuracy, where 𝑟 = (3/4𝜋𝑛d)
1/3

is the Wigner–Seitz radius for a dust crystal, and 𝑛d is
the number density of dust particles. With 𝑍d = 1200
and 𝑛d = 3 × 105 cm−3 [19], this estimation yields
𝑝st ∼ 5.4× 10−7 Pa, which correlates with the upper
bound estimate resulting from experiment.

Microgravity conditions can also be maintained on
parabolic flights. Such experiments were performed
using the IMPF-K2 chamber [11]. The experiment
was carried out with argon at 30 Pa and 𝑎d =
= 4.775 × 10−4 cm (𝑀d = 6.88 × 10−10 g and 𝜈 =
= 33.5 s−1). Projectiles were accelerated by a special
device (cogwheel) up to both supersonic and subsonic
velocities. A typical image illustrating the motion of
a subsonic projectile inside a dust cloud is shown in
Fig. 6. Both the projectile shift from the cavity center
toward its front side and the nonspherical (elongated)
shape of a cavity are visible. Unfortunately, a point of
transition from a spherical to a deformed cavity was
not detected in this experiment. Nevertheless, we can
estimate the stall threshold for this case. Note that
the estimate 𝑝st ∼ 𝑍2

d𝑒
2𝑛d/2𝑟 with 𝑍d = 8800 and

𝑛d = 2 × 104 cm−3 [11] yields 𝑝st ∼ 7.8 × 10−7 Pa,
which is close to the estimate for experiment [22]
discussed above. Therefore, we can assume that 𝑝st
are close in both systems and use the upper bound
estimate (19) to calculate 𝑢cr for the treated sys-
tem. With the cavity radius roughly estimated as 𝑅 =
= 0.1 cm, we derive 𝑢cr ≈ 0.462 cm/s, so that the pro-
jectile moves in the low-velocity regime (𝜉cr = −1.61).
Therefore, the stall threshold for this system does
not exceed 1 cm/s. This result correlates with the
projectile velocity in Fig. 6, 𝑢 = 1.8 cm/s, which
is still lower than the sound velocity 𝑐 = 2.0 cm/s
[11]. Thus, the main notion of the present study,
namely that the cavity around a moving projec-
tile can be deformed at subsonic velocity , is corro-
borated.

6. Conclusion

In this study, we have observed that a projectile go-
ing through the dust crystal with a subsonic velocity
appears to move almost freely. We have proposed a
new explanation of this fact implying a nonviscous
flow of dust particles about the projectile, in which

the interaction force between the projectile and dust
particles vanishes. To prove this, we monitored the
particle dynamics by means of a high-resolution cam-
era. Superposition of successive frames revealed typi-
cal 𝛼-shaped pathways of dust particles in the neigh-
borhood of projectile. Since the system is strongly
coupled, it can be divided into the Wigner–Seitz cells
around each particle including the projectile, whose
motion does not break a close ordering. However, the
projectile melts the crystal in its neighborhood, and
the dust particles flow about the projectile cell bound-
ary in such a way that the distance 𝑅 between indi-
vidual dust particles and the projectile, which can be
measured using recorded frames, is the sum of radii of
the Wigner–Seitz cells around dust particles and the
projectile. In the framework of our model, we have to
imply that the cells around particles rather than the
particles themselves take part in the interaction. In
the absence of direct interparticle contacts, the shear
viscosity must vanish, and we can consider the non-
viscous flow of cells.

The classical solution for the velocity field in a po-
tential nonviscous flow about a sphere moving with
a constant velocity can be regarded as a system of
differential equations for the trajectories of individual
dust particles. We have solved these equations numer-
ically and obtained an analytical solution, which ap-
proximates closely the numerical one. This solution,
which defines the coordinates of dust particles as ex-
plicit functions of the time, is in a good agreement
with particle trajectories obtained experimentally by
a superposition of successive frames. Thus, the mo-
tion of a projectile implies no momentum transfer
from the liquid to the projectile, the drag force aris-
ing from the interaction between the projectile and
dust particles must vanish, i.e., a large particle can
move almost freely inside the bulk of a strongly cou-
pled dust crystal. Our investigation also points to the
fact that the hydrodynamic approach can be valid
at small length scales down to several interparticle
distances.

In addition, we have investigated the possibility
of a deformation of the cavity around a large pro-
jectile slowly moving inside a cloud of small dust
particles. This cavity is formed due to a strong
Coulomb repulsion between the projectile and dust
particles. Since the parameter 𝛽dp characterizing this
interaction is very large, the cavity deformation oc-
curs solely due to the formation of a void adjacent
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to the initially spherical cavity. This is similar to
the process of void formation in a fluid under neg-
ative pressure. Since we approximate the dust cloud
by a system of hard spheres, zero pressure is suffi-
cient for the void formation leading to a cavity defor-
mation.

We model the collective particle subsonic motion
in a complex plasma by a nonviscous irrotational hy-
drodynamic motion of the dust fluid and show that,
in this model, the reason for the cavity deformation is
the friction between dust particles and neutral atoms
of a carrier gas. It is this friction that stipulates the
emergence of a zone of negative pressure over the back
of the cavity surface. If such a zone covers a substan-
tial part of the surface, the stall takes place, which
is observed as a cavity deformation. We have found
that the deformation is more likely to be observed for
larger projectiles. The deformation occurs when the
projectile velocity exceeds some threshold of a sub-
sonic velocity.

Since the typical projectile velocities are of the sa-
me order of magnitude as the sound velocity, we have
studied the effect of a finite compressibility of the
dust fluid on the velocity and pressure fields. Toward
that end, we have obtained an exact solution of the
linearized gas dynamics equations for a compressible
nonviscous fluid flowing about the cavity. In so doing,
we included both the convective and friction terms
in the Navier–Stokes equation. Calculations showed
that the corrections for a finite compressibility are
rather small. Generally, the account of the compressi-
bility leads to a shift of the area covered by a negative
pressure zone.

The analysis of available experimental data has val-
idated our approach. It was found that the cavity
is deformed when either the velocity [22] or the size
[11] of a projectile is sufficiently large. It is worth
mentioning that the phenomenon of cavity deforma-
tion is similar to the formation of a void behind
a cluster of smaller particles moving in the cloud
of larger ones [32]. For intermediate projectile sizes,
a transition from a spherical to a deformed cav-
ity was observed along the trajectory of an individ-
ual projectile. The transition threshold is in accor-
dance with the developed theory. This made it pos-
sible to estimate the static pressure inside a dust
cloud and, hence, opened up a possibility to use pro-
jectiles as a diagnostic tool for the dust equation
of state.
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H.M. Thomas, M. Rubin-Zuzic, W.J. Goedheer, V.E. For-
tov, A.M. Lipaev, V.I. Molotkov et al.., Phys. Rev. Lett.
102, 085003 (2009).

Received 28.11.13

Д.I.Жуховицький, В.Є.Фортов,
В.I.Молотков, А.М.Липаєв, В.Н.Наумкiн,
Х.M.Томас, A.В. Iвлєв, Г.E.Морфiл
ДОЗВУКОВИЙ РУХ ЧАСТИНКИ
В РIДИНI КОМПЛЕКСНОЇ ПЛАЗМИ
В УМОВАХ МIКРОГРАВIТАЦIЇ

Р е з ю м е

За допомогою лабораторiї PK- 3 Plus на борту Мiжнародної
космiчної станцiї проведенi дослiдження дозвукового руху
великої частинки через об’єм плазмового кристала, який
утворюється негативно зарядженими дрiбними частинка-
ми. Вивчення траєкторiї частинок показує, що бiльша ча-
стинка рухається майже вiльно через обсяг плазмового кри-
стала, в той час як частинка пилу описує 𝛼-образнi траєкто-
рiї поруч. Розробляється теорiя нев’язкого руху частинок
для розрахунку їх траєкторiй. Дослiджена деформацiя по-
рожнини навколо великої частинки, що рухається з дозву-
ковою швидкiстю в хмарi дрiбних частинок пилу з урахува-
нням тертя мiж частинками пилу i атомiв нейтрального га-
зу. Тиск пилової хмари на поверхнi порожнини навколо ве-
ликої частинки може стати негативним, що тягне за собою
появу значної асиметрiї порожнини, тобто її деформацiї. Ре-
зультати розрахункiв погоджуються з експериментальними
даними.
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